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1 Related Work

Prior work has shown that robot-centric learning from demonstration (LfD) outperforms human-
centric LfD in terms of the number of mistakes an agent makes when demonstrations are high-quality
[1]. However, Laskey et al. [2] illustrated that human demonstrators tend to provide low quality
corrective demonstrations to a robot which produces poor learning results for robot-centric LfD
approaches, such as DAgger [1]. Prior work has investigated methods for improving upon a teacher’s
ability to provide high-quality demonstrations. For example, Spencer et al. [3], Laskey et al. [4], and
Kelly et al. [5] developed methods for robot-centric LfD that are more human-friendly and easier for
the demonstrator to understand, thereby improving the quality of the demonstrations. Additionally,
Spencer et al. [3] and Grollman and Billard [6] investigated how to gain information from failure
trajectories. However, these methods do not provide the demonstrator with feedback about how
to improve their demonstrations if they are suboptimal. To address this problem, Amershi et al.
posited that transparency from a learning system can improve participants’ opinions of the system
and improve demonstrations [7]. Reciprocal MIND MELD capitalizes on the ideas of Amershi et
al. to increase transparency and provide constructive feedback to the demonstrator to improve upon
the quality of the demonstrations provided to the robot learner.

Other approaches have introduced methods for agents to better learn from suboptimal demonstra-
tions via inverse-reinforcement learning (IRL). In Chen et al., the authors introduce Self-Supervised
Reward Regression (SSRR) in which the authors improve upon an agent’s ability to learn from
suboptimal demonstrations by characterizing the relationship between noise and performance [8].
Their approach bootstraps off of suboptimal demonstrations to learn an idealized reward function.
Similarly, T-Rex and D-Rex improve upon the ability to learn from suboptimal demonstrations by
learning a reward function from a ranked set of demonstrations [9, 10]. Additionally, Burchfiel et
al. demonstrate how to learn from ranked demonstrations where the scoring is noisy or subopti-
mal [11]. To incorporate preferences, Myers et al. presented an algorithm that learns a multimodal
reward function [12]. Valko et al. developed a semi-supervised algorithm IRL to learn from both
expert trajectories and unlabeled or suboptimal trajectories [13].

To improve upon suboptimal demonstrations in imitation learning, Kaiser and Dillmann characterize
the ways in which a demonstrator can be suboptimal and presents methods to cope with this subop-
timality [14]. To better learn from suboptimal demonstrators in a robot-centric paradigm, Menda et
al. proposed EnsembleDAgger which approximates a Gaussian Process via an ensemble of neural
networks [15]. The authors utilize the variance from this ensemble as a metric of confidence for
a novice demonstrator. Additionally, Schrum et al. introduced MIND MELD [16], a personalized
algorithm which meta-learns an individual-specific embedding describing a teacher’s suboptimal
tendencies. MIND MELD utilizes this embedding to map suboptimal labels to better labels and
was able to outperform prior work when teaching an agent to perform a task in a driving simulator
domain. In Reciprocal MIND MELD, we aim to aid the demonstrator in providing higher quality
demonstrations instead of correcting for suboptimality under-the-hood.

Several approaches have also investigated how best to provide feedback to a demonstrator to provide
better demonstrations [17, 18]. Cakmak and Takayama conducted a study investigating several
modalities for communicating improvements to a demonstrator. The authors found instructional
videos to be the best modality for improving demonstrators’ teaching abilities [17]. Sena et al.
investigated video feedback with and without rule guidance and found that both modalities produced
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Figure 1: This figure shows our Recipro-
cal MIND MELD framework. εo/u is the
distance between the participant’s current
embedding, w(p), and the perfect embed-
ding,w∗, along the over-/under-correcting
dimension.

Figure 2: This figure depicts the learned embedding
space and decision boundaries. Each point represents
the embedding of a demonstrator, and the diameter rep-
resents the magnitude by which participants are antic-
ipatory/delayed. Q1-Q4 indicate quartiles one through
four for the anticipatory/delayed dimension.

better results than no feedback [18]. In our Reciprocal MIND MELD architecture, we employ
verbal feedback. In future work, we plan to investigate how different feedback modalities impact
Reciprocal MIND MELD’s outcomes.

2 Driving Simulator Domain

In keeping with prior work [19], we utilize a driving simulator domain to evaluate our Reciprocal
MIND MELD architecture. We utilize the high-fidelity physics simulator, Airsim with Unreal En-
gine and an Xbox steering wheel. In this domain, participants are tasked with teaching a car to drive
from a start location to a goal in various environments while avoiding obstacles. The action space
consists of the position of the wheel (-540° to 540°), and the state space consists of images from the
car’s first-person perspective, position, velocity, and acceleration.

3 Reciprocal MIND MELD Architecture

Fig. 1 shows the steps in the Reciprocal MIND MELD framework. To determine the robotic feed-
back that should be provided to the demonstrator, we first learn a semantically meaningful embed-
ding space. The robot then provides feedback to the demonstrator based upon the distance from
the perfect embedding in each semantically meaningful dimension. For example, the robot provides
feedback in the over-/under-correcting dimension based on the distance, εo/u. We then re-estimate
the embedding after robotic feedback. In Study 1 and Study 2, participants experience four and
five rounds of robotic feedback respectively. Between rounds, if the participant improves their feed-
back but is still not within the first quartile, the robot says, “That is better but...” followed by the
appropriate feedback as shown in Table 1.

Table 1 shows the feedback provided to the demonstrator in Study 1 for the over-/under-correcting
dimension. If a demonstrator is in a quartile that is farther from the perfect demonstrator, the feed-
back is intended to shift their embedding by a larger amount than demonstrators in quartiles closer
to the perfect demonstrator. Analogous feedback is provided for the anticipatory/delayed dimension
in Study 2 and Study 3. In all conditions, regardless of whether feedback is provided, the robot
interacts with the participant and says “Please provide me with a demonstration” before each round.

Fig. 2 illustrates the embedding space in which the size of the points represents the magnitude by
which a participant is anticipatory/delayed. Q1-Q4 indicate the quartiles for anticipatory/delayed.
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Points that are farther from the decision boundaries represent participants who are more subopti-
mal in their demonstrations. The objective is to provide robotic feedback to shift a participants
embedding into Q1.

Table 1: This table shows the feedback a participant receives based on their quartile and study
condition for Study 1. Analogous feedback for the Cooperative condition is provided in Study 2 for
the anticipatory/delayed dimension in addition to the over-/under-correcting dimension.

Cooperative Quartile Adversarial Quartile Robotic Feedback
First Fourth “Your feedback is good! Keep it up.”

Second Third “You are slightly over-/under-correcting.
Please turn the wheel a bit more/less.”

Third Second “You are over-/under-correcting. Please
turn the wheel more/less.”

Fourth First “You are over-/under-correcting a lot.
Please turn the wheel a lot more/less.”

4 MIND MELD Architecture

Below we describe the MIND MELD architecture and discuss the alterations to learn a semantically
meaningful embedding space.

4.1 Network Architecture

Fig. 3 shows the MIND MELD architecture. The three main components of the architecture are:
1) the bi-directional long short-term memory (LSTM) encoder, Eφ′ : A → Z, 2) the prediction
subnetwork, fθ : Z × W → R, and 3) the mutual information subnetwork, qφ : Z × R → NW .
Our goal is to improve upon the corrective feedback, a(p)

t , from a demonstrator, p. The corrective
feedback from the human demonstrator from t −∆t : t + ∆t is fed into the bi-directional LSTM,
Eφ′ , to extract an encoding, z(p)

t−∆t:t+∆t. The fθ subnetwork takes in the encoding, z(p)
t−∆t:t+∆t, and

the personalized embedding, w(p), and learns the predicted difference, d̂(p)
t , between the optimal

label, ot, and the human’s corrective label, a(p)
t . The qφ subnetwork learns to map the difference,

d̂
(p)
t , and the encoding, z(p)

t−∆t:t+∆t, to a posterior distribution over the person’s embedding, w(p).
We estimate an individual’s learned embedding, ŵ(p), by sampling from the approximate posterior
[20]. w(p) is initialized based upon the prior, ŵ(p) ∼ N (0, 1).

4.2 Loss Function for Semantic Meaning

To learn a semantically meaningful embedding space, we add an additional network head, pψ , to
the MIND MELD architecture to aid in learning the embedding space. pψ is a linear layer to en-
courage the embedding space to be linearly separable. We utilize a mean squared error (MSE)
loss, l = 1

N

∑
i

(
pψ(w(i)) − m

(i)
o/u,a/d

)2
, to train the network to predict the suboptimal tenden-

cies, mo/u and ma/d, (i.e., the magnitude by which a demonstrator over-/under-corrects and is
delayed/anticipatory) given the personalized embedding. We calculate mo/u and ma/d via dynamic
time warping (DTW) [21] between the demonstrations and the optimal labels in the calibration tasks.
This loss helps to ensure that our embedding space can be translated into actionable robotic feed-
back, (i.e., the magnitude by which a demonstrator over-/under-corrects and is delayed/anticipatory)
given the personalized embedding.

4.3 Variational Inference

We assume that humans provide heterogeneous and distinct styles when providing corrective feed-
back to the robot. A person’s corrective style is encapsulated in the embedding, w(p), for person,
p. To learn w(p), we maximize the lower bound on the mutual information between the learned em-
bedding, w(p), and the predicted difference between the human feedback and the optimal feedback,
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Figure 3: This figure shows the MIND MELD network architecture. The inputs to the architec-
ture are a demonstrator, p’s, corrective labels, a(p)

(t−∆t:t+∆t), from time t − ∆t to t + ∆t and the
personalized embedding, w(p). The bi-directional LSTM extracts sequential information about the
demonstrator’s feedback. The fθ subnetwork learns the predicted difference, d̂(p)

t , by minimizing
the mean squared error (MSE) between d̂(p)

t and the true difference, d(p)
t = a

(p)
t − ot , between

the demonstrator’s corrective feedback, a(p)
t , and the optimal label, ot. The re-creation subnet-

work qφ maximizes mutual information between the personalized embedding, w(p), the encoding
z

(p)
(t−∆t:t+∆t), and the learned difference, d̂(p)

t to estimate the learned embedding, ŵ(p) [16, 19]. We
add the additional network head, pψ , to learn a semantically meaningful embedding space. The
outputs m̂o/u and m̂a/d are estimates for how much a demonstrator is over-/under-correcting and
anticipatory/delayed.

d̂
(p)
t (Eq. 1). Intuitively, maximizing mutual information means that observing the difference, d̂(p)

t ,
will reduce uncertainty about the personalized embedding.

In Eq. 1, the mutual information between z(p), d̂(p)
t , and personalized embedding,w(p), is denoted as

I(w(p); z(p), d̂
(p)
t ). However, maximizing the mutual information requires access to an intractable

posterior distribution, P (w(p)|z(p), d̂
(p)
t ); therefore, we employ variational inference and a lower

bound on mutual information to estimate the distribution using qφ [22]. The variational lower bound
is LI(fθ|w, qφ|θ).

I(w(p); z(p), d̂
(p)
t ) = H(w(p))−H(w(p)|z(p), d̂

(p)
t ) ≥ (1)

E[log(qφ(w(p)|z(p), d̂
(p)
t ))] +H(w(p)) = LI(fθ|w, qφ|θ)

The MIND MELD architecture utilizes two loss functions, one to learn the personalized embedding,
w(p), and another to learn the amount by which a person’s feedback is suboptimal, d̂(p)

t , as shown
in Fig. 3. For the qφ subnetwork, we minimize the mean squared error between the sampled ap-
proximation of the embedding, ŵ(p), and the personalized embedding, w(p), which is equivalent to
maximizing the log-likelihood of the posterior. The loss function for the fθ subnetwork is the mean
squared error between the predicted difference, d̂(p)

t , and the difference between the human feedback
and the optimal labels, d(p)

t = a
(p)
t − ot. These two losses are summed (Eq. 2) and backpropagated

through the layers and the input embedding, w(p), so that the embedding converges to reflect a per-
son’s feedback style. At test time, the MIND MELD network parameters θ, φ, and φ′ are frozen.
We then backpropagate only through w(p), to learn an embedding that encapsulates a participant’s
suboptimal style.
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L(θ,φ,φ′,w) = L1(θ,φ,φ′) + λL2(θ,φ′) (2)

L1(θ,φ,φ′) =
1

K + 1

K∑
k=0

||ŵ(p)
k − w

(p)
k || (3)

L2(θ,φ′) = ||d(p)
k − d̂

(p)
k || (4)

5 Calibration and Novel Tasks

Fig. 6 a-d shows the calibration tasks employed in the study. These tasks of pre-recorded policy
rollouts and are consistent for all participants. Fig. 6 e-g shows the novel tasks in which participants
provide demonstrations to teach the car to get from the start location to the goal.

6 Additional Results from Study 1

Table 2: This table shows the mean, (standard deviation), and test statistics of the subjective metrics
and ∆εo/u for Study 1. ∆ Trust and ∆ Fluency describe the change in Trust and Fluency respectively
between rounds one and four.

Cooperative Adversarial None Test Statistic p-value
∆εo/u 0.33 (0.2) -0.30 (0.2) 0.01 (0.2) F (2, 24) = 20.2 p < .001

Workload 37.5 (16.4) 46.1 (19.5) 53.5 (11.6) F (2, 24) = 2.21 p = .132
Likeability 6.69 (2.0) 6.81 (1.5) 6.86 (1.4) F (2, 24) = .024 p = .978
Intelligence 6.31 (1.6) 5.57 (1.1) 6.24 (1.4) F (2, 24) = 1.03 p = .372

∆ Trust 0.56 (0.4) -0.01 (0.4) 0.05 (0.2) F (2, 24) = 5.15 p = .014
∆ Fluency 0.34 (0.4) -0.13 (0.3) -0.04 (0.4) F (2, 24) = 5.10 p = .014

Fig. 4a shows the change in the distance (ε(4)
o/u − ε

(1)
o/u) in the over-/under-correcting dimension

between round one and rounds one through four. Fig. 4b shows the change between rounds one
and four in the amount by which the participant over-/under-corrects as calculated via dynamic time
warping (DTW) between the participant demonstrations and the optimal labels. The similarity in
trends between Fig. 4a and 4b suggests that robotic feedback is not only able to shift a participant’s
embedding but robotic feedback is also able to alter the amount by which a participant over-/under-
corrects. This finding lends support to the idea that the distance from the embedding to the decision
boundary is a good measure of how much a participant over-/under-corrects.

Because data does not meet parametric assumptions, we apply Friedman’s test to determine if there
is a statistically significant difference in how much an individual over-/under-corrects in round one
versus round four as determined via DTW. We find that participants over-/under-correct significantly
less in round four compared to round one in the Cooperative condition (χ2(1) = 9.00, p = .003). We
find that the opposite is true in the Adversarial condition, with participants over-/under-correcting
more in round four versus round one (χ2(1) = 5.44, p = .020). We do not find a significant
difference for the None condition (χ2(1) = .111, p = .740).

We additionally compare the DTW results in round four between conditions. We find significance
in an omnibus ANOVA test (F (2, 24) = 8.99, p = .001). We applied Tukey post-hoc test and
find that the Cooperative agent results in the participant significantly over-/under-correcting less
compared to the Adversarial condition (p < .001). These results suggest that a participant provides
demonstrations closer to the optimal by the fourth round in the Cooperative agent condition.

Fig. 4c and 4d show the change in the amount by which a participant provides anticipatory/delayed
feedback as calculated by the distance from the perfect demonstrator in embedding space and DTW
respectively. We show in Fig. 4c that as participants improve in the over-/under-correcting di-
mension, they tend to become worse in the anticipatory/delayed dimension when no feedback is
provided. This suggests that the task of improving participants demonstration quality in both the
over-/under-correcting dimension and the anticipatory/delayed dimension may be particularly diffi-
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(a) Difference between the embedding distance at
each round, εo/u, and the embedding distance at
round one, ε(1)o/u.

(b) Amount by which participants over-/under-
correct at each round minus the amount by which a
participant over-/under-corrects in round one as cal-
culated by dynamic time warping.

(c) Difference between the embedding distance at
each round, εa/d, and the embedding distance at
round one, ε(1)a/d.

(d) Amount by which participants are anticipa-
tory/delayed at each round minus the amount by
which a participant is anticipatory/delayed in round
one as calculated by dynamic time warping.

Figure 4: This figure shows the average distance of the embedding and the dynamic time warping
results for the over-/under-correcting dimension and anticipatory/delayed dimension for Study 1.

cult since improving in the over-/under-correcting dimension tends to produce greater suboptimality
in the anticipatory/delayed dimension.

Table 2 shows the results of the subjective metrics. After each round, participants completed sur-
veys measuring trust [23] and team fluency [24]. At the end of the study, participants completed
surveys measuring workload [25] and likeability and perceived intelligence [26]. By applying a
one-way ANOVA with Tukey post-hoc, we find that participants’ trust increased significantly more
(F (2, 24) = 5.15, p = .014) in Cooperative compared to Adversarial (p = .020) and None
(p = .038). We do not find significance between Adversarial and None. Similar trends emerge
for change in team fluency. We find that participants report statistically significantly greater positive
change in fluency (F (2, 24) = 5.10, p = .014) in Cooperative compared to Adversarial (p = .017)
and close to significant change compared to None (p = .052). Again, we do not find significant
difference between Adversarial and None.

While we do not find significance between conditions with regards to the other subjective metrics,
we do note some trends that merit discussion. Surprisingly, we find that Cooperative is rated as
requiring lower workload compared to Adversarial and None, despite participants likely having to
exert similar or additional mental effort to comply with the demands of the robot. We also find
that the Cooperative robot is rated as more intelligent compared to both the Adversarial and None
teachers.

7 Additional Results from Study 2

Fig. 5 shows the embedding distance in the over-/under-correcting dimension (Fig. 5a) and the an-
ticipatory/delayed dimension (Fig. 5c). We additionally show the results of DTW for over-/under-
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(a) Difference between the embedding distance at
each round, εo/u, and the embedding distance at
round one, ε(1)o/u.

(b) Amount by which participants over-/under-
correct at each round minus the amount by which a
participant over-/under corrects in round one as cal-
culated by dynamic time warping.

(c) Difference between the embedding distance at
each round, εa/d, and the embedding distance at
round one, ε(1)a/d.

(d) Amount by which participants are anticipa-
tory/delayed at each round minus the amount by
which a participant is anticipatory/delayed in round
one as calculated by dynamic time warping.

Figure 5: This figure shows the average distance of the embedding and the dynamic time warping
results for the over-/under-correcting dimension and anticipatory/delayed dimension for Study 2.

correcting (Fig. 5b) and anticipatory/delayed (Fig. 5d). We find that the embedding distance in
the over-/under-correcting dimension as well as the amount that a participant over-/under-corrects
as determined via DTW both decrease the most in the Simultaneous condition. We also find that
participants improve in the anticipatory/delayed dimension the most in the Simultaneous condition
compared to Greedy and None. Although the difference between Simultaneous and None is small,
this finding is noteworthy because we found in Study 1 that participants tend to become consid-
erably worse in the anticipatory/delayed dimension as they improve in the over-/under-correcting
dimension. In this study, we show that with Simultaneous feedback, participants improve in both
dimensions.

Table 3 shows the mean and standard deviations of the change in the embedding distance as well as
subjective metrics for each condition. Study 2 uses the same subjective metrics as Study 1: trust and
team fluency after each round and workload, likeability, and perceived intelligence at the end of the
study. In Study 2, we also utilize the Robot Self-Efficacy Scale to measure a participant’s level of
understanding [27] after each round. For each metric, we employ an ANOVA comparing the three
conditions: Simultaneous, Greedy, and None. If there is a significant main effect, then we conduct a
Tukey post-hoc test. As stated in the main paper, we find that Simultaneous results in significantly
increased trust (p = .032) and team fluency (p = .002) ratings. Although not significant, we find that
participant’s understanding of the robot increased more in the Simultaneous condition compared to
None and Greedy. Also, participants perceived the Simultaneous feedback as more intelligent than
Greedy or None.
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Table 3: This table shows the mean, (standard deviation), and test statistics of the subjective metrics,
∆εo/u+a/d, ∆εo/u, and ∆εa/d for Study 2. ∆ Trust, ∆ Fluency, and ∆ Understanding describe the
change in Trust, Fluency, and Understanding respectively between rounds one and five.

Simultaneous Greedy None F(2,36) p-value
∆εo/u+a/d 0.33 (0.25) 0.11 (0.31) 0.04 (0.28) 3.77 p = .033

∆εo/u 0.267 (0.30) 0.09 (0.44) -0.02 (0.27) 2.19 p = .126
∆εa/d 0.07 (0.19) 0.06 (0.23) 0.02 (0.22) .192 p = .826

Workload 50.9 (12.7) 51.3 (13.7) 43.9 (17.5) 1.05 p = .360
Likeability 6.88 (2.16) 7.5 (1.87) 6.58 (1.66) .790 p = .462
Intelligence 7.34 (2.03) 6.75 (1.72) 5.71 (1.22) 3.10 p = .057

∆ Trust 0.54 (0.60) 0.37 (0.68) -0.77 (0.46) 3.81 p = .032
∆ Fluency 0.78 (0.90) 0.25 (0.58) -0.23 (0.47) 7.23 p = .002

∆ Understanding 0.61 (0.62) 0.15 (0.58) 0.14 (0.69) 2.33 p = .112

8 Additional Results from Study 3

Table 4 lists the mean and standard deviations of the change in the embedding distance and the
subjective metrics between the Feedback and No Feedback conditions. Study 3 employed the same
subjective metrics as Study 2: trust, team fluency, understanding, workload, likeability, and per-
ceived intelligence. To compare between conditions, we utilized either a one-tailed t-test, if the
model passed normality and homoscedasticity assumptions or a one-tailed Wilcoxon Signed Rank
test, a non-parametric test. We employed one-tailed tests because we hypothesized that the Feedback
condition would be better on all metrics (higher for change in embeddings, likeability, perceived in-
telligence, trust, fluency, and understanding and lower for workload) than No Feedback.

As stated in the main paper, the amount that a person’s embedding improved in the over-/under-
correcting dimension, ∆εo/u, was significantly higher in the Feedback condition compared to No
Feedback (p = .006). Although not significant, the amount that a person’s embedding changed in
the anticipatory/delayed, ∆εa/d, dimension was an improvement in the Feedback condition and got
worse in the No Feedback condition. Additionally, the sum of these dimensions, ∆εo/u+a/d, was
significantly improved in the Feedback condition compared to No Feedback (p = .009).

In terms of subjective metrics, we find the Feedback condition to be significantly lower in terms
of workload compared the No Feedback condition (p = .039). Also, we find that participant’s
trust increased significantly more in the Feedback condition compared to No Feedback (p = .019).
We additionally find that participants’ perceived intelligence of the robot is trending towards being
significantly higher for the Feedback condition compared to No Feedback (p = .081). Lastly,
while not significant, participants’ perceived team fluency and understanding increased more in the
Feedback condition versus the No Feedback condition.

Table 4: This table shows the mean, (standard deviation), and test statistics of the subjective metrics,
∆εo/u+a/d, ∆εo/u, and ∆εa/d for Study 3. ∆ Trust, ∆ Fluency, and ∆ Understanding describe the
change in Trust, Fluency, and Understanding respectively between the first and last round.

Feedback No Feedback Test Statistic p-value
∆εo/u+a/d 0.17 (0.35) -0.05 (0.37) t(57.8) = 2.45 p = .009

∆εo/u 0.16 (0.28) 0.004 (0.19) t(52.0) = 2.62 p = .006
∆εa/d 0.01 (0.36) -0.05 (0.33) t(57.3) = .724 p = .236

Workload 44.3 (15.5) 51.4 (15.3) t(58.0) = −1.79 p = .039
Likeability 7.14 (1.67) 7.24 (1.65) t(58.0) = −.233 p = .592
Intelligence 7.09 (1.14) 6.62 (1.40) t(55.7) = 1.42 p = .081

∆ Trust 0.79 (0.75) 0.39 (0.51) Z = −2.07 p = .019
∆ Fluency 0.49 (0.56) 0.31 (0.54) t(57.9) = 1.25 p = .108

∆ Understanding 0.49 (0.53) 0.42 (0.86) Z = −.790 p = .430

8



(a) Calibration tasks 1-4 (b) Calibration Tasks 5-8

(c) Calibration Tasks 9-12 (d) Calibration Tasks 13-16

(e) Novel Task (f) Novel Task (g) Novel Task

Figure 6: This figure depicts the calibration tasks and novel tasks in the study. Figures 6a-6d show
the calibration tasks. The car is the starting location and the orange ball is the goal location. The
rest of the objects in the scene are obstacles. Each line represents one of the pre-recorded rollouts,
which are a mix of successful and unsuccessful trajectories. Figures 6e-6g show the environment
for the novel tasks. There are no rollout lines because the trajectories were dependent on participant
input. The calibration tasks are simpler, have less obstacles, and less turns than the novel tasks.
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9 Model Assumptions (Table 5)

Table 5: This table lists the statistical models and tests utilized in our analysis. The dependent vari-
able (DV) and independent variable (IV) are specified for each model. We tested for normality using
the Shapiro-Wilk test. When the IV is categorical, we employed Levene’s test for homoscedasticity,
otherwise, we employed the Breusch-Pagan test. If the model did not pass normality or homoscedas-
ticity, then we used a non-parametric version of the statistical test.

Study 1
DV IV Test Normality Homoscedasticity
ε
(i)
o/u Cooperative, i = 1, 4 Friedman’s N/A N/A

ε
(i)
o/u Adversarial, i = 1, 4 rANOVA p = .424 p = .149

ε
(i)
o/u None, i = 1, 4 rANOVA p = .706 p = .856

DTW Round i Cooperative, i = 1, 4 Friedman’s N/A N/A
DTW Round i Adversarial, i = 1, 4 Friedman’s N/A N/A
DTW Round i None, i = 1, 4 Friedman’s N/A N/A

∆εo/u Condition ANOVA p = .547 p = .931
DTW Last Round Condition ANOVA p = .179 p = .855

Workload Condition ANOVA p = .598 p = .454
Likeability Condition ANOVA p = .770 p = .459
Intelligence Condition ANOVA p = .571 p = .632

∆Trust Condition ANOVA p = .907 p = .925
∆Team Fluency Condition ANOVA p = .457 p = .558

Study 2
DV IV Test Normality Homoscedasticity

ε
(i)
o/u+a/d Simultaneous, i = 1, 5 rANOVA p = .092 p = .826

ε
(i)
o/u+a/d Greedy, i = 1, 5 rANOVA p = .167 p = .723

ε
(i)
o/u+a/d None, i = 1, 5 rANOVA p = .081 p = .194

∆εo/u+a/d Condition ANOVA p = .708 p = .614
∆εo/u Condition ANOVA p = .100 p = .448
∆εa/d Condition ANOVA p = .565 p = .589

Workload Condition ANOVA p = .573 p = .373
Likeability Condition ANOVA p = .752 p = .587
Intelligence Condition ANOVA p = .238 p = .453

∆Trust Condition ANOVA p = .290 p = .368
∆Team Fluency Condition ANOVA p = .091 p = .201
∆Understanding Condition ANOVA p = .782 p = .883

Study 3
DV IV Test Normality Homoscedasticity

Final Distance Condition Wilcoxon* N/A N/A
Average εo/u+a/d Spearman’s N/A N/A
Distance Correlation

∆εo/u+a/d Condition t-test* p = .578 p = .848
∆εo/u Condition t-test* p = .402 p = .058
∆εa/d Condition t-test* p = .193 p = .540

Workload Condition t-test* p = .814 p = .951
Likeability Condition t-test* p = .057 p = .557
Intelligence Condition t-test* p = .697 p = .416

∆ Trust Condition Wilcoxon* N/A N/A
∆ Team Fluency Condition t-test* p = .732 p = .293
∆ Understanding Condition Wilcoxon* N/A N/A

*Test is one-tailed.
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