
Learning to Correct Mistakes: Backjumping in
Long-Horizon Task and Motion Planning:

Supplementary Document

Yoonchang Sung1*, Zizhao Wang1*, Peter Stone1,2

1The University of Texas at Austin 2Sony AI

1 Introduction

In this appendix, we provide additional materials and evaluations in support of the main paper. We
firstly present the architecture of our models and training details in Section 2. We secondly report
a set of additional evaluation results in Section 3, such as the backjumping prediction accuracy
(Section 3.1), varying training data size (Section 3.2), batch sampling results (Section 3.3), empircal
evaluation with additional baselines (Section 3.4), effect of the sample size (Section 3.5), effect of
the sampling budget (Section 3.6), computation time (Section 3.7), and analysis on the overhead of
the model inference (Section 3.8). We lastly show the pseudo-code of the proposed algorithms in
Section 4.

Unless stated otherwise, all evaluations are conducted in the following settings. The planning code
is executed on one core of Intel(R) Xeon(R) Gold 6342 CPU. Numbers represent the mean ±95%
confidence interval computed by solving 100 problems.

Table 1: Architectures for imitation learning (IL) and plan feasibility (PF) used for all tasks.

Modules Name Parameter

GNN

node feature size, 128
edge feature size, 128
global feature size, 128
node network, [128, 128]
edge network, [128, 128]
global network, [128, 128]

IL

of attention blocks 3 for packing, 2 for NAMO
attention size 256
of attention heads 8
attention residual network [256]
RNN hidden size 256
of recurrent layers 3 for packing, 2 for NAMO
object feature size 256
MLP1 [128]
MLP2 [128, 128]

PF

of attention blocks 3 for packing, 2 for NAMO
attention size 256
of attention heads 8
attention residual network [256]
RNN hidden size 256
of recurrent layers 3 for packing, 2 for NAMO
object feature size 256
MLP1 [128]
MLP2 [128, 128]

*Equal contribution.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

2 Architecture and Training Details

We list the architectures of our imitation learning (IL) and plan feasibility (PF) models in Table
1 and training hyperparameters in Table 2. Note that both IL and PF models use the same GNN
architecture (Table 1). For each MLP network, we represent its architecture, e.g., [128, 128] is an
MLP of 2 hidden layers with 128 neurons in each layer. For all activation functions, ReLU is used.

Table 2: Hyperparameters shared across all methods and tasks.

Name Task
Packing NAMO

number of tasks for training 500 250
number of tasks for testing 100 50

optimizer Adam
learning rate 1e-4

batch size 32

3 Additional Results

3.1 Backjumping prediction accuracy

In Table 3, we show how closely our backjumping prediction k̂? finds the ground-truth k? in the
packing task, where each method is trained with data collected from 500 problems. We consider
three cases: (1) k̂? = k? (i.e., correct prediction) where the backjump correctly guides the search
to directly modify the culprit, (2) k̂? < k? (we call LT) where the backjump still has a chance to
reach the culprit without backjumping but overshoots (i.e., the culprit exists in the descendants of
k̂?), thus having lower planning efficiency compared with k̂? = k?, and (3) k̂? > k? (we call GT)
where the backjump undershoots, and thus, the search cannot reach the culprit without backjumping.
For example, that k̂? ≤ k? at around 70% of the time implies that the chance of finding the culprit
without backjumping occurs more frequently than missing the culprit, leading to improved planning
efficiency.

Notice that our method involves sampling that approximates a continuous domain in a discrete way.
Because of this, both the following situations are possible in the LT case: (1) The search may have a
new opportunity to find a feasible solution by sampling a different value for the variable that used to
be the culprit before backjumping but is no longer a culprit. (2) The search may make a new culprit
variable by sampling a wrong value, and thus, further backtracking or backjumping is required to
find a feasible solution.

Table 3: The accuracy of k̂? prediction in the packing task. Numbers represent the mean ± 95% confidence
interval computed by solving 100 problems. The number with ∗ represents the best-performing method within
the same data size. The bolded numbers are those whose performance is not statistically significantly different
from the one with ∗.

Metric IL RNN IL Attn PF RNN PF Attn

Correct prediction percentage (%) 39.3 ± 1.0 39.2 ± 1.5∗ 44.2 ± 0.5 43.0 ± 0.4
LT percentage (%) 33.0 ± 2.2 30.0 ± 2.0 28.6 ± 2.2∗ 30.3 ± 2.3
GT percentage (%) 27.6 ± 1.2 30.1 ± 2.1 27.2 ± 1.8 26.6 ± 1.9∗

LT distance 1.76 ± 1.10 1.76 ± 1.06 0.71 ± 1.12∗ 0.80 ± 1.20
GT distance 1.58 ± 0.91 1.59 ± 0.93 1.37 ± 0.69 1.34 ± 0.65∗

Prediction backjumping distance 2.58 ± 1.66 2.48 ± 1.62∗ 2.56 ± 1.54 2.67 ± 1.62
Ground-truth backjumping distance 2.44 ± 1.56

The mean and standard deviation of the LT distance and GT distance (i.e., |k̂? − k?| for both dis-
tances) are shown in the fourth and fifth rows, and for each method, it can be seen that the prediction
k̂? has a relatively small deviation from the k? labels. Finally, as shown in the last two rows,
compared to backtracking which always reevaluates the variable at one level higher, our methods

2

backjump to higher levels (i.e., kd− k̂?) and avoid evaluating irrelevant variables. For reference, we
show the ground-truth backjumping distance (i.e., kd−k?); one can see that the prediction distances
of all methods are close to this ground-truth distance.

3.2 Varying training data size

In Table 4, we show the efficiency of our methods when varying the training data size (i.e., data
collected by varying the number of problems). All methods trained with the reported data sizes
outperform backtracking significantly. With more data, the performance of each method improves,
except for PF trained with more than 2000 problems. PF collects sufficient data even in a small data
regime as it gathers one feasibility likelihood label for each node visited in the search tree. Thus,
further increasing data size does not significantly affect the PF performance.

Table 4: The number of nodes visited in the search tree in the packing task when varying the data size (mea-
sured by the number of problems).

Data size Backtracking IL RNN IL Attn PF RNN PF Attn

100

4414 ± 879

3490 ± 698 3615 ± 831 3487 ± 704∗ 3592 ± 788
500 2464 ± 464 2638 ± 602 2205 ± 313 2062 ± 297∗

2000 2439 ± 529 2404 ± 464∗ 3084 ± 672 3468 ± 729
4500 1769 ± 372∗ 2151 ± 507 2243 ± 498 2350 ± 484

3.3 Batch sampling results

We conduct additional evaluation of batch sampling on the NAMO task (in Table 5). The results
match with our results on the packing task, i.e., although batch sampling still outperforms back-
tracking by far, forgetting empirically exceeds batch sampling in both tasks.

Table 5: The comparison between the forgetting method (F) and the batch sampling (BS) method, measured
by the number of nodes visited in the search tree.

Task Backtracking IL RNN IL Attn PF RNN PF Attn

Packing (F) 4414 ± 879 2464 ± 464 2638 ± 602 2205 ± 313 2062 ± 297∗

Packing (BS) 13541 ± 4205 4464 ± 1160 7073 ± 2040 4556 ± 749 4311 ± 690∗

NAMO (F) (21 ± 10) ×104 543 ± 187 425 ± 153∗ 529 ± 188 2615 ± 710
NAMO (BS) (44 ± 11) ×104 16019 ± 5384 9558 ± 3411 4327 ± 1559∗ 84286 ± 55595

3.4 Empirical evaluation with additional baselines

We implement additional baselines, which backjump predetermined steps at dead-ends, to compare
with our methods. We report the number of nodes visited in the search tree and the wall clock time,
measured in seconds, obtained by the forgetting algorithm for solving each packing problem with
10 objects. We choose the packing task because the performance gap between backtracking and our
method in packing is much smaller than that in NAMO, and thus the packing task yields a more
contrasting comparison.

Table 6: The number of nodes visited in the search tree and the wall clock time, measured in seconds, obtained
by the forgetting algorithm for solving each packing problem with 10 objects.

fixed backjumping steps # visited nodes Wall clock time

1 (i.e., backtracking) 4414 ± 879 260.6 ± 58.1
2 3093 ± 509 120.0 ± 21.1
3 3323 ± 637 140.0 ± 26.9
4 2892 ± 557 154.0 ± 26.6
5 5408 ± 1106 391.6 ± 76.1
6 8360 ± 1570 577.9 ± 109.6

Always backjumping to root 11212 ± 2002 685 ± 120

3

The results show that when the fixed step is set to 4, the baseline algorithm performs the best among
all baselines. Its confidence interval even overlaps with some of our methods, but we observe that
our best results (i.e., 1889±328 of IL RNN from Table 8 and 2062±297 of PF Attn from Table 4)
still show the performance statistically significantly better than all baselines. Nonetheless, the rest
of the results in the appendix support our claim that the performance of our methods can further be
improved by varying training data size and/or sampling budget in training.

3.5 Effect of the sample size

We analyze the effect of the sample size (denoted by N in the paper) on the noisy data and the
trained model performance so that users can determine appropriate N for their applications.

Since our method uses sampling, the planner may mistakenly think it hits a dead end even if a
feasible action (e.g., placement) is available. This corresponds to a false negative, which contributes
to noisy labels and informs a sufficient number of samples not to miss a feasible action. The ideal
sample size varies depending on a problem domain. Thus, as an example, we show false-negative
ratios in the packing task (Table 7) where the goal is to find a placement for the 10-th object when
there are 9 objects in the cabinet.

Table 7: False-negative ratios resulted when using different sample sizes.

Sample size 10 30 50 70 90

False-negative ratio 0.72 0.50 0.34 0.21 0.10

3.6 Effect of the sampling budget

We conduct additional evaluations on the performance of learning models in the packing task when
varying the number of samples (i.e., N in the paper) used in training. Specifically, we set the number
of samples to be 10, 30, and 50 in training while that to be 30 in testing.

Table 8: The ratio of model inference time over the total wall clock time (in %) for solving a single problem.

samples in training / in testing IL RNN IL Attn PF RNN PF Attn

10 / 30 1889 ± 328∗ 2153 ± 369 3276 ± 597 2932 ± 450
30 / 30 2464 ± 464 2638 ± 602 2205 ± 313 2062 ± 297∗

50 / 30 5752 ± 1446 6672 ± 1819 4859 ± 1100 4267 ± 1035∗

The results show that IL performs the best for 10/30, PF performs the best for 30/30, and both
perform the worst for 50/30. It is expected that at the extreme (i.e., N = 1) in training, IL would
predict to backjump to near the root as, most of the time, a feasible placement is not found with N =
1. This would behave similarly to a baseline, always backjumping to a root; thus, its performance
is expected to be poor. For a given number of samples in testing, we can treat the sample size in
training as a hyperparameter, and one can tune it for their applications for better performance.

3.7 Computation time

We report the wall clock time for solving each problem, measured in seconds, in Table 9. The wall
clock time is roughly proportional to the number of nodes visited in the search tree.

Table 9: The wall clock time for solving each problem, measured in seconds.

Task Backtracking IL RNN IL Attn PF RNN PF Attn

Packing 202.0 ± 45.4 97.4 ± 19.3 162.1 ± 32.7 94.7 ± 22.0∗ 122.0 ± 23.8
NAMO 61754.3 ± 24608.4 66.0 ± 19.9 67.8 ± 19.9 58.7 ± 18.3∗ 11648.3 ± 12342.7

3.8 Analysis on the overhead of the model inference

4

We report the ratio of model inference time over the total wall clock time (in %) for solving a single
problem.

Table 10: The ratio of model inference time over the total wall clock time (in %) for solving a single problem.

Task IL RNN IL Attn PF RNN PF Attn

Packing 0.3 ± 0.2∗ 2.1 ± 0.6 7.7 ± 2.7 1.2 ± 0.3
NAMO 12.5 ± 4.1 3.9 ± 1.4 12.4 ± 3.8 2.1 ± 0.6∗

The results show the overhead of the querying backjumping model is relatively cheap, consisting
of less than 8% for the packing task. Even though querying takes 12.5% of the wall clock time for
NAMO tasks, it is worthwhile considering that using backjumping reduces the total wall clock time
from 6 × 104s to around 60s. The results also show that the difference between the overhead of IL
and that of PF is marginal.

We also report the average time to determine the dead end when querying the model, measured in
milliseconds.

Table 11: The average time to determine the dead end when querying the model, measured in milliseconds.

Task IL RNN IL Attn PF RNN PF Attn

Packing 267.9 ± 217.5 56.5 ± 40.2 163.1 ± 112.4 16.9 ± 6.5∗

NAMO 823.4 ± 462.2 292.7 ± 176.3 800.8 ± 433.9 138.1 ± 68.3∗

Even though the attention method is queried for every previous step while the RNN is only queried
once, it is still much faster than RNN because its time-series computation can be parallelized on
GPUs, while the RNN needs to finish the time-series computation sequentially.

4 Pseudo-code

We present the pseudo-codes for both batch sampling and forgetting algorithms.

5

Algorithm 1: Batch sampling algorithm
Input : Time limit (T), number of samples per level (N)

1 P ← ∅ // Initialize the empty plan.
2 Vk ←sampleValues (ck, N) ∀k ∈ {0, ...,K − 1} // Sample N values per level k.
3 k ← 0
4 V ′

k ← Vk
5 while not isTimeLimitExceeded (T) do
6 while 0 ≤ k ≤ K − 1 do
7 while not isEmpty (V ′

k) do
8 v ←selectValue (V ′

k)
9 if isConsistent (v,P) then // Check if v is consistent with P.

10 P.append (v)
11 k ← k + 1 // Move to the next level.
12 V ′

k ← Vk
13 break

14 else
15 V ′

k ←removeElements ([v],V ′
k) // Remove v from V ′

k.

16 if isEmpty (V ′
k) then // The dead-end is met (k = kd).

17 k̂? ←predictBackjump (model inputs) // Model inputs are
specified in Section 4.

18 P ←removeElements ([k̂?, ..., k − 1],P) // Remove the last k − k̂?

elements from P.
19 k ← k̂? // Backjump to level k̂?.
20 break

21 end
22 end
23 end
24 end
25 if k = 0 then
26 Vk ←sampleValues (ck, N) ∀k ∈ {0, ...,K − 1} // Sample a new batch of N

values.
27 V ′

k ← Vk
28 else
29 return P // Plan is found.
30 end
31 end
32 return no solution

6

Algorithm 2: Forgetting algorithm
Input : Time limit (T), number of samples per level (N)

1 P ← ∅ // Initialize the empty plan.
2 k ← 0
3 while not isTimeLimitExceeded (T) do
4 while 0 ≤ k ≤ K − 1 do
5 Vk ←sampleValues (ck, N) // Sample N values.
6 while not isEmpty (Vk) do
7 v ←selectValue (Vk)
8 if isConsistent (v,P) then // Check if v is consistent with P.
9 P.append (v)

10 k ← k + 1 // Move to the next level.
11 break

12 else
13 Vk ←removeElements ([v],Vk) // Remove v from Vk.
14 if isEmpty (Vk) then // The dead-end is met (k = kd).

15 k̂? ←predictBackjump (model inputs) // Model inputs are
specified in Section 4.

16 P ←removeElements ([k̂?, ..., k − 1],P) // Remove the last k − k̂?

elements from P.
17 k ← k̂? // Backjump to level k̂?.
18 break

19 end
20 end
21 end
22 end
23 if k 6= 0 then
24 return P // Plan is found.
25 end
26 end
27 return no solution

7

	Introduction
	Architecture and Training Details
	Additional Results
	Backjumping prediction accuracy
	Varying training data size
	Batch sampling results
	Empirical evaluation with additional baselines
	Effect of the sample size
	Effect of the sampling budget
	Computation time
	Analysis on the overhead of the model inference

	Pseudo-code

