Appendix

The GMD dataset and code will be released at https://github.com/SteveHao74/GMD at soon.

A Grasp Metrics

A.1 Posteriori Metrics Drawbacks

For instance, gravity and contact friction (information cannot be observed from pure visual input)
of objects partially affect the grasp execution results. Once failures caused by those factors are
recorded with negative labels in the dataset, the trained models will be forced to build up spurious
correlations between grasp quality with other irrelevant but observable factors rather than those
relevant yet unobservable factors (a kind of overfitting).

A.2 Hybrid Metric Group

The hybrid metric group consists of 36 metrics, including 16 priori metrics, 17 posteriori metrics,
and 3 comparative metrics evaluating the difference between priori and posteriori metrics. The
description of all the metrics is shown in the following table. Notations: i) the original grasp refer
to those initial grasp candidate generated by dense sampling (introduced in Section 5.1); ii) the
analytical grasp refer to those metrics calculated by intersection line analysis; iii) the simulative
grasp refer to those metrics collected after the grasp trial in simulation.

Kind ID Metrics Defination
Priori 0  boundx length of x-axis of object Oriented Bounding Box (OBB)
1 bound.y length of y-axis of OBB.
2 bound-l length of the shortest edge of OBB.
3 bound.r ratio between the length of the longest and shortest edges of OBB.
4 gdis euclidean distance between the original grasp center to the center of

mass of the object.
5 g-discnorm g-dis metric normalized by bound_l metric.

6  g-quality Ferrari&Canny’s L1 metric[9] (also known as e-metric): the largest per-
turbation wrench that the grasp can resist in any direction).

7 gcoll whether there are collisions with the original grasp by collision detec-
tion. (binary)

8  real.d_width width of the analytical grasp calculated by the intersection analysis.
9 real.d_width-norm  real_d_width normalized by bound_l.

10 real_d_dis euclidean distance between object center of mass and center of grasp
generated by the intersection analysis.

11 real_.d_dis_norm real_d_dis normalized by bound_l.

12 real.-d-offset.l euclidean distance between the center of analytical grasp and original
grasp.

13 real_d_offset_a orientation deviation between the center of analytical grasp and original
grasp.

14 real_d_offset_l.norm real_d_offset_l normalized by bound_l.

15 real_-d_quality epsilon quality of the analytical grasp calculated by the intersection
analysis.
Posteriori 16 real_s_width width of the simulative grasp.

17 real_s_width.norm  real_s_width normalized by bound_l.

18 real_s_dis distance between the geometric center of object and center of simulative
grasp.
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19 real_s_dis_norm real_s_dis normalized by bound_l.

20 real_s_offset_l distance between the center of simulative grasp and original grasp.

21 real_s_offset.l norm real_s_offset_l normalized by bound_l.

22 real_s_offset_a orientation deviation between the center of simulative grasp and original
grasp.

23 real_s_quality the epsilon quality of the analytical grasp.

24 clo-ori_comfort orientation change of object during the gripper closing processes.

25 lif_ori_stability orientation change of object during the lifting process.

26 moved object shift during gripper closing process.

27 moved_norm quect shift during gripper closing process normalized by bound_1 met-
ric.

28 sim_width width of actual simulative grasp attempt.

29  sim-width-norm width of actual simulative grasp attempt normalized by bound_1 metric.

30 sim_success success rate of five grasp trials in simulation.

31 simcoll whether there are collisions that occurred during five simulative grasp
attemps. (binary)

35 force value of external force needed to push out the object from the gripper
after being lifted.

Comparative 32 goffset.l distance between the center of simulative grasp and analytical grasp.

33  g-offset.l.norm g-offset_l normalized by bound_l.

34 g offset.a orientation deviation between the center of simulative grasp and analyt-
ical grasp.

A.3 Feature Selection

To reveal the contribution of each metric in approximating the human grasp decision, a series of
typical feature selection methods in traditional machine learning is imposed to give an importance
ranking of all the metrics used: XGBoost(the same model in our fine screening model), random
forest, low variance filter, forward feature selection, high correlation filter, backward feature elimi-
nation. Table 5 shows the top 5 important metrics ranked by each feature selection method on the
expert training set. Concluding votes from all of the methods, the comprehensive importance order
is given in Table 6. As we can see, the top 8 important metrics contain both priori and posteriori

metrics, which imply the necessity of a combination of two kinds of metrics.

Table 5: Top 5 important metrics selected by 6 kinds of feature selection methods.

Order XGB RF LVF FFS HCF BFE

1 g-dis g-dis real_d_width_normreal_d_dis_normreal_d_dis_norm moved_norm
2 sim_width.norm  real_d_dis bound.r real_d_dis real_d_quality real_d_dis_norm
3 real_d_quality moved real_s_quality g-dis.norm  clo_ori_comfort sim_width_norm
4 clo_ori_comfort real_d_dis_-norm real_d_quality g-dis moved_norm clo_ori_comfort
5 moved g_dis_norm g_quality real d_quality g-offset_| sim_success
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Table 6: Comprehensive importance calculated by votes of 6 kinds of feature selection methods.

Order Metric Kind

1 real_-d_dis.norm  priori
2 gdis priori
3 real_d_quality priori
4 real_d_dis priori
5 sim_width_norm posteriori
6 clo_ori_comfort posteriori
7 moved_norm  posteriori

8 real_-d_width.norm priori

A.4 Maetrics Correlation

Since we take grasp metrics as the features for the grasp evaluator, it is important to analyze the
correlation between the features to examine the diversity and completeness. Thus, the Pearson
correlation indexes among the hybrid metric group are calculated and visualized in Figure 7.

Pearson Correlation of Features
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Figure 7: Pearson correlation indexes within the metric group. The corresponding metric id can be
found in the long table of Appendix A.2 .
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B Grasp Evaluator

To train the three kinds of machine learning models, we split the expert set into a training set(90%)
and a testing set(10%). For the training set, we first calculate the mean value and deviation value
for each metric and then normalize different metrics into the same scale. Finally, we use the Grid-
SearchCV module from the scikit-learn tool to automatically search the best hyper-parameter con-
figurations for each model. The final parameters of each model will be introduced in the following
subsections.

B.1 Expert Set Collection

We select 50, 13, 63, 50 and 80 objects from 3D-NET [27], Adversarial [5], test set of EGAD [28],
Kit [29], Shapenet [30], for a total of 256 object CAD models. These object models are densely
sampled and grasp metrics proposed in Section 3.1 are calculated for each grasp candidate with a
depth image rendered from the top-down view. Then multiple experts are invited to manually label
each image with the best grasp in their confidence through a self-developed annotation tool. During
the labeling process, high precision rather than recall is what we pursue following human intuition
to do more conservative decisions. The final expert set consists of 256 depth images and 2400 grasp
annotations.

B.2 Evaluator models
B.2.1 Decision Three

We have improved the decision tree model in the following two aspects: i) data entropy considering
sampling cost: In the process of data entropy calculation during tree generation [31], we added the
metric sampling cost C'(a) as punishment, which was the average calculation time of each metric on
the Intel 19-9900K with a single CPU core. The modified formula is

Gain (D, a) — BC (a)
1V (a)

Gain_ratio(D,a) = 3)

ii) maximum recall pruning: As the coarse screening model, the decision tree is hoped to quickly
exclude as many as possible negative samples. To avoid false-negative cases, we prune the tree
model based on the maximum recall principle. For each leaf node in the tree model with a negative
label, if there is at least a positive sample in the validation set wrongly classified, pruning will be
conducted and the leaf node returns to its parent node. Executing the pruning through recursion,
until there isn’t any false-negative case on the validation set. The final hyper-parameters of the
decision tree are shown in Table 7.

Table 7: Hyper-parameters for decision tree training.

min_samples_split |min_samples_leaf textbf_criterion

2 4 improved informative gain ratio

min_impurity_decrease ccp-alpha

0 0

B.2.2 SVM

The final hyper-parameters of SVM model are shown in Table 8.

B.2.3 XGBoost

The final hyper-parameters of XGBoost model are shown in Table 9.
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Table 8: Hyper-parameters for SVM training.

kernel C gamma accuracy

RBF |12.30088027[0.06482219|0.959169464

Table 9: Hyper-parameters for XGBoost training.

n_estimators max_depth learning_rate subsample

105 4 0.52 0.733333333

colsample_bytree|min_child_weight |accuracy on testing set

0.713333333 1 0.970462163

C Dataset Annotation Framework Details

C.1 Objects Preparation and Simulation Scene Generation

We use 20k object models collected from SHREC [32], YCB [33] and DeX-Net1.0 [11], 8k object
models from Shapenet [30] and EGAD [28] as the object sources to generate GMD dataset. For each
object, we conduct the following preprocessing: i) the shortest side of the bounding box on the xoy
plane in all stable poses is limited to 5 cm through scaling, which ensures available places for grasp
remained in the object; ii) Origin of the object coordinate system is translated to coincide with the
center of mass; iii) mass is unitedly set as 0.1kg and the contact friction coefficient is set as 0.8. The
Pybullet physics simulator [23] is used to build up a grasping platform for the subsequent grasping
simulation and datasets synthesis. Each object model is first loaded and conducted with a free fall
over the platform in a random initial posture. Then the stable pose and position after landing will be
used for subsequent grasping sampling, metrics calculation, and depth image rendering.

C.2 Annotation Cost Analysis

The computation cost of our hybrid metrics is intermediate between the pure priori and pure pos-
teriori metrics methods. For the Intel 19-9900K we used, it takes about 3.7 seconds to compute all
36 metrics for each grasp using a single CPU core. The computation cost of our method is rela-
tively low compared with the other two kinds of grasp annotation methodologies (hand-annotated
and physical trial) as described in Figure 1. While among the methods of metrics-based methodol-
ogy, the computation cost of our hybrid metrics-based method is unavoidably higher than those pure
priori metrics-based methods, since they have sacrificed the accuracy and information completeness
at the cost.

D Grasp Detection Models Training

D.1 Hyper-parameters setting about Model Training

Since the scale of Cornell is far smaller than both Jacquard [6], Dex-Net2.0 [5] and GMD, we use
the online data augmentation strategy to randomly rotate and shift each sample. Then we increase
training epochs during model training on Cornell to make sure that the Cornell dataset has equiva-
lently the same different samples as other datasets. GQCNN [5] model training hyper-parameters
are shown in Table 10. GR-ConvNet [26] model training hyper-parameters are shown in Table 11.

D.2 More Details about GR-ConvNet Training

GR-ConvNet belongs to the pixel-wise grasp parameter prediction methodology, and the model
training needs the object-wise heatmaps as supervision. Thus, each training sample for GR-ConvNet
(a heatmap) is synthesized by all of the feasible grasps of a specific object. Therefore, the number
of objects is controlled with the number of training samples to be equal across different datasets.
Notations: As for the case that there are different render views of the same objects as samples in the
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Table 10: Hyper-parameters for GQCNN training.

initial learning rate optimizer momentum rate L2 regularizer
0.015 momentum 0.9 0.005
batch size metric threshold drop out decay step multiplier
16 0.002 0 0.2
decay rate
0.95
training set batches per epoch epoch augmentation
Cornell 100 250 1
Jacquard 500 50 0
Dex-Net2.0 500 50 0
GMD 500 50 0

Table 11: Hyper-parameters for GR-ConvNet training.

initial learning rate optimizer batch size| drop out

0.001 Adam 8 0

GR-ConvNet |batches per epoch| epoch |augmentation

Cornell 99 200 1
Jacquard 1416 15 0
GMD 1416 15 0

dataset, we think that different views of the same object can be roughly regarded as different objects
in the level of geometric diversity and affordance since the partial geometric information recorded
from different views will be different (especially for those irregular objects).

E Experiment Setup

E.1 Real World Experiment Setup

For testing set, there are 25 objects, including 9 simple objects with regular geometric, 7 3D-printed
objects with adversarial geometric [5], 8 unseen household objects close to YCB [33] and APB
[34] object sets. The experiment platform is built up with URS manipulator ! with Robotiq 2f-85
gripper’ and an Intel RealSense D435i RGB-D Camera® with eye-in-hand configuration(shown in
Figure 4.C).

F GMD Dataset Visualization

Our dataset is composed of depth images for each scene and corresponding grasp annotation de-
scribed under 6 image coordinates. Part of the GMD dataset is uploaded here, the rest of them will
be released after the paper acceptance. We compress the dataset into npz format. Numpy tools can
be used to extract the grasp annotation and images. The visualization of GMD dataset samples is
shown in Figure 8.

"https://www.universal-robots.com/products/ur5-robot/
Zhttps://robotiq.com/products/2f85-140-adaptive-robot-gripper
*https://www.intelrealsense.com/depth-camera-d435i/
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https://github.com/SteveHao74/GMD

Figure 8: Visualization of GMD dataset.
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