
Part I

Appendix

Table of Contents
A Formal Analysis of Proposition 3.1 1

B Reward Labeling 1

C Building the Topological Graph 2

D Extended Experiments/Baselines 3

E Miscellaneous Implementation Details 4

F Code Release and Experiment Videos 5

G Environments 5

A Formal Analysis of Proposition 3.1

Proposition 3.1 If we recover the optimal value function V ⇤(s, s0) for short-horizon goals s0 (rela-

tive to s), and G = S (all states exist in the graph), and the MDP is deterministic with � = 1, then

finding the minimum-cost path in the graph G with edge-weights �V ⇤(s, s0) recovers the optimal

path. .

Proof : Let A(s) and Ah(s) define a set of all nodes adjacent to node s and within a short horizon
from a node s correspondingly.

The Bellman equation can be used to write the cost of the minimal-cost path, J⇤(s, g), in the graph
with rewards defined via edge-weights r(s, a, s0) = �V ⇤(s, s0):

J⇤(s, g) = min
s02Ah(s)

[�V ⇤(s, s0) + J⇤(s0, g)] = � max
s02Ah(s)

[V ⇤(s, s0)� J⇤(s0, g)].

We can expand the recursion:

J⇤(s, g) = � max
s02Ah(s),s002Ah(s0),...,g2Ah(s(n))

[V ⇤(s, s0) + V ⇤(s0, s00) + . . .+ V ⇤(s(n), g)]. (2)

We can further expand each V ⇤(·, ·) term as

V ⇤(s(n�k), s(n�k+1)) = max
s12A(s(n�k))

s22A(s1)
...

s(n�k+1)2A(st)
t2N

[�C(s(n�k), s1)� C(s1, s2)� . . .� C(st, s
(n�k+1))].

(3)

If we expand every term in Equation 2 with 3 it becomes exactly the optimization objective for the
shortest path problem with the original edge-weights. One can see V ⇤(s, s0) as a solution to the
shortest path problems in the subgraphs of G induced by Ah(s).

B Reward Labeling

For the base task of goal-reaching, we use a simple reward scheme with a survival penalty that
incentivizes the robot to take the shortest path to the goal:

1

Rdist(st, at, g) =

⇢
�1 8st 6= g
0 otherwise.

(4)

For more complex utilities, such as incentivizing driving in the sun (e.g., for a solar robot), we
discount the survival penalty by a factor of 4.

Rgrass(st, at, g) =

⇢
�1 + 0.75 ⇤ grass{st} 8st 6= g
0 otherwise.

(5)

Rsun(st, at, g) =

⇢
�1 + 0.75 ⇤ sun{st} 8st 6= g
0 otherwise.

(6)

An interesting implication of the above reward scheme is to view the negative penalty as a proxy
for the amount of work a robot needs to do — a solar robot may use 1 unit of energy per time step
to navigate in an environment, but it may also create 0.75 units of energy by exposing itself to the
sun, effectively discounting the navigation cost in sunny regions. This reward scheme trades-off the
choice of the shortest path to the goal with maximizing the user-specified utility function.

For our experiments, we use three different mechanisms to generate these labels:

1. Fully Autonomous: In several cases, the reward signal can be easily expressed as a lin-
ear/heuristic function of the visual observations. For instance, to obtain labels for “sunny”
or “grassy”, we process the egocentric images from the robot by thresholding in the HSV
colorspace. We process the bottom center crop of the image by thresholding it, and declare
event sun or sun if a majority of the pixels satisfy the thresholds.

2. Manual Labeling: For more abstract tasks, generating reward labels may require careful
hand-labeling at the level of each observation, or each frame. We generate labels for “on-
sidewalk” by manually labeling trajectories that are driving on the sidewalk/pavement —
this was only feasible because the number of such trajectories was relatively small.

3. Learned Reward Classifiers: A desirable hybrid of the above approaches can be con-
structed where manual labels are queried for a small portion of the training dataset, which
can be used to train a simple image classification model. This model can be used to obtain
reward labels, albeit noisy, for the remainder of the dataset in a semi-autonomous way. We
follow this process for obtaining high-quality labels for the “grassy” and “on-pavement”
tasks. So long as the reward signal is fully contained by the visual observation, which
loosely relates to the Markovian assumption for RL, this method gives us a scalable way to
learn a predictive model of rewards.

We note that while the above choice of reward function may seem arbitrary, the overall utility func-
tion (or the “relative weight” between the two objectives) would be application-dependent. For
instance, a solar-powered robot may be able to recoup 20% of its navigation energy when driving in
the sun, and its effective reward could be (�1 + 0.2 ⇤ sun). We ran experiments to test ReViND’s
sensitivity to this trade-off and found that it performs expectedly for a wide range of reward func-
tions (see Figure 5). Practically, this would be a hyperparameter set empirically by the user based
on the desired level of trade-off between the goal-reaching and utility maximization objectives.

C Building the Topological Graph

As discussed in Section 3.3, we combine the value function learned via offline RL with a topolog-
ical graph of the environment. This section outlines the finer details regarding how this graph is
constructed. We use a combination of learned value function (from Q-learning), spatial proximity
(from GPS), and temporal proximity (during data collection), to deduce edge connectivity. If the
corresponding timestamps of two nodes are close (< 2s), suggesting that they were captured in

2

Figure 5: ReViND can support a wide range of reward functions and performs as expected for varying levels
of trade-offs between the goal-reaching and utility maximization objectives.

quick succession, then the corresponding nodes are connected — adding edges that were physically
traversed. If the distance estimates (or, negative value) between two nodes are small, suggesting that
they are close, then the corresponding nodes are also connected — adding edges between distant
nodes along the same route, and giving us a mechanism to connect nodes that were collected in
different trajectories or at different times of day but correspond to the nearby locations. To avoid
cases of underestimated distances by the model due to aliased observations, e.g. green open fields
or a white wall, we filter out prospective edges that are significantly further away as per their GPS
estimates — thus, if two nodes are nearby as per their GPS, e.g. nodes on different sides of a wall,
they may not be disconnected if the values do not estimate a small distance; but two similar looking
nodes 100s of meters away, that may be facing a white wall, may have a small distance estimate but
are not added to the graph in order to avoid wormholes. Algorithm 0 summarizes this process — the
timestamp threshold ✏ is 1 second, the learned distance threshold ⌧ is 50 time steps (corresponding
to ⇠ 12 meters), and the spatial threshold ⌘ is 100 meters.

Algorithm 3 Graph Building
1: function GETEDGE(i, j)
2: Input: Nodes ni, nj 2 G; value function V ; hyperparameters {⌧, ✏, ⌘}
3: Output: Boolean eij corresponding to the existence of edge in G, and its weight
4: goal = GetRelative(ni, nj) . using GPS and compass
5: Dij = �V (ni, goal) . learned distance estimate
6: Tij = |ni[‘timestamp’]� nj [‘timestamp’]| . timestamp distance
7: Xij = kni[‘GPS’]� nj [‘GPS’])k . spatial distance
8: if (Tij < ✏) then return {True, Dij}
9: else if (Dij < ⌧) AND (Xij < ⌘) then return {True, Dij}

10: else return False

Since a graph obtained by such an analysis may be quite dense, we perform a transitive reduction

operation on the graph to remove redundant edges.

D Extended Experiments/Baselines

This section presents a detailed breakdown of the quantitative results discussed in Section 4.3. We
evaluate ReViND against four baselines in 15 environments with varying levels of complexity, in
terms of environment organization, obstacles, and scale. Tables 2 and 3 summarize the performance
of the different methods for the task of maximizing the Rgrass and Rsun utilities, respectively.

3

Method Easy (<50m) Medium (50–150m) Hard (150–500m)
Success E sun Success E sun Success E sun

Behavior Cloning 1/5 0.58 0/5 0.32 0/5 0.29
Filtered BC 3/5 0.51 0/5 0.31 0/5 0.32
IQL [8] 3/5 0.54 2/5 0.42 0/5 0.34
ViNG [7] 5/5 0.63 4/5 0.58 3/5 0.63
ReViND (Ours) 5/5 0.61 3/5 0.75 4/5 0.74

Table 3: Success rates and utility maximization for the task of navigation in sunny regions (Rsun).

We see that ReViND is able to consistently outperform the baselines, both in terms of success as
well as its ability to maximize the utilities .. In particular, we see that ReViND’s performance
closely matches that of IQL in the easier environments, where the system does not need to rely ex-
cessively on the graph. However, the real prominence of ReViND is evident in the more challenging
environments, where it is consistency successful while also maximizing the chosen utility. As the
horizon of the task increases, the search algorithm on the graph returns more desirable paths that
may stray from the direct, shortest path to the goal, but are highly effective in maximizing the utility.
We also note that ViNG, which uses a similar topological graph, is statistically similar to ReViND
in terms of its goal-reaching ability; however, since it does not support a mechanism to customize
the behavior of the learned policy, it suffers in the other performance metrics. BC, fBC and IQL
consistently fail to reach goals beyond 15-20m away, due to challenges in learning a useful policy
from offline data — these “flat” policies often demonstrate bee-lining behavior, driving straight to
the goal, which leads to collisions in all but the easiest experiments.

E Miscellaneous Implementation Details

Table 4 presents the neural network architectures used by our system. We provide the important
hyperparameters for training our system in Table 5. The underlying learning algorithm in ReViND is
based on IQL [8], and we encourage the reader to check out the IQL paper for more implementation
details.

Layer Input Shape Output Shape Layer details

1 [3, 64, 48] [1536] Impala Encoder [48]
2 [1536] [50] Dense Layer
3 [50] [50] tanh (LayerNorm)
4 [50], [3] [53] Concat. image & goal

Policy Network at ⇠ ⇡(st)
5 [53] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [10] Dense Layer

Q Network Q(st, at)
5 [53], [10] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [1] Dense Layer

Value Network V (st)
5 [53] [256] Dense Layer
6 [256] [256] Dense Layer
7 [256] [1] Dense Layer

Table 4: Architectures of the various neural networks used by ReViND.

4

Hyperparameter Value Meaning

⌧ 0.9 IQL Expectile
A 0.1 Policy weight
� 0.99 Discount factor
⌘ 0.005 Soft Target Update
↵actor,↵critic,↵value 3e� 4 Learning rates

Table 5: Hyperparameters used during training ReViND from offline data.

Figure 6: Example egocentric observations from the training dataset [9] (top) and the deployment environments
(bottom), including the predicted labels for the “sunny” reward.

F Code Release and Experiment Videos

We are sharing the code corresponding to our offline learning algorithm, labeling, and
evaluation scripts, as well as experiment videos of ReViND deployed on a Clearpath
Jackal mobile robotic platform. Please check out the project page for further information:
sites.google.com/view/revind.

G Environments

We train ReViND using 30 hours of publicly available robot trajectories collected using a random-
ized data collection procedure in an office park [9]. We conduct evaluation experiments in a variety
of novel environments with similar visual structure and composition as the training environments
— i.e. suburban environments with some traversals on the grass, around trees of a certain kind, and
on roads. While it may be extremely challenging to get generalization capabilities that work for all

scenarios, we demonstrate that ReViND can learn behaviors from a small offline dataset and gener-
alize to a variety of previously unseen, visually similar environments including grasslands, forests
and suburban neighborhoods. Figure 6 shows some example environments from the training and
deployment environments, along with their corresponding labels (automatically generated).

5

https://sites.google.com/view/revind

	Introduction
	Related Work
	Offline Reinforcement Learning for Long-Horizon Robotic Navigation
	Problem Statement and Assumptions
	Reinforcement Learning from Offline Data
	Long-Horizon Reward Maximization with a Topological Graph

	System Evaluation
	Mobile Robot Platform
	Offline Trajectory Dataset and Reward Labeling
	Learning Varied Behaviors with ReViND

	Discussion
	I Appendix
	Formal Analysis of Proposition 3.1
	Reward Labeling
	Building the Topological Graph
	Extended Experiments/Baselines
	Miscellaneous Implementation Details
	Code Release and Experiment Videos
	Environments

