
A Further Ablations

We include additional ablations on the Maze and Kitchen tasks to further investigate the influence of
skill horizon H , planning horizon N , and dynamics model fine-tuning, which is important for skill
learning and planning.
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Figure 6: Ablation analysis on skill horizon H .

In both Maze and Kitchen, we find
that a too short skill horizon (H =
1, 5) is unable to yield sufficient tem-
poral abstraction. A longer skill hori-
zon (H = 15, 20) has little influence
in Kitchen, but it makes the down-
stream performance much worse in
Maze. This is because with long-
horizon skills, a skill dynamics predic-
tion becomes inaccurate and stochas-
tic, and composing multiple skills can
be not as flexible as short-horizon skills. The inaccurate skill dynamics makes long-term planning
harder, which is already a major challenge in maze navigation.

A.2 Planning Horizon N=1 N=5 N=10 N=15 N=20
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Figure 7: Ablation analysis on planning horizon N .

In Figure 7b, we see that short plan-
ning horizon makes learning slower
in the beginning, because it does not
effectively leverage the skill dynam-
ics model to plan further ahead. Con-
versely, if the planning horizon is too
long, the performance becomes worse
due to the difficulty in modeling every
step accurately. Indeed, the planning
horizon 20 corresponds to 200 low-
level steps, while the episode length
in Kitchen is 280, demanding the agent to make plan for nearly the entire episode. The performance is
not sensitive to intermediate planning horizons. On the other hand, the effect of the planning horizon
differs in Maze due to distinct environment characteristics. We find that very long planning horizon
(eg. 20) and very short planning horizon (eg. 1) perform similarly in Maze (Figure 7a). This could
attribute to the former creates useful long-horizon plans, while the latter avoids error accumulation
altogether. We leave further investigation on planning horizon to future work.

A.3 Fine-Tuning Model SkiMo (Ours) SkiMo w/ frozen dynamics
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Figure 8: Ablation analysis on fine-tuning the model.

We freeze the skill dynamics model
together with the state encoder to
gauge the effect of fine-tuning after
pre-training. Figure 8 shows that with-
out fine-tuning the model, the agent
performs worse due to the discrepancy
between distributions of the offline
data and the downstream task. We
hypothesize that fine-tuning is neces-
sary when the agent needs to adapt to
a different task and state distribution
after pre-training.
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B Qualitative Analysis on Maze

B.1 Exploration and Exploitation

(a) SkiMo (Ours) (b) Dreamer (c) TD-MPC (d) SPiRL + Dreamer

(e) SPiRL + TD-MPC (f) SPiRL (g) DADS (h) LSP

(i) SkiMo w/o joint train-
ing

(j) SkiMo + SAC (k) SkiMo w/o CEM (l) SkiMo w/ single-step
dynamics

Figure 9: Exploration and exploitation behaviors of our method and baseline approaches. We visualize
trajectories in the replay buffer at 1.5M training steps in blue: light blue for early trajectories and
dark blue for recent trajectories. Our method shows wide coverage of the maze at the early stage of
training and fast convergence to the solution.

To gauge the agent’s ability of exploration and exploitation, we visualize the replay buffer for each
method in Figure 9. In this visualization, we represent early trajectories in the replay buffer with light
blue dots and recent trajectories with dark blue dots. In Figure 9a, the replay buffer of SkiMo (ours)
contains early explorations that span to most corners in the maze. After it finds the goal, it exploits
this knowledge and commits to paths that are between the start location and the goal (in dark blue).

Dreamer and TD-MPC only explore a small fraction of the maze because they are prone to get stuck
at walls without guided exploration from skills and skill priors. SPiRL + Dreamer, SPiRL + TD-MPC,
and SkiMo w/o joint training explore better than Dreamer and TD-MPC, but all fail to find the goal.
This is because without the joint training of the model and policy, the skill space is only optimized
for action reconstruction, not for planning, which makes long-horizon exploration and exploitation
harder.

On the other hand, SkiMo + SAC and SPiRL are able to explore the most portion of the maze, but
even after the agent finds the goal through exploration, it continues to explore and does not exploit
this experience to consistently accomplish the task (darker blue). This could attribute to the difficult
long-horizon credit assignment problem which makes policy learning slow, and the reliance on skill
prior which encourages exploration. On the contrary, our skill dynamics model effectively absorbs
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prior experience to generate goal-achieving imaginary rollouts for the actor and critic to learn from,
which makes task learning more efficient.

We find the skill dynamics model useful in guiding the agent explore coherently and exploit efficiently.
Without a temporally-extended model, DADS, LSP, and SkiMo w/ single-step dynamics fail to reach
the goal. Even though they likewise condition on the skill latent, they still need to roll out the dynamics
model step-by-step to predict future states. The single-step prediction is prone to compounding error
for long-horizon planning. As a result, these agents do not collect sufficiently meaningful trajectories
for the policy to learn. Additionally, SkiMo w/o CEM performs as well as SkiMo, indicating that CEM
planning is not essential after the agent has already learned a good policy in Maze. Nevertheless,
these qualitative results corroborate the effectiveness of our method.

B.2 Long-horizon Prediction

To compare the long-term prediction ability of the skill dynamics and flat dynamics, we visualize
imagined trajectories by sampling trajectory clips of 500 timesteps from the agent’s replay buffer (the
maximum episode length in Maze is 2,000), and predicting the latent state 500 steps ahead, which
will be decoded using the observation decoder, given the initial state and 500 ground-truth actions
(50 skills for SkiMo). The similarity between the imagined trajectory and the ground truth trajectory
can indicate whether the model can make accurate predictions far into the future, producing useful
imaginary rollouts for policy learning and planning.

SkiMo is able to reproduce the ground truth trajectory with little prediction error even when traversing
through hallways and doorways while Dreamer struggles to make accurate long-horizon predictions
due to error accumulation. This is mainly because SkiMo allows temporal abstraction in the dynamics
model, thereby enabling temporally-extended prediction and reducing step-by-step prediction error.

Prediction Visualization

Ground truth Predicted Both Ground truth Predicted Both

(a) Dreamer

Prediction Visualization

Ground truth Predicted Both Ground truth Predicted Both

(b) SkiMo (Ours)

Figure 10: Prediction results of 500 timesteps using a flat single-step model (a) and skill dynamics
model (b), given the ground truth starting state and 500 actions (50 skills for SkiMo). The predicted
states from the flat model deviate from the ground truth trajectory quickly while the prediction of our
skill dynamics model has little error.
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C Implementation Details

C.1 Computing Resources

Our approach and all baselines are implemented in PyTorch [46]. All experiments are conducted on
a workstation with an Intel Xeon E5-2640 v4 CPU and a NVIDIA Titan Xp GPU. Pre-training of
the skill policy and skill dynamics model takes around 10 hours. Downstream RL for 2M timesteps
takes around 18 hours. The policy and model update frequency is the same over all algorithms but
Dreamer [3] and TD-MPC [4]. Since Dreamer and TD-MPC train on primitive actions, it has 10
times more frequent model and policy updates than skill-based algorithms, which leads to slower
training (about 52 hours).

C.2 Algorithm Implementation Details

For the baseline implementations, we use the official code for SPiRL, DADS, and LSP. We re-
implemented Dreamer and TD-MPC in PyTorch, which are verified on DeepMind Control Suite [47].
The table below (Table 1) compares key components of SkiMo with model-based and skill-based
baselines and ablated methods.

Table 1: Comparison to prior work and ablated methods.

Method Skill-based Model-based Joint training

Dreamer [3] and TD-MPC [4] % ! %

DADS [29] and LSP [36] ! ! %

SPiRL [12] ! % %

SPiRL + Dreamer and SPiRL + TD-MPC ! ! %

SkiMo w/o joint training ! ! %

SkiMo + SAC ! % !

SkiMo (Ours) and SkiMo w/o CEM ! ! !

Dreamer [3] We use the same hyperparameters with the official implementation.

TD-MPC [4] We use the same hyperparameters with the official implementation, except that
we do not use the prioritized experience replay [48]. The same implementation is used for the
SPiRL + TD-MPC baseline and our method with only minor modification.

SPiRL [12] We use the official implementation of the original paper and use the hyperparameters
suggested in the official implementation.

SPiRL + Dreamer [12] We use our implementation of Dreamer and simply replace the action
space with the latent skill space of SPiRL. We use the same pre-trained SPiRL skill policy and skill
prior networks with the SPiRL baseline. Initializing the high-level downstream task policy with the
skill prior, which is critical for downstream learning performance [12], is not possible due to the
policy network architecture mismatch between Dreamer and SPiRL. Thus, we only use the prior
divergence to regularize the high-level policy instead. Directly pre-train the high-level policy did not
lead to better performance, but it might have worked better with more tuning.

SPiRL + TD-MPC [4] Similar to SPiRL + Dreamer, we use our implementation of TD-MPC and
replace the action space with the latent skill space of SPiRL. The initialization of the task policy is
also not available due to the different architecture used for TD-MPC.

DADS [29] We use the official implementation and hyperparameters of the original paper, except
that we use DADS on a sparse reward setup since dense reward is not available in our tasks.

LSP [36] We use the code provided by the authors and the default hyperparameters in the code.

SkiMo (Ours) The skill-based RL part of our method is inspired by Pertsch et al. [12] and the
model-based component is inspired by Hansen et al. [4] and Hafner et al. [3]. We elaborate our skill
and skill dynamics learning in Algorithm 1, planning algorithm in Algorithm 2, and model-based RL
in Algorithm 3. Table 2 lists the all hyperparameters that we used.
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Algorithm 1 SkiMo (skill and skill dynamics learning)

Require: D: offline task-agnostic data
1: Randomly initialize θ, ψ
2: ψ− ← ψ . initialize target network
3: for each iteration do
4: Sample mini-batch B = (s,a)(0:NH) ∼ D
5: [θ, ψ]← [θ, ψ]− λ[θ,ψ]∇[θ,ψ]L(B) . L from Equation (5)
6: ψ− ← (1− τ)ψ− + τψ . update target network
7: end for
8: return θ, ψ, ψ−

Algorithm 2 SkiMo (CEM planning)

Require: θ, ψ, φ : learned parameters, st: current state
1: µ0, σ0 ← 0,1 . initialize sampling distribution
2: for i = 1, ..., NCEM do
3: Sample Nsample trajectories of length N from N

(
µi−1, (σi−1)2

)
. sample skill sequences from

normal distribution
4: Sample Nπ trajectories of length N using πφ, Dψ . sample skill sequences via imaginary rollouts
5: Estimate N -step returns of Nsample +Nπ trajectories using Rφ, Qφ
6: Compute µi, σi with top-k return trajectories . update parameters for next iteration
7: end for
8: Sample a skill z ∼ N

(
µNCEM , (σNCEM)2

)
9: return z

Algorithm 3 SkiMo (downstream RL)

Require: θ, ψ, ψ− : pre-trained parameters
1: B ← ∅ . initialize replay buffer
2: Randomly initialize φ
3: φ− ← φ . initialize target network
4: πφ ← pθ . initialize task policy with skill prior
5: for not converged do
6: t← 0, s0 ∼ ρ0 . initialize episode
7: for episode not done do
8: zt ∼ CEM(st) . MPC with CEM planning in Algorithm 2
9: s, rt ← st, 0

10: for H steps do
11: s, r ← ENV(s, πLθ (Eψ(s), zt)) . rollout low-level skill policy
12: rt ← rt + r
13: end for
14: B ← B ∪ (st, zt, rt) . collect H-step environment interaction
15: t← t+H
16: st ← s
17: Sample mini-batch B = (s, z, r)(0:N) ∼ B
18: [φ, ψ]← [φ, ψ]− λ[φ,ψ]∇[φ,ψ]L′REC(B) . L′REC from Equation (6)
19: φπ ← φπ − λφ∇φπLRL(B) . LRL from Equation (7). Update only policy parameters
20: ψ− ← (1− τ)ψ− + τψ . update target network
21: φ− ← (1− τ)φ− + τφ . update target network
22: end for
23: end for
24: return ψ, φ
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C.3 Environments and Offline Data

Maze [43, 16] Since our goal is to leverage offline data collected from diverse tasks in the same
environment, we use a variant of the D4RL maze environment [43], suggested in Pertsch et al. [16].
The maze is of size 40 × 40; an initial state is randomly sampled near a pre-defined region (the
green circle in Figure 3a); and the goal is fixed shown as the red circle in Figure 3a. The observation
consists of the agent’s 2D position and velocity. The agent moves around the maze by controlling the
continuous value of its (x, y) velocity. The maximum episode length is 2,000 but an episode is also
terminated if the agent reaches the circle around the goal with radius 2. The reward of 100 is given at
task completion. We use the offline data from Pertsch et al. [16], consisting of 3,046 trajectories with
randomly sampled start and goal state pairs. Thus, the offline data and downstream task share the
same environment, but have different start and goal states (i.e. different tasks). This data can be used
to extract short-horizon skills like navigating hallways or passing through narrow doors.

Kitchen [32, 43] The 7-DoF Franka Emika Panda robot arm needs to perform four sequential tasks:
open microwave, move kettle, turn on bottom burner, and flip light switch. The agent has a 30D
observation space (11D robot proprioceptive state and 19D object states), which removes a constant
30D goal state in the original environment, and 9D action space (7D joint velocity and 2D gripper
velocity). The agent receives a reward of 1 for every sub-task completion. The episode length is
280 and an episode also ends once all four sub-tasks are completed. The initial state is set with a
small noise in every state dimension. We use 603 trajectories collected by teleoperation from Gupta
et al. [32] as the offline task-agnostic data. The data involves interaction with all seven manipulatable
objects in the environment, but during downstream learning the agent needs to execute an unseen
sequence of four subtasks. Thus, the agent can transfer a rich set of manipulation skills, but needs to
recombine them in new ways to solve the task.

Mis-aligned Kitchen [16] The environment and task-agnostic data are the same with Kitchen but
we use the different downstream task: open microwave, flip light switch, slide cabinet door, and open
hinge cabinet, as illustrated in Figure 3c. This task ordering is not aligned with the sub-task transition
probabilities of the task-agnostic data, which leads to challenging exploration following the prior
from data. This is because the transition probabilities in the Kitchen human-teleoperated dataset are
not uniformly distributed; instead, certain transitions are more likely than others. For example, the
first transition in our target task — from opening the microwave to flipping the light switch — is very
unlikely to be observed in the training data. This simulates the real-world scenario where the large
offline dataset may not be meticulously curated for the target task.

CALVIN [44] We adapt the CALVIN environment [44] for long-horizon learning with the state
observation. The CALVIN environment uses a Franka Emika Panda robot arm with 7D end-effector
pose control (relative 3D position, 3D orientation, 1D gripper action). The 21D observation space
consists of the 15D proprioceptive robot state and 6D object state. We use the teleoperated play data
(Task D→Task D) of 1,239 trajectories from Mees et al. [44] as our task-agnostic data. The agent
receives a sparse reward of 1 for every sub-task completion in the correct order: open drawer, turn on
lightbulb, move slider left, and turn on LED. The episode length is 360 and an episode also ends if all
four sub-tasks are completed. In data, there exist 34 available target sub-tasks, and each sub-task can
transition to any other sub-task, which makes any transition probability lower than 0.1% on average.

D Application to Real Robot Systems

Our algorithm is designed to be applied on real robot systems by improving sample efficiency of RL
using a temporally-abstracted dynamics model. Throughout the extensive experiments in simulated
robotic manipulation environments, we show that our approach achieves superior sample efficiency
over prior skill-based and model-based RL, which gives us strong evidence for the application to real
robot systems. Especially in Kitchen and CALVIN, our approach improves the sample efficiency
of learning long-horizon manipulation tasks with a 7-DoF Franka Emika Panda robot arm. Our
approach consists of three phases: (1) task-agnostic data collection, (2) skills and skill dynamics
model learning, and (3) downstream task learning. In each of these phases, our approach can be
applied to physical robots:
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(a) In pretraining, SkiMo leverages offline task-agnostic data to extract skill dynamics and a skill repertoire.
Unlike prior works that keep the model and skill policy training separate, we propose to jointly train them to
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(b) In downstream RL, we learn a high-level task policy in the skill space (skill-based RL) and leverage the skill
dynamics model to generate imaginary rollouts for policy optimization and planning (model-based RL).

Figure 11: Illustration of our algorithm, SkiMo.

Task-agnostic data collection Our approach is designed to fully leverage task-agnostic data with-
out any reward or task annotation. In addition to extracting skills and skill priors, we further learn a
skill dynamics model from this task-agnostic data. Maximizing the utility of task-agnostic data is
critical for real robot systems as data collection with physical robots itself is very expensive. Our
method does not require any manual labelling of data and simply extracts skills, skill priors, and skill
dynamics model from raw states and actions, which makes our method scalable.

Pre-training of skills and skill dynamics model Our approach trains the skill policy, skill dynam-
ics model, and skill prior from the offline task-agnostic dataset, without requiring any additional
real-world robot interactions.

Downstream task learning The goal of our work is to leverage skills and skill dynamics model
to allow for more efficient downstream learning, i.e., requires less interactions of the agent with
the environment for training the policy. This is especially important on real robot systems where a
robot-environment interaction is slow, dangerous, and costly. Our approach directly addresses this
concern by learning a policy from imaginary rollouts rather than actual environment interactions.

In summary, we believe that SkiMo can be applied to real-world robot systems with only minor
modifications.
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Table 2: SkiMo hyperparameters.

Hyperparameter Value
Maze FrankaKitchen CALVIN

Model architecture

# Layers of Oθ, pθ, πLθ , Eψ, Dψ, πφ, Rφ, Qφ 5
Activation funtion elu
Hidden dimension 128 128 256
State embedding dimension 128 256 256
Skill encoder (qθ) 5-layer MLP LSTM LSTM
Skill encoder hidden dimension 128

Pre-training
Pre-training batch size 512
# Training mini-batches per update 5
Model-Actor joint learning rate (λ[θ,ψ]) 0.001
Encoder KL regularization (β) 0.0001
Reconstruction loss coefficient (λO) 1
Consistency loss coefficient (λL) 2
Low-level actor loss coefficient (λBC) 2
Planning discount (ρ) 0.5
Skill prior loss coefficient (λSP) 1

Downstream RL
Model learning rate 0.001
Actor learning rate 0.001
Skill dimension 10
Skill horizon (H) 10
Planning horizon (N ) 10 3 1
Batch size 128 256 256
# Training mini-batches per update 10
State normalization True False False
Prior divergence coefficient (α) 1 0.5 0.1
Alpha learning rate 0.0003 0 0
Target divergence 3 N/A N/A
# Warm up step 50,000 5,000 5,000
# Environment step per update 500
Replay buffer size 1,000,000
Target update frequency 2
Target update tau (τ ) 0.01
Discount factor (γ) 0.99
Reward loss coefficient (λR) 0.5
Value loss coefficient (λQ) 0.1

CEM
CEM iteration (NCEM) 6
# Sampled trajectories (Nsampled) 512
# Policy trajectories (Nπ) 25
# Elites (k) 64
CEM momentum 0.1
CEM temperature 0.5
Maximum std 0.5
Minimum std 0.01
Std decay step 100,000 25,000 25,000
Horizon decay step 100,000 25,000 25,000
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