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Figure 3: Input and output representations for the observation model.

A Observation Model

For the problem setting described in Section 5, our observation model is concerned with the distribu-
tion of 2D points around the peripheries of observed road users. Such models are reviewed in [25].
Let the i*" point from an observation y; be y¢. We assumed independence across different points,
ie.

9o (yele) = ng yilre) - (12)

In order to conveniently sample ¥ or to measure its likelihood, we represented each point via a
triplet, (ef,af (ei),Bi (ei)), where e € {0,1,2,3} is a categorical variable encoding the edge
of the road user’s bounding box, o (e}) is the corresponding parallel offset, and 3; (e}) is the

corresponding perpendicular offset (see Figure 3b). Such a triplet uniquely determines ¢, and we
used following generative model to sample such points:-

i ~ Categorical (qbg (x¢) ,¢é () 7¢§ (w¢), ¢2 (ﬁt)) )

ife; =0, a! ~ Uniform

¢

(0, w) and

Bi  ~ Laplace (1= ¢ (z:) ,b= ¢ (1)) ,
ife! =1, a! ~ Uniform(0,1) and

Bt~ Laplace (1 = ¢g () ,b = ¢g (1)) ,
ife, =2, a! ~ Uniform(0,w) and

B¢~ Laplace (u = ¢f (z¢),b= ¢ (ast)) ,
ife! =3, a! ~ Uniform(0,1) and

BZ ~ Laplace (M = ¢9 ( t),b= 61)1 (iﬂt)) )

where | and w are the length and the width of the road user’s bounding box respectively,
and ¢y (z;) are the outputs from a neural network with weights 6. While the mapping

(e, cf (el) , Bi (et)) — yi is unique, the reverse mapping has four representations depending on

the choice of ¢¢, i.e., e! is a latent variable. The likelihood of a point, gg (yt\xt) was therefore
obtained by:-

9o yt|xt Z ¢9 T¢) po (at (et) ﬂt (et) |et795t) (13)
et=0
where we project yi — (ef, o (el), B (el)) for each e} € {0, 1,2, 3}, and marginalise over it. We
use a feed-forward neural network with 4 hidden layers, each with 16 Tanh units, which outputs
12 parameters, ¢J1* (x;). We provide the network with 5 input features - range, bearing, relative
bearing, length, and width - of the road-user’s bounding box as measured from the observing AV’s
viewpoint (see Figure 3a).

For each of the experiments in Section 5 (with synthetic and real data), we used the same obser-
vation model design. Moreover, we trained an observation model using supervision from a dataset
of manually labelled trajectories, Zy.7, by maximising the AOTLL. This model was then used to
generate the synthetic data and also as a baseline for the experiments with real data.
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B Transition Model

As described in Section 4, the class of SSMs that we are concerned with involves a transition func-
tion, fo(x¢|xs—1), that factorises into a policy which produces actions, 7y (a¢|2:—1), and a deter-
ministic, differentiable, and injective motion model, such that z; = 7(x;_1,a;). In this section, we
provide more details on the motion model and on the policies used for the experiments described in
Section 5.

B.1 Motion Model

All experiments used a state space that consists of the 2D Pose (z, 3, #) of an observed road user,
in addition to its instantaneous linear speed v and curvature . Moreover, the action space used
consists of linear acceleration a and pinch p, i.e., the instantaneous rate of change of curvature.
This choice of actions, i.e. acceleration and pinch, naturally maps to the controls exercised by
road users (vehicles users in particular), i.e., to gas and rate of change of steering respectively.
The calculations below compute the next state, (x(t), y(t), 0(t),v(t), x(t)), from the previous state
(0, Yo, b0, vo, ko) under the influence of constant actions (a, p) for ¢ € [0, At].

Clearly k(t) =p = k(t) = ko + pt, (14)
and 0(t)=a = v(t)=uv+ at. (15)
Since 6(t) =w(t)k(t), we have (16)
O(t) = voko + (vop + akg)t + apt?, (17)
2 3
= 0(t) =0+ vokot+ (vop+ ano)% + ap%. (18)
Finally, using &(t) = wv(t)cosf(t), and y(t) = v(t)sin6(¢t), we have (19)
t
z(t) =mo+ / v(s)cosf(s) ds, (20)
0
t
and y(t) =yo +/ v(s)sinf(s) ds 21
0
t
v
— o + T _9(s)) ds. 2
Yo /0 v(8) cos (2 (S)) s (22)

. . . . . 3
To make these integrals analytically tractable, we drop the cubic term in 6;, i.e. ap%, and use the

integral? f (a + bs) cos(c + ds + es?) ds with appropriate coefficients to compute z(t) and y(t).
This approximation is justified as for the experiments described in Section 5, we use a small At of
~ (.33 seconds.

B.2 Policy

For synthetic data, we designed a simple state-dependent stochastic policy that modulated its mean
acceleration and pinch as a function of speed. The mapping from state to actions is described in
Figure 4. The policy then had 2 learnable parameters - the standard deviations of its acceleration
and pinch. The advantage of having only 2 learnable parameters is that it allowed us to easily verify
if a method was converging to the correct values or not.

On real data, we used a more expressive policy which produces a multivariate Gaussian distribution
over acceleration and pinch conditioned on its inputs. The policy’s inputs are the instantaneous
speed and curvature of an object, which are then fed to a 3-layer feedforward neural network, with
2 hidden layers with 32 ReLLU units, outputting 5 parameters - the means of acceleration and pinch,
and the 3 elements of the lower triangular matrix representation of the covariance of the two. This
gives a total of 1,317 learnable parameters.

2The closed form integral was obtained using Wolfram Alpha.
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Figure 4: State to action mapping of the simple policy. The solid line represents the mean action taken at a
given speed, while the shaded regions represent one standard deviation of Gaussian noise around that action.
At a high-level, the policy accelerates at low speeds and decelerates at higher speeds. The policy also applies
less pinch at higher speeds.
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Figure 5: Marginal Log Likelihood (MLL) of synthetic test data for models trained using PF-SEFI with differ-
ent values for the smoothing lag (L) plotted against the corresponding training steps.

C Training Setup

In this section, we present our training setup for the experiments described in Section 5. We show
sample trajectories from each of the datasets (synthetic and real), and provide the set of hyper-
parameters that were used for each of the experiments. All experiments (including the ones used
for picking the best set of hyper-parameters) were repeated 10 times to obtain the median and in-
terquartile ranges that are shown in Figures 2, 5, and 7, and in Table 1. All experiments used the
default settings of the Adam optimiser in TensorFlow with a learning rate of 0.01. We found that
smaller learning rates yield similar results, but require proportionately longer training time, while
larger learning rates cause instability.

C.1 Training on Synthetic Data

Sample trajectories from the generated synthetic data are shown in Figure 8. These samples were
generated using a hand-crafted policy (see Section B.2), the motion model derived in Section B.1,
and an observation model trained with supervised learning (see Section A). We generated two
datasets (with 25 and 50 steps respectively), each containing 10 scenes with 100 objects each for
training, and 2 scenes also with 100 objects each for evaluation. For every train step, we used all
100 objects from a single randomly sampled training scene, while for every evaluation step, we used
all 100 objects from both evaluation scenes.

Table 2 tabulates the set of hyper-parameters that were used for the experiments discussed in Section
5. Figures 5a and 5b show the effect of different values for the smoothing lag hyper-parameter (L)
for PF-SEFI on synthetic data, while 5c shows the effect of L on real data. We observed that for
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Figure 7: Marginal Log Likelihood (MLL) of synthetic and real test data for models trained using PFNET with
different values for the trade-off parameter (o) plotted against the corresponding training steps.

synthetic data, the performance started to plateau at L. = 8, and hence picked L = 8 for the final
experiments. On real data, performance continues to improve at higher values of L up to around
L = 14 and we also note that variance in training is high when L is too small. Moreover, Figures 7a
and 7b show the effect of different values for the trade-off parameter (o) for PFNET. While learning
failed on synthetic data with 50 steps, we observed that a = 0.8 marginally outperformed o = 1.0
and significantly outperformed v = 0.6.

C.2 Training on Real Data

For training on real data, we used a dataset of real-world road-user trajectories observed by an
AV. Many of the frames in this set were also labelled manually by human-labelers, allowing us to

Table 2: Hyper-parameters used for experiments A (synthetic data with 25 step trajectories) and B (synthetic
data with 50 step trajectories). Smoothing lag (L) is only relevant for PF-SEFI, and the trade-off parameter ()
is only relevant for PFNET.

| Hyper-Parameter | Value ||
Learning Rate 0.01
Number of Epochs 100
Smoothing Lag (L) for PF-SEFI 8
Trade-off Parameter (o) for PENET 0.8
Number of Particles for Training 1024

Number of Particles for Evaluation 4096
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Figure 8: Examples of synthetic trajectories. The figure shows 3 snapshots of the state of multiple objects,
each occurring 10 steps apart from each other. The green boxes are the true states of the objects at different
timesteps, while the blue polygons are the observations that the AV (orange) makes. The green dots are the true
(z,y) coordinates of the objects at all timesteps.

compute relevant tracking metrics such as ADE, AYE, and AOTLL under the different models that
we learned.

All trajectories were approximately 20 seconds long, where each step corresponded to 0.33 seconds
in real time, giving 60 steps in discrete time. The dataset consisted of a training set with 1502
trajectories, and a test set containing 404 trajectories. Figure 9 shows some example trajectories.

We ran hyper-parameter sweeps over learning rates, the smoothing lag (L) for PF-SEFI, the trade-
off parameter («) for PFNET, and the number of training particles. The final results are using the
best settings of these parameters which we list in Table 3, though we note that results were quite
insensitive to most of these settings. Figure 6 shows the effect of L on the maximum achieved
test MLL on real data for different numbers of training particles. As can be seen, PF-SEFI does
significantly better as L increases from O to 10, highlighting the added benefit of smoothing. On the
other hand, it is quite insensitive to the smoothing lag L beyond this point, except that the variance
appears to increase when L gets too large. We also find that PF-SEFI consistently improves with
more particles.
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Figure 9: Examples of real-data trajectories. The figure shows 3 snapshots of the state of multiple objects,
each occurring 5 seconds apart from each other. The green boxes are the labelled bounding boxes of objects
at different timesteps, while the blue polygons are the observations that the AV (orange) makes. The dots
represent the labelled (x, y) coordinates of the objects over time.
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Figure 10: Sampled observations on the same labelled states from the real data that were shown in Figure 9.

Notice the qualitative similarity in the observations in this figure relative to Figure 9.
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Table 3: Hyper-parameters used for experiment C (real data with 60 step trajectories). Smoothing lag (L) is
only relevant for PF-SEFI, and the trade-off parameter () is only relevant for PENET.

Hyper-Parameter | Value ||
Learning Rate 0.01
Global Grad Norm Clipping 0.5
Number of Epochs 15
Smoothing Lag (L) for PF-SEFI 15

Trade-off Parameter (o) for PENET 0.8
Number of Particles for Training 4096
Number of Particles for Evaluation | 4096
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0 250 500 750 1000 1250 1500 1750 0 250 500 750 1000 1250 1500 1750
Train Step Train Step

(a) MLL of test real data after training models using (b) MLL of test real data after training models using
30 step sequences. 15 step sequences.

Figure 11: Marginal Log Likelihood (MLL) of real test data for models trained on shorter sequences plotted
against the corresponding training steps.

When training on real data, all methods were subject to very large gradients at times, especially
earlier on when failing to track objects is much more likely, leading to very high losses and cor-
responding gradients. In order to stabilise training, we clipped the maximum global norm of all
gradients to 0.5. This is particularly necessary for the methods that require differentiating through
the filter.

D Sampled Observations from Learned Observation Model

Figure 10 shows sampled observations from the observation model learned on real data using PF-
SEFI. These observations were sampled using the checkpoint that produced the highest MLL, and
for the same (labelled) states that were shown in Figure 9. The qualitative similarity between the
real and sampled observations indicates the efficacy of our method for learning generative models
that can be used to sample observations in closed-loop simulation.

E Training on Shorter Sequences

In the case of synthetic data, we note that some methods such as DPF-SGR performed poorly when
trained on 50 step sequences (Figure 2b), however performed much better when trained on shorter
25 step sequences (Figure 2a). We conducted similar experiments on real data to see if a similar
improvement can be attained. Figure 11 shows the results when training DPF-SGR and other base-
lines on 30 and 15 step sequences of real data (instead of 60). At 30 steps (Figure 11a), we find that
all 3 baselines still fail to learn good models, while PF-SEFI performs almost as well as on length
60 sequences. At 15 steps (Figure 11b), however, the baselines do actually perform much better,
though the final performance for all methods is worse than PF-SEFI on 60 steps.
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Table 4: Metrics computed on held out synthetic test data comparing PF-SEFI (us) against baselines DPF-SGR,
PFNET, and vanilla PF, on two experiments - (A) learning from synthetic data with 25 steps, and (B) learning
from synthetic data with 50 steps. The Smoothing ADE and AYE reported here are the same as in Table 1.
They are contrasted with the Filtering ADE and AYE, which measure the performance of the learned models in
the online setting of state estimation.

|| Exp. || Method || Smoothing ADE (m) | Filtering ADE (m) || Smoothing AYE (rad) | Filtering AYE (rad) ||
TRUE 0.090 £ 0.001 0.144 + 0.001 0.014 £ 0.000 0.034 £ 0.000
PF-SEFI (us) 0.186 £ 0.021 0.233 + 0.009 0.016 £ 0.000 0.039 + 0.000
A DPF-SGR 0.165 £ 0.008 0.222 + 0.008 0.014 £ 0.000 0.035 £ 0.001
PFNET 0.264 £+ 0.019 0.333 + 0.030 0.017 £ 0.000 0.047 £ 0.001
PF 0.245 £ 0.021 0.345 £ 0.024 0.017 £ 0.000 0.047 £ 0.001
TRUE 0.088 £ 0.001 0.154 £ 0.001 0.012 £ 0.000 0.038 £ 0.000
PF-SEFI (us) 0.165 £+ 0.013 0.239 + 0.007 0.014 £ 0.000 0.043 £ 0.000
B DPF-SGR 2.828 + 0415 2.888 + 0.232 0.142 £0.016 0.189 =+ 0.008
PFNET 2.809 + 0.176 3.133 £ 0.108 0.148 £ 0.008 0.213 £ 0.009
PF 2.502 £+ 0.042 3.207 £ 0.106 0.137 £ 0.007 0.212 £ 0.008

This highlights an advantage of PF-SEFI, which is that it is relatively invariant to the length of
sequences that it is trained on. Depending on the problem setting, there is usually a minimum
sequence length required to obtain enough information to learn the correct models. If that sequence
length is longer than the maximum sequence length for which a method such as DPF-SGR is stable
to train, then one must sacrifice model quality for stable learning by cutting the sequences to shorter
subsequences or by subsampling the sequences, throwing away some of the observations. In this
case, shortening the sequences to 15 steps allowed for reasonable (though suboptimal) models to
be learned using the baseline methods. In other problems it may well be the case that even more
trimming and/or subsampling would be needed.

F Performance on the Filtering Task

In Section 5, we considered metrics such as ADE and AYE that pertain to the task of state estimation
in the offline setting (known as smoothing), i.e., where we assume access to the entire sequence
of observations, i.e. yi.p. In this section, we additionally consider the online setting (known as
filtering) where the task is state estimation at each time step ¢, with observations from time step 0
up to time step ¢, i.e. p(z¢|yo.+). This setting is relevant for the use of our learned models on-board
the AV.

Table 4 reports ADE and AYE using both the smoothing and filtering distribution for the offline and
online task of state estimation respectively. The patterns are unchanged relative to the ones observed
in Section 5 and in Table 1. However, these results highlight the applicability of the learned in both
settings.

G Training with Higher Dimensional Observations

In Section 5, we reported experiments with 32 dimensional observations (16 2D points). In this
section, we report additional experiments with even higher dimensional observations (32 and 64
2D points, i.e., 64 and 128 dimensional observations respectively) on the synthetic dataset with 25
steps, trained using PF-SEFI. In Table 5 we summarise the empirical findings of these experiments.
In each case, the learned models match the performance of the true models as measured by MLL.
These results suggest that PF-SEFI scales well with higher dimensional observations.

H Effect of a Noisy AV State on Learning

In Section 5, we assume that the AV state is known precisely. In practice, we expect there to be some
minimal errors in state estimation. To test our sensitivity to the same, we ran additional experiments
with the 25 steps synthetic dataset by injecting Gaussian noise (with a standard deviation of 0.5m
in z and y, and 0.05rad in 6) in the AV’s 2D pose. We retrained our models using PF-SEFI in the
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Table 5: MLL computed on held out synthetic test data comparing PF-SEFI (us) against the true models on
synthetic dataset generated with 32 (A), 64 (D), and 128 (E) dimensional observations.

|| Exp. || Method Il MLL Il
A TRUE -3.161 4 0.003
PF-SEFI (us) || -3.152 + 0.006
D TRUE -3.171 4+ 0.003
PF-SEFI (us) -3.163 4 0.007

H E H TRUE -3.188 + 0.003 H

PF-SEFI (us) H -3.177 £+ 0.006
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Figure 12: Marginal Log Likelihood (MLL) of synthetic test data using models trained on synthetic data with
noisy AV states.

presence of such noise, and observe no change in MLL at convergence over the held out test data
(see Figure 12), nor in training stability.
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