
A.3 Traffic information loss function

When predicting the traffic information (Ltf), we expect to recognize the traffic light status (Ll), stop
sign (Ls), and whether the vehicle is at junction of roads (Lj):

Ltf = λlLl + λsLs + λjLj , (12)

where λ balances the three loss terms, which are calculated by binary cross-entropy loss.

B Safety controller - desired speed optimization

The desired velocity is expected to: 1) drive the vehicle to the goal point as soon as possible. 2)
ensure collision avoidance in a future horizon. 3) consider the dynamic constraint and actuation limit
of the ego vehicle. Toward these goals, we set up a linear programming optimization problem, where
we try to maximize the desired velocity while the other requirements are achieved by constraints:

max
v1
d

v1
d

s.t. (v0 + v1
d)T 6 s1
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d)T + (v1
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d
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0 6 v1
d 6 vmax

0 6 v2
d 6 vmax

(13)

where we consider a horizon of 1 second, and two desired velocities v1
d and v2

d are set at 0.5 second
and 1 second respectively. v0 denotes the current velocity of the ego vehicle. T denotes the time
step duration (0.5s). s1 and s2 denote the maximum safe distance for the ego vehicle to drive at the
first step and the second step respectively. vmax and amax denotes the constraint on the maximum
velocity and acceleration. When determining the maximum safe distance s1, we augment the shape
of other objects for extra safety:

s1 = max(s′1 − s̄, 0)

s2 = max(s′2 − s̄, 0)
(14)

where s̄ denote the augmented distance for extra safety. s′1 and s′2 denote the maximum distance
the ego vehicle can drive on the predicted route without collision with other objects. Note that in
the optimization problem, we maximize the desired velocity at the first step v1

d, while we set the
desired velocity at the second step v2

d as a free variable. The constraint on the second step helps the
optimization of v1

d looks into a future horizon, to avoid future safety intractability due to actuation
limit and dynamic constraint.

C Implementation Details

All cameras have a resolution of 800 × 600 with a horizontal field of view (FOV) 100◦. The side
cameras are angled at ±60° away from the front. For the front view, we scale the shorter side of the
raw front RGB image to 256 and crop its center patch of 224× 224 as the front image input Ifront.
For the two side views, the shorter sides of the raw side RGB images are scaled to 160 and a center
patch of 128× 128 is taken as the side image inputs Ileft/right. For the focusing-view image input
Ifocus by directly cropping the center patch of the raw front RGB image to 128× 128 without scaling.

For the LiDAR point clouds, we follow previous works [36, 37, 8] to convert the LiDAR point cloud
data into a 3-bin histogram over a 2-dimensional Bird’s Eye View (BEV) grid. The first 2-bin of
the histogram in each 0.125m2 grid represents the numbers of points above and below the ground
plane respectively. The last bin represents the total numbers of points in each grid. This produces
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Figure 4: The driving preference varies when different safety factor is assigned to the safety controller. 100
% safety factor refers to the setting s̄ = 2 and vmax = 6.5, and 150 % safety factor refers to the setting
s̄ = 2× 150% and vmax = 6.5/150%. The Town05 Long with adversarial events benchmark is used here.

a three-channel LiDAR bird-view projection image input Ilidar, covering the point cloud about 28
meters in front of the ego vehicle and 14 meters to the ego vehicle’s two sides.

The backbone for encoding information from multi-view RGB images is Resnet-50 pretrained on
ImageNet [56], and the backbone for processing LiDAR BEV representations is ResNet-18 trained
from scratch. We take the output of stage 4 in a regular ResNet as the tokens fed into the downstream
transformer encoder. The number of layers K in the transformer decoder and the transformer encoder
is 6 and the feature dim d is 256. We train our models using the AdamW optimizer [57] and a cosine
learning rate scheduler [58]. The initial learning rate is set to 5e−4 × BatchSize

512 for the transformer
encoder & decoder, and 2e−4× BatchSize

512 for the CNN backbones. The weight decay for all models is
0.07. All the models are trained for a maximum of 35 epochs with the first 5 epochs for warm-up [38].
For data augmentation, we used random scaling from 0.9 to1.1 and color jittering. The parameters
used in the object density map and the safety controller is listed in Table 6.

The training time of the Interfuser is about 30 hours on 8 Tesla V100 32G graphic cards. The
Interfuser consists of 52,935,567 parameters. The inference time of Interfusuer is about 0.04 second
per frame on GeForce GTX 1060 (a low-end GPU), and about 0.02 second per frame on GeForce
GTX 1080 Ti (a medium-end GPU). In the future, we can apply the tools of model acceleration or
model quantization to further reduce the inference time to be less than 0.01 second per frame.

D Benchmark details

Leaderboard The CARLA Autonomous Driving Leaderboard [49] is to evaluate the driving profi-
ciency of autonomous agents in realistic traffic situations with a variety of weather conditions. The
CARLA leaderboard provides a set of 76 routes as a starting point for training and verifying agents
and contains a secret set of 100 routes to evaluate the driving performance of the submitted agents.
However, the evaluation on the online CARLA leaderboard usually takes about 150 hours and each
team is restricted to using this platform for only 200 hours per month. Therefore, we use the CARLA
leaderboard for the state-of-the-art comparison, and use the following Town05 benchmark for quick
development and detailed ablation studies.

Town05 benchmark In the Town05 benchmark, we use Town05 for evaluation and other towns
for training. Following [8], the benchmark includes two evaluation settings:(1) Town05 Short: 10
short routes of 100-500m, each comprising 3 intersections, (2) Town05 Long: 10 long routes of
1000-2000m, each comprising 10 intersections. Town05 has a wide variety of road types, including
multi-lane roads, single-lane roads, bridges, highways and exits. The core challenge of the benchmark
is how to handle dynamic agents and adversarial events.

CARLA 42 routes benchmark The CARLA 42 routes benchmark [17] considers six towns covering
a variety of areas such as US-style intersections, EU-style intersections, freeways, roundabouts, stop
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Left View Front View Right View Object Density Map Left View Front View Right View Object Density Map

Figure 5: Four cases of how our method predicts waypoints and recover the traffic scene. Blue points de-
note predicted waypoints. Yellow rectangle represents the ego vehicle, and white/grey rectangles denote the
current/future positions of detected objects.

Left View Front View Right View LiDAR BEVFocus View

Figure 6: Visualization of attention weights between the object density map queries and features from different
views.

Left View Front View Right View
Object Density Map

t0 t1 t2 Reasons for the failure

Inaccurately predict 
of the vehicle’s 

heading

Inaccurately predict 
of the bicycle’s speed

Fail to detect the fallen
pedestrian ahead

Figure 7: Visualization of failure cases with three RGB views and the predicted object density map. The orange
boxes show the objects where the ego-vehicle is about to collide. t0 of object density map denotes the predicted
current traffic scenes, t1 and t2 denotes the predicted future traffic scenes after 1 second and 2 seconds.

signs, urban scenes and residential districts. The traffic density of each town is set to be comparable
to busy traffic setting. We use the same benchmark configuration open-sourced by [8] to evaluate all
methods.

E Success and Failing Cases Discussion

In Figure 5, we provided additional 4 good cases where our method can well understand the driving
scene with the intermediate outputs. In Figure 7, we provided some failure cases and analyzed the
failure causes. Specifically, we collected failing cases and statistically analyzed the failing conditions
and causes. As a detailed statistics, 45% percent of the failing cases are due to failing in detecting
objects (vehicles, bicycles, etc.); 15% percent of the failing cases are due to inaccurate detection
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Town05 Short Town05 Long
Method DS ↑ RC ↑ DS ↑ RC ↑

CILRS [14] 7.47 ± 2.51 13.40 ± 1.09 3.68 ± 2.16 7.19 ± 2.95
LBC [5] 30.97 ± 4.17 55.01 ± 5.14 7.05 ± 2.13 32.09 ± 7.40

TransFuser [8] 54.52 ± 4.29 78.41 ± 3.75 33.15 ± 4.04 56.36 ± 7.14
NEAT [17] 58.70 ± 4.11 77.32 ± 4.91 37.72 ± 3.55 62.13 ± 4.66
Roach [19] 65.26 ± 3.63 88.24 ± 5.16 43.64 ± 3.95 80.37 ± 5.68
WOR [55] 64.79 ± 5.53 87.47 ± 4.68 44.80 ± 3.69 82.41 ± 5.01
InterFuser 94.95 ± 1.91 95.19 ± 2.57 68.31 ± 1.86 94.97 ± 2.87

Table 4: Comparison of our InterFuser with six state-of-the-art methods in Town05 benchmark. Metrics: driving
score (DS), Road completion (RC). Our method outperformed other strong methods in all metrics and scenarios.

Method Driving Score ↑ Road Completion ↑ Infraction Score ↑
CILRS [14] 22.97±0.90 35.46±0.41 0.66±0.02

LBC [5] 29.07±0.67 61.35±2.26 0.57±0.02
AIM [8] 51.25±0.17 70.04±2.31 0.73±0.03

TransFuser [8] 53.40±4.54 72.18±4.17 0.74±0.04
NEAT [17] 65.17±1.75 79.17±3.25 0.82±0.01
Roach [19] 65.08±0.99 85.16±4.20 0.77±0.02
WOR [55] 67.64±1.26 90.16±3.81 0.75±0.02
InterFuser 91.84±2.17 97.12±1.95 0.95±0.02

Table 5: Comparison of our InterFuser with other methods in CARLA 42 routes benchmark. Metrics: Road
completion (RC), infraction score (IS), driving score (DS). Our method outperformed other strong methods in
all metrics and scenarios.

results (speed, heading, etc); 15% percent of the failing cases are due to misrecognition of the traffic
lights.

F Additional Experimental Results

Table 4 and Table 5 additionally compares the driving score, road completion and infraction score of
the presented approach (InterFuser) to prior state-of-the-art on the CARLA Town05 benchmark [8]
and CARLA 42 routes [17].

G The hyper-parameter values

The hyper-parameter values used in InterFuser are listed in Table 6. Cyclists and pedestrians are
rendered larger than their actual sizes when we reconstruct the scene from the object density map,
this adds extra safety when dealing with these road objects.
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Notation Description Value
Object Density Map and Safety-Enhanced Controller

threshold1 Threshold for filtering objects 0.9
threshold2 Threshold for filtering objects 0.5
amax Maximum acceleration 1.0 m/s
vmax Maximum velocity 6.5 m/s2

R Size of the object density map 20× 20
Size of the detected area 20 meter × 20 meter
Scale factor for bounding box size of pedestrians and bicycles 2

Learning Process

Number of epochs 35
Number of warm-up epochs 5

λl Weight for the traffic light status loss 0.2
λs Weight for the stop sign loss 0.01
λj Weight for the junction loss 0.1
λpt Weight for the waypoints loss 0.4
λmap Weight for the object density map loss for GAE 0.4
λtf Weight for the traffic information loss 1.0

Max norm for gradient clipping 10.0
Weight decay 0.05
Batch size 256
Initial learning rate for the transformer 2.5e-4
Initial learning rate for the CNN backbone 1e-4

Table 6: The parameter used for InterFuser.
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