
A Appendix

A.1 Experimental Details

All experiments were performed on an Alienware-Aurora-R9 with 8 Intel i7-9700 cores. We did not
use a GPU. Code for the experiments is provided in the supplementary materials

A.1.1 Discrete Case

We perform 1000 episodes, using trajectories of 30 steps, a k of 8, and a γ of 0.825. Our learning
rate begins at 0.01 and decays as Opn´ 3

4 q.

A.1.2 For all continuous-space experiments

NNs: We use four-layer neural nets with RELU activations and 256 hidden units for both the actor
and critic networks
Optimizer: Adam with default params
Learning rate: .001 for both actor and critic
Polyak averaging coefficient: .95
K (number of hindsight goals per non-hindsight goal): 8
Batch-size: 256
αQ: 0.1
αf : 0.5

N-torus with Freeze

Figure 10: A Torus with a 2-
dimensional surface

In this environment, robots move on a unit torus with a 4-
dimensional surface 14. The robot can move up to 0.05 units
in any direction on the surface. Alternatively, robots can take
the "Freeze" action which randomly teleports them to a random
location on the surface and permanently breaks the robot so it
cannot move. The goal space is the 4-dimensional unit cube.
The state space is the Cartesian product of the 4-dimensional
unit cube with a boolean pR4

Ś

rTrue, Falsesq. The boolean
represents whether the robot is broken. Because this is a torus,
the space loops around on itself as a torus would – robots that
would move off the positive edge of any axis loop around and
appear on the negative edge. The action is a 5-dimensional
vector in the range [-1, 1]. The first four dimensions indicate
the direction and distance to move, and the last axis indicates the probability with which to take
the "freeze" action. Positive values are interpretted as a probability of taking the freeze action, and
negative values are interpretted as "0 probability of taking the freeze action". We chose to make this
value a scalar rather than a discrete value, because DDPG and SAC assume a continuous action space.

For the Torus with Freeze environment, we increase the ratio clipping factor c from 0.3 to 10, allowing
the importance sampling weight to go as high as 11 and as low as 1

11 . We do this because the Freeze
action was designed as a pathological counterexample to HER, and therefore the weights required to
correct for its bias can be significantly higher than for more naturalistic environments.

Although this environment is very non-physical, it is the only benchmark we are aware of that assesses
the bias of HER variants. For this reason, we felt reporting results with it was necessary.

γ : .98
Trajectory length: 50
Batches per epoch: 4
Episodes per epoch: 500
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Entropy Regularization: 0.001
Car with Random Noise
γ : .95
Trajectory length: 20
Batches per epoch: 5
Episodes per epoch: 500
Entropy Regularization: 0.01
RedLight
The yellow tile in the figure represents the intersection that is dangerous during red lights.

Figure 11: Red Light Environment

γ : .9
Trajectory length: 50
Batches per epoch: 4
Episodes per epoch: 500
Entropy Regularization: 0.01
The light pattern was green: 1 second, yellow: 1 second, red:
4 seconds, with a randomized starting color. FetchReach
γ : .98
Trajectory length: 50
Batches per epoch: 40
Episodes per epoch: 50
Entropy Regularization: 0.001
FetchPush
γ : .98
Trajectory length: 50
Batches per epoch: 40
Episodes per epoch: 50
Entropy Regularization: 0.01
FetchSlide
γ : .98
Trajectory length: 50
Batches per epoch: 40
Episodes per epoch: 50
Entropy Regularization: 0.001
Mobile Throwing Robot
γ : .9
Trajectory length: 20
Batches per epoch: 100
Episodes per epoch: 50
Entropy Regularization: 0.001
Mechanum robot – simulator
γ : .925
Trajectory length: 50
Batches per epoch: 100
Episodes per epoch: 50
Entropy Regularization: 0.01
Mechanum robot – analytic model
γ : .975
Trajectory length: 50
Batches per epoch: 10
Episodes per epoch: 50
Entropy Regularization: 0.01
Importance weight clipping value: 100
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Our USHER and HER implementations are based on Tianhong Dai’s implementation [16].

A.2 Additional Experiments

Due to space limitations, we were not able to include all of our experimental results. We have
included these additional results here. We first trained the mechanum robot in simulation before
transferring it to a real-world robot. Here are the training curves for the robot that was trained in
simulation.

Figure 12: USHER performance with weight clipping (left) and without weight clipping (right)

A.3 Hyperparameter analysis

Here, we include an analysis of the performance of USHER as αQ and αf vary. We evaluated
USHER’s success rate on FetchReach after 30 episodes of training.

Figure 13: USHER performance with weight clipping (left) and without weight clipping (right)

Observe that the maximum value of WαQ
is at most 1

αQ
. This means that for small values of αQ,

WαQ
can potentially take on very large values, which can be a source of variance that harms USHER’s

performance. For large values of αQ, hindsight goals have much less weight than random goals,
which undercuts the source of HER’s sample efficiency. For this reason, the best values of αQ

lie in the low-to-mid ranges, between αQ “ 0.1 and αQ “ 0.5. This seems to hold true for both
clipped and unclipped weights. The selection of αf mattered much less. We suspect this is because
variance in the Q function matters more than variance in the future goal distribution, as we have to
backpropagate through the Q value to get the policy gradient.
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We did not carefully tune αQ or αf for our experiments. We simply guessed at a value of αQ “ 0.01
and αf “ 0.5 and used these values for all experiments. For c, we selected the value of 0.3 by trying
a range of values from 0.1 to 10 on a sample environment similar to the stochastic car environment
(6.2), but using simple displacement actions instead of dynamics that require numerical integration.
We found that for c ą 1 the bias induced by clipping was negligible.

Figure 14: Bias as a function of the clipping parameter c

We found c “ 0.3 worked well, so we used it for all experiments, except where the environment
induced a very strong HER bias, in which case we set c high enough that clipping was effectively
turned off.

A.4 Implementation

An implementation of USHER and our experiments can be found at: https://anonymous.4open.
science/r/USHER_CoRL-0E16/README.md

A.5 Goal Selection Probability

Proposition 1:
Suppose gπ is fixed at the start of the trajectory, and gr is sampled using HER. Then for any
s1, s, a, gr, gπ, T ,

fps1 | s, a, gr, gπ, T q “
fpgr | s

1, πps1, gπq, gπ, T ´ 1q

fpgr | s, a, gπ, T q
fps1 | s, aq

Proof. Suppose gπ is sampled before the trajectory begins, and is not changed at training time.
Let s, a, and s1 be random variables representing a state, action, and subsequent state. Let
Qπ

HERps, a, gr, gπq be the solution to the Bellman equation obtained using HER’s sampling bias,
with state s, hindsight goal gr, policy goal gπ, and deterministic policy πps1, gπq. Let ts be the
number of steps remaining in the trajectory when state s is sampled, t1

s be the number of steps
remaining in the trajectory when state s1 is sampled, and T be an integer
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fps1 | s, a, gr, gπ, ts “ T q “
fps1, s, a, gr, gπ, ts “ T q

fps, a, gr, gπ, ts “ T q

“
fpgr | s

1, s, a, gπ, ts “ T qfps1, s, a, gπ, ts “ T q

fps, a, gr, gπ, ts “ T q

“
fpgr | s

1, s, a, gπ, ts “ T qfps1 | s, a, gπ, ts “ T q

fpgr | s, a, gπ, ts “ T q

fps, a, gπ, ts “ T q

fps, a, gπ, ts “ T q

“ fps1 | s, a, gπ, ts “ T q
fpgr | s

1, s, a, gπ, ts “ T q

fpgr | s, a, gπ, ts “ T q

Observe that with HER, gr is either selected from the trajectory beginning with s1, sampled in-
dependently of s1 or left the same as the original goal given to the policy. In all three cases,
fpgr | s

1, s, a, gπ, ts “ T q “ fpgr | s
1, gπ, ts “ T q. In the first case where gr comes from the

future trajectory, the Markov property implies that given the most recent observed state s1, gr is
independent of all earlier states and actions, including s and a, so fpgr | s

1, s, a, gπ, ts “ T q “
fpgr | s

1, gπ, ts “ T q. In the second case where gr is sampled independently of the trajectory, so
fpgr | s

1, s, a, gπ, ts “ T q “ fpgrq “ fpgr | s
1, gπ, ts “ T q . In the third case, gr “ gπ, so gr has

no dependence on s, a, or s1. In any case, fpgr | s1, s, a, gπ, ts “ T q “ fpgr | s
1, gπ, ts “ T q.

For the same reason that gr depends only upon s1 and not on s when s1 is known, gr depends only
on ts1 and not ts when ts1 is known. Thus we find that fpgr | s1, gπ, ts “ T q “ fpgr | s

1, gπ, ts1 “

T ´ 1q.

fps1 | s, a, gπ, gr, ts “ T q “ fps1 | s, a, gπ, ts “ T q
fpgr | s

1, gπ, ts1 “ T ´ 1q

fpgr | s, a, gπ, ts “ T q

“ fps1 | s, a, gπ, ts “ T q
Ea1rfpgr | s

1, a1, gπ, ts1 “ T ´ 1q | s1gπs

fpgr | s, a, gπ, ts “ T q

“ fps1 | s, a, gπ, ts “ T q
fpgr | s

1, πps1, gπq, gπ, ts1 “ T ´ 1q

fpgr | s, a, gπ, ts “ T q

Observe that from the Markov assumption of the environment, the transition probability depends only
on s, a, and does not depend on gπ nor ts. gπ is sampled before the trajectory begins, independently
of all other random variables. From this we can see that fps1 | s, aq is independent of gπ and ts.

We can then conclude that for all gr, gπ

fps1 | s, a, gπ, gr, ts “ T q “ fps1 | s, aq
fpgr | s

1, πps1, gπq, gπ, ts1 “ T ´ 1q

fpgr | s, a, gπ, ts “ T q

For conciseness, we will abbreviate this to

fps1 | s, a, gπ, gr, T q “ fps1 | s, aq
fpgr | s

1, πps1, gπq, gπ, T ´ 1q

fpgr | s, a, gπ, T q

A.6 2-goal HER is asymptotically unbiased

Corollary. Suppose Qπ
HERps, a, gπ, gπq satisfies the Bellman equation and the distribution of future

achieved goals is absolutely continuous with respect to the goal space. Then Qπ
HERps, a, gπ, gπq “

Q˚ps, a, gπq for all s, a, gπ , where Q˚ps, a, gπq is the optimal goal-conditioned Q function.
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Proof. Suppose that the distribution of future achieved goals is absolutely continuous with respect to
the goal space. Furthermore, suppose the goal space is a continuous space of at least one dimension.
Then the probability of arriving exactly at any given goal gr given the policy goal gπ is infinitesimal.
This means that the only time there is a non-zero probability of having gr “ gπ is when gr is not
drawn from the distribution of future achieved goals and HER instead uses the same goal as during
the data-gathering phase.

Let P pgr “ gπ | s, a, gπq be the probability that gπ is selected as the reward goal. Then

P pgr “ gπ | s, a, gπ, T q “ P pgr “ gπ | s, a, gπ, T,HqP pHq

` P pgr “ gπ | s, a, gπ, T,␣HqP p␣Hq

“ P pgr “ gπ | s, a, gπ, T,HqP pHq ` 1P p␣Hq

Since P pgr “ gπ | s, a, gπ, Hq is infinitesimal and P p␣Hq is not, this reduces to

P pgr “ gπ | s, a, gπ, T q “ P p␣Hq “
1

k ` 1

Thus,

Qπ
HERps, a, gπ, gπq “ Es1r

P pgr “ gπ | s
1, πps1, gπq, gπ, T q

P pgr “ gπ | s, a, gπ, T q

pRps1, gπq ` γQπ
HERps

1, πps1, gπq, gπ, gπqq | s, a, gr, gπ, T s

“ Es1r
1{pk ` 1q

1{pk ` 1q

pRps1, gπq ` γQπ
HERps

1, πps1, gπq, gπ, gπqq | s, a, gr, gπ, T s

“ Es1rpRps1, gπq ` γQπ
HERps

1, πps1, gπq, gπ, gπqq | s, a, gr, gπ, T s

Now, observe that Qπ
HERps, a, gπ, gπq satisfies the one-goal Bellman equation. Since the Bellman

equation has a unique solution, and Q˚ps, a, gq is a solution, Qπ
HERps, a, gπ, gπq “ Q˚ps, a, gπq.

A.7 Importance Sampling for Mixed Sampling Method

Proposition 2:
Let W ps1, s, a, gr, gπ, T q “

fpgr|s,a,gπ,T q

αfpgr|s,a,gπ,T q`p1´αqfpgr|s1,πps1,gπq,gπ,T q
. Let α be a real value in the

range p0, 1s. Then for any s1, s, a, gr, gπ ,

fps1 | s, aq “W ps1, s, a, gr, gπ, T qpαfps
1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

Furthermore, for any function F of the state s1,

Es1rF ps1q | s, as “ αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

`p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gπ, gr, T s
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Proof. Let gr, gπ, T be a reward goal, a policy goal, and the remaining steps left in the current
trajectory, respectively Using Proposition 1, we can show that

fps1 | s, aq “fps1 | s, aq
αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q

αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

fps1 | s, aq

αfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

fps1 | s, aq

αfps1 | s, aq ` p1´ αq fpgr|s1,πps1,gπq,gπ,T q

fpgr|s,a,gπ,T q
fps1 | s, aq

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

1

α` p1´ αq fpgr|s1,πps1,gπq,gπ,T q

fpgr|s,a,gπ,T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

fpgr | s, a, gπ, T q

αfpgr | s, a, gπ, T q ` p1´ αqfpgr | s1, πps1, gπq, gπ, T q

“pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

W ps1, s, a, gr, gπ, T q

It then follows that for any gr, gπ, T , the expectation value Es1rF ps1q | s, as may be written as
follows:

Es1rF ps1q | s, as “

ż

S

fps1 | s, aqF ps1qds1

“

ż

S

pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

W ps1, s, a, gr, gπ, T qF ps
1qds1

“

ż

S

pαfps1 | s, aq ` p1´ αqfps1 | s, a, gπ, gr, T qq

W ps1, s, a, gr, gπ, T qF ps
1qds1

“α

ż

S

fps1 | s, aqW ps1, s, a, gr, gπ, T qF ps
1qds1

` p1´ αq

ż

S

fps1 | s, a, gπ, gr, T qW ps
1, s, a, gr, gπ, T qF ps

1qds1

“αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

` p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gr, gπ, T s

“αEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, as

` p1´ αqEs1rW ps1, s, a, gr, gπ, T qF ps
1q | s, a, gr, gπ, T s
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