
Appendices

Appendix A Tactile depth network: data and training

The TDN is trained with TACTO [32] images, minimizing heightmap reconstruction loss, as in the
monocular depth estimation [62]. These image-heightmap pairs are shown in Figure 12 [right]. The
TACTO interactions are over a diverse set of YCB objects shown in Figure 12 [left].

Supervised training of TDN with TACTO image-heightmap pairsYCB training set of 40 objects

Sample DIGIT 
calibration 

images

Rendered DIGIT images

Rendered heightmaps

Figure 12: [top-left] Three calibration images captured from different DIGIT sensors. We augment our training
data with these calibrations for better sim2real transfer. [bottom-left] The 40 YCB [24] objects across food,
kitchen, tool, shape, and task classes. [right] Examples of image-heightmap pairs used for supervision.

Generating contact poses: We render realistic DIGIT images from 5000 unique poses on each
object. To generate these contact poses, we sample point-normal pairs across the object’s mesh.
Through rejection-sampling, we can get an approximately even distribution across the surface. Ad-
ditionally, we prioritize sampling edges with mesh feature angles > 10�. This gives us the uniform
spread that we desire, while also capturing the salient features across the object classes.

After sampling these points, we add penetration depth randomly sampled between 0.5mm to 2mm.
To convert a contact location to a pose, we first assign a random orientation angle � around the
surface normal direction between [0�, 360�]. We add an orientation noise angle ✓ = N (0, 5�) in
the cone perpendicular to the surface normal to ensure that the poses aren’t always othogonal to the
local surface. We randomly assign 2% of all poses to not make contact with the surface.

Image augmentations: For sim2real transfer, the TDN should generalize across different sensor
lighting conditions. For example, in our real experiments we use three different DIGIT sensors,
and there is some wear and tear of the elastomer over time. Through TACTO, we can calibrate the
renderer with respect to real-world images. These images, pictured in Figure 12 [left], are captured
when the DIGIT does not make contact with a surface. We collect 10 calibration images over the
YCB-Slide dataset, and use each as the calibration for a subset of the training data generation.

Figure 13: Extended results from the tactile depth network, similar to Figure 2. Given input image, the network
predicts heightmap which is reprojected to give 3D geometry.

Appendix B Tactile codes: 3D versus image

In this section, we compare our 3D tactile codes against a baseline tactile image embedding. While
Bauza et al. [18] use a similar contrastive strategy to learn image embeddings, they are object-
specific. We choose instead to compare against the learned model in ObjectFolder 2.0 [53]. They
extract features from the fully-convolutional residual network bottleneck layer, the tactile depth

14



network we use as our observation model (Section 4.1). They use these embeddings for multi-touch
contact location estimation with GelSight images.
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Figure 14: Pose-error for 10k single-touch queries on YCB objects, comparing our 3D tactile codes v.s. image
embeddings. For each query, we get the top-25 highest scores from the tactile codebook Co, and compute
their minimum pose-error with respect to ground-truth. This density distribution is plotted as a violin-plot,
normalized by the error from a randomly-sampled touch.

Figure 15: Examples of query tactile images
matched against the tactile codebook of the
sugar_box object. We see that the top scores in
each case are images whose sensor pose is also
similar to the query.

We perform the same single-touch localization exper-
iments from Figure 4, using both our tactile codes,
and the image embeddings. For each method, we
build an object-specific codebook. For each query
tactile image, we generate its corresponding embed-
ding and match against the codebook. We then
compute the minimum pose-error from the top-25
matches, and repeat this for 10k touch queries. From
Figure 14 we observe lower pose-errors for our tac-
tile codes, with an average normalized pose-error of
0.473 compared to 0.546 from Gao et al. [53]. Also
importantly, our embeddings are low-dimensional,
leading to a codebook size 300 times smaller than
that of the baseline. Examples of top single-touch
query results for sugar_box are shown in Figure 15.

Appendix C Particle filter: Implementation details

Particle count: We initialize liberally, with N0 = 50k so as to better capture poses close to the
ground-truth. With too few particles, we run the risk of not capturing good 6D pose candidates
initially. In practice, reducing Nt greatly improves computation time, but is a trade-off on tracking
accuracy. Alongside resampling, we dynamically adjust the number of particles Nt based on filter
convergence. We track the average standard deviation of the hypothesis set �ht

, and inject or remove
particles according to the ratio �ht

/�ht�1
. When injecting particles, we replicate those with the

largest weights, and when removing particles, we delete those with the lowest. To prevent particle
depletion, we do not let it drop below 1k particles.

Pruning: We leverage our on-surface assumption, to prune particles that drift too far away from
the objects surface. Given the object meshes, we construct a k-d tree of all vertices, and at each
iteration we perform a nearest neighbor search for the particles using this tree. When the distance
check exceeds 2mm, which we consider the sensor’s maximum penetration distance, we set the
corresponding particle’s weight to zero. This "soft" on-surface constraint allows for some noise in
the odometry, while gradually pruning candidate hypotheses.

Real-world experiment: With real DIGIT images, we’ve found exponential time smoothing over
predicted heightmaps gives stable local geometry and removes outlier effects. Further, we reduce
the frequency of particle resampling to every five iterations. This prevents particle depletion in the
presence of erroneous heightmaps. In the real-world experiments, there are instances where the
DIGIT can slide off the object’s surface. In those cases, the TDN does not produce a point-cloud
and we instead generate a randomized R256 embedding.
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Appendix D Additional YCB-Slide details

Figure 16: [left] Our data-collection setup with the YCB object, motion capture, DIGIT sensor, and recording
camera. [right] The 10 YCB test objects during interactions, with representative tactile images.

Our real-world dataset was collected in the indoor environment pictured in Figure 16. Each object is
tightly clamped onto a heavy-duty bench vise, while the DIGIT sensor is slid across its surface. The
full set of 50 simulated interactions are shown in Figure 17. Each trajectory has a fixed geodesic
length of approximately 0.5m.

Figure 17: All 50 sliding trajectories from tactile simulation on the 10 YCB objects. Overlaid in green are the
local 3D geometries captured by the tactile sensor, and the contact poses as RGB coordinate axes.

The 50 collected real-world interactions are shown in Figure 18. While these human-designed se-
quences are not random, each covers different sections of the object geometry.

Figure 18: All 50 sliding trajectories from real-world interactions on the 10 YCB objects. Overlaid in green
are the local 3D geometries captured by the tactile sensor, and the contact poses as RGB coordinate axes.
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Appendix E Additional MidasTouch results

Figure 19: Examples of cases
where particle pose error is
high, but we still capture the
true pose in our multi-modal
distribution.

Closest hypothesis error: In Section 6, we present final RMSE for
the pose particles with respect to ground truth. In Figure 8 and 9 we
plot these accumulative statistics at the final timestep T :

etrans =

s
1
NT

X

x2XT

kxtrans � xgt
transk22 , erot =

s
1
NT

X

x2XT

kxrot � xgt
rotk22

(3)
This is a general error metric for the particle filter, but penalizes a
multi-modal pose distribution. We present an additional metric that
computes RMSE with respect to hypothesis set hT , and uses the error
associated with the closest hypothesis to ground-truth:

min_cluster(etrans) =
r

min
x2hT

kxtrans � xgt
transk22 , min_cluster(erot) =

r
min
x2hT

kxrot � xgt
rotk22 (4)
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Figure 20: Plots for the 500 simulated [left] and real-world [right] trials comparing etrans, erot against
min_cluster(etrans), min_cluster(erot). These serve as a complement to Figure 8 and 9, and highlight the multi-modality
of the filtering problem. Given knowledge of ground-truth, we pick the cluster closest to it and plot the RMSE
statistics with respect to it (Equation 4). We observe lower errors across all objects in both simulated and real
settings, empirically indicating the true mode is captured in most cases.

While this assumes we have access to the ground-truth, it can better demonstrate if we capture the
true pose in our multi-modal distribution. In Figure 20, we see the min_cluster statistics plotted
alongside the original final RMSE. Across all experiments, we end up with lower error: with a
median of 0.28cm + 2.03� in simulation and 1.11cm + 10.76� in the real-world.

Further qualitative results: Finally, we highlight some visualization similar to Figure 7 and 10,
for the remaining YCB test objects. In Figures 21 and 22 we show snapshots of MidasTouch on
the remaining YCB objects. Alongside the snapshots is the translation and rotation RMSE over
time, averaged over 10 trials. We see filter convergence across different YCB objects, along with
the failure mode of the baseball in Figure 22. Please refer to the supplementary video for further
visualizations.
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Figure 21: Select simulation results from seven objects not shown in Figure 7. For each row: [top] the tactile
images, local geometries, and heatmap of pose likelihood with respect to the tactile codebook, [bottom] pose
distribution evolving over time, [right] average translation/rotation RMSE of the distribution over time with
variance over 10 trials.
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Figure 22: Select real-world results from seven objects not shown in Figure 10. For each row: [top] the tactile
images, local geometries, and heatmap of pose likelihood with respect to the tactile codebook, [bottom] pose
distribution evolving over time, [right] average translation/rotation RMSE of the distribution over time with
variance over 10 trials.
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Appendix F Study on contact patch area

1.1 1.5 1.9 2.1 3.1
Average c ntact patch area (cm²)

5

6

7

8

9

10

Fi
na

l R
M
SE

 tr
an

s.
 (m

m
)

5

6

7

8

9

10

Fi
na

l R
M
SE

 r
 t
. (
de

g)

Figure 23: Plot over 50 trials of the pose er-
ror v.s. average contact area of the trajectory;
larger contact areas lead to lower downstream
error in tracking.

We analyze the correlation of surface contact patch area
with the performance of our filter. During interaction, it
is crucial to maintain forceful contact with the surface
area impinging the sensor. This gives us a larger contact
area, and more 3-D surface geometry to match against
the tactile codebook. For the DIGIT, this is theoretically
between 0 to 6 cm2, and can be obtained as the pixel
area of Ct (Section 4.1).

To show the importance of larger contact areas, we
record a single simulated trajectory on power_drill,
ablated over five different penetration depth ranges. We
randomly sample penetration depth in the range of ! ⇥
N (0.5, 2 mm), where ! 2 [0.1, 0.325, 0.55, 0.775, 1.0].
Figure 24 shows the same interaction with five differ-
ent ! values. We observe that large penetration captures
more surface geometry.

For each profile, we average the results of 10 filtering trials, and plot the final pose error v.s. average
trajectory contact area. Figure 23 shows that more 3-D surface geometry can lead to lower down-
stream error in finger pose tracking. Intuitively, this is analogous to a depth-camera with a larger
depth range, generating more complete scans of the scenes it perceives.

Different profiles of gel penetration

Larger contact areaSmaller contact area

Sliding trajectory on power_drill

Figure 24: [right] Fixed trajectory on power_drill for which we apply different penetration profiles. [left] For
the same local surface, different penetration profiles observe very different contact shapes and tactile images.

Appendix G Experiments on small parts
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Figure 25: Boxplot of final error over
30 simulated trials on the McMaster-Carr
small parts.

MidasTouch focuses on YCB-sized objects that we en-
counter in household and assistive robotics contexts.
These are considerably larger than the robot finger, which
is relevant for our desired applications of in-hand and
tabletop manipulation. YCB-Slide spans objects with sur-
face areas ranging from 109cm2 (adjustable_wrench) to
643cm2 (bleach_cleanser), while the sensor has a foot-
print of 6cm2. In this section, we show simulated exper-
iments for small parts with large sensor-model overlap,
similar to prior work [16, 18].

We select three objects from McMaster-Carr [74], the
cotter_pin, eyebolt, and steel_nail, each of 2" length. For each we generate a tactile code-
book, and record a short simulated trajectory along the object’s length (just as in Section 5). In
Figure 26 we show results for all three, where the filter quickly converges to the true mode. We run
each experiment 10 times, and show the accumulative statistics in Figure 25. We observe a final
error of ⇡ [4 mm, 5�], which is roughly twice as accurate as results in Section 6. Moreover, this
requires trajectories 10⇥ smaller, with 5⇥ less particles. This is due to the small size of objects, and
larger relative field-of-view.
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cotter_pin t = 0 t = 50 t = end

eyebolt t = 0 t = 50 t = end

steel_nail t = 0 t = 50 t = end

Figure 26: Filtering results from the three McMaster-Carr small parts. We visualize the tactile images, local
geometries, and pose distribution evolving over time.
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