Evaluation Sim, Controller

Appendix

1 Robot Details

Table 1: Robot specific parameters used for training and evaluation. The maximum number of steps and
velocity limits for each robots are set in proportion to the robot’s leg length.

Parameter Al Aliengo Spot
1 Success radius (m) 0.24 0.32 0.425
2 Maximum number of steps 326 268 150
3 Linear velocity limits (m/s) + 0.23 + 0.28 + 0.50
4 Angular velocity limits (rad/s) + 0.14 + 0.17 + 0.3
5 Leg length (m) 0.2 0.25 0.44

2 Additional Evaluation Results

We present additional results using the Raibert controller for evaluation in Figure 1 (row 4). The
policies are evaluated across 3 seeds, using the HM3D + Gibson validation split which consists
of 1,100 episodes from 110 unique scenes. Our results are consistent with evaluation using the
MPC controller— kinematic trained policies still outperform the dynamic trained policies, even when
evaluated using dynamic control ' (68.9 % SR for Aliengo in Habitat, Kinematic vs. 45.4 % SR in
Habitat, Dynamic, Fig. 1, middle).

100
(Hab,Kin) d : o . (Hab,Kin) . : 5 . (Hab,Kin) . . 245 374

(Gib,Kin) (Gib,Kin) (Gib,Kin) 3 3 34.8 40.0 60

-40

(Hab,Dyn) (Hab,Dyn) (Hab,Dyn) 5 36.1 215

Evaluation Sim, Controller
Evaluation Sim, Controller

-20

(Gib,Dyn) . . . (Gib,Dyn) 454 456 (Gib,Dyn)

(Hab,Kin) (Gib,Kin) (Hab,Dyn) (Gib,Dyn)
Training Sim, Controller

(Hab,Kin) (Gib,Kin) (Hab,Dyn) (Gib,Dyn)
Training Sim, Controller

(Hab,Kin) (Gib,Kin) (Hab,Dyn) (Gib,Dyn)

Training Sim, Controller
Figure 1: Average success rates for sim2sim and kinematic2dynamic transfer for A1, Aliengo and Spot. Dy-
namic evaluation in iGibson is performed using the Raibert controller [1]. We see that the kinematic trained
policies still perform the best overall (red quadrants), and also often outperforms the dynamic trained policies,
even when evaluated using dynamic control (green quadrants vs. orange quadrants).

3 Actuation Noise Modeling Details

We collect actuation noise (difference between the commanded and true velocity of the robot) on
the Boston Dynamics Spot robot by commanding the robot at a random velocity for 1Hz in an
empty room and measuring the final velocity. Noise is collected in a decoupled and coupled manner
described below:

1. Decoupled: Random velocities (~ U(—0.5,0.5)) are commanded in the forward, lateral,
and angular directions separately. When collecting data for the forward direction, the side-

"For all robots and training sim/controller except Al, iGibson-Kinematic

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

ways direction velocity is commanded zero velocity; the opposite is true when collecting
data for the sideways direction. We collect 2,000 datapoints for each direction.

2. Coupled: Random velocities (~ U(—0.5,0.5)) are commanded in the forward, lateral,
and angular directions at the same time.

Each dataset contains 6,000 data points, with decoupled data containing 2000 data points for each
direction. We choose to model the uncertainty in the robot’s actuation with a standard bivariate
Gaussian with a diagonal variance similar to [2]. The collected data is used to generate mean and
variance parameters for a Gaussian distribution describing the noise in each dimension, as shown
in Table 2. The Gaussian models are then used to inject noise into the the kinematic simulation
during training time through the following method: 1) the policy predicts a velocity, 2) the Gaussian
distributions for each direction are sampled, 3) the sampled noise is added to the policy’s predicted
velocity, and 4) the robot’s state is updated according to the noisy velocity.

The two different noise collection approaches aim to study the effects data collection has on the
resulting noise model. Our experiments show that both noise models perform better in the real-
world than no noise modeling, and coupled noise performs slightly better than decoupled.

Noise e (M/S) by (/S) e (degls) o, (m/s) oy (m/s) 0. (deg/s)
Coupled 0.002 -0.004 0.081 0.054 0.065 2.599
Decoupled 0.002 -0.001 -0.029 0.036 0.044 1.468

Table 2: We fit a bivariate Gaussian to the actuation noise collected on a real Spot robot. During kinematic
training, we sample from the noise models and inject the realistic actuation noise to the robot’s desired final
state.

It is also important to note that while Spot (and other legged robots) can move in all directions,
these robots are not necessarily omnidirectional platforms, since they cannot move in all directions
equally well. To illustrate this, we collect displacement errors on Spot in forward and lateral direc-

Real-World Noise Measurement

0.4

0.2 4

0.0«

—0.2

Forward Displacement Error (m)

—0.4 1

T T T T
-0.4 -0.2 0.0 0.2 0.4
Lateral Displacement Error (m)

Figure 2: We collect displacement errors on Spot in forward and lateral directions. The standard deviation for
the displacement errors between the forward and lateral directions are large and asymmetric, demonstrating
that the robot is not perfectly omnidirectional.

tions while commanding random desired CoM movements (Figure 2). If the robot were perfectly
omnidirectional, we would expect the means and variances for the forward and lateral direction to be
small and the same. While the mean error in both directions is close to 0, the standard deviations in
the forward and lateral directions are significantly larger and asymmetric. In the forward direction,
the standard deviation is 0.097 meters, and in the lateral direction it is 0.139 meters. This tracking
error, which increases with commanded velocity, motivated the choice of saturating commanded
desired velocity at 0.5 m/s. This behavior is observed on the Spot robot using Boston Dynamics

walking controllers, which is a very good, highly tuned controller for the robot. We would expect
any open-sourced controller which is not tuned for a particular robot to only be worse.

4 Additional Low-level Controller Details

We use two different kinds of low-level controllers in our work— an expert-designed Raibert con-
troller from [1] (modified to allow for lateral movement), and a model-predictive control (MPC)
controller from [3]. The Raibert controller takes in desired CoM velocities (Vy_ges, Vy_dess Wdes)
from the high-level policy to calculate the desired foot placement location, following equations 1-3
from [1]. The footstep trajectory is followed using inverse kinematics. The MPC controller uses a
contact schedule to determine each leg’s contact state and compute the optimal joint torque for each
leg.

5 Additional Policy Details

5.1 High-level policy parameters.

We use PPO with Generalized Advantage Estimation (GAE). We use a discount factor of 0.99, and
GAE parameter of 0.95. We use the Adam optimizer, with a learning rate of 2.5e-4. We run 8 agents
in parallel (in different environments) per GPU, and each agent collects a rollout of 128 frames of
experience. We use 8 GPUs, for a total of 64 parallel workers.

5.2 Reward function.

Our reward function is derived from [1], with an added penalty for backward velocities, which can
lead to collisions and hurts performance. Specifically, our reward function is defined as:

Tt (atv St) = Rgeo + Rcoll + Rfall + Rsuccess + Rslack + Rbackwa'rd (l)

Ry, is a shaped reward, denoting the change in geodesic distance to the goal between two timesteps.
R0 1s a penalty for collisions. We set the collision penalty to -0.03.

R4y is a penalty if the robot falls over. We set the falling penalty to -5.0, and terminate the episode.
Rgyccess 1 the terminal reward for completing the episode. We set the terminal reward to 10.0.
Rg1qck 1s a slack penalty used to encourage the robot to reach the goal as fast as possible. We set the
slack penalty to -0.002.

Rpqckwara 1 a penalty for moving backwards, as moving backwards can lead to collisions. We set
the backwards penalty to -0.03.

5.3 Dynamic Simulation Overfitting Details.

We define overfitting as the drop in performance when testing on a different controller and/or simu-
lator than training. This is a natural generalization of the standard definition of overfitting in super-
vised learning (accuracy on IID training dataset - accuracy on IID testing dataset). We train dynamic
policies for all three robots to congergence (Figure ??)

In Table 3, we show the success rate on Habitat-Dynamic (training scenario) - success rate on
iGibson-Dynamic (testing scenario) for all 3 robots. Note that these are all evaluations on the same
houses/scenes/environments (from a held-out evaluation set) and the only factor changing is the
simulator. We can clearly see that the gap is always positive, indicating that policies trained on
Habitat-Dynamic perform worse when evaluated on iGibson-Dynamic compared to evaluation on
Habitat-Dynamic. As can be expected, in all but one case, the performance gaps are increasing with
more RL training, though this is not strictly necessary. A well-trained high-level policy can learn to
reason intelligently about navigation (even with dynamic controllers), and then perform well across
simulators.

Robot Steps of Performance

experience gap (%)
12M 7.8
Al 25M 26.7
50M 27.2
12M 5.7
AlienGo 25M 54
50M 8.1
12M 14.0
Spot 25M 21.6
50M 15.6

Table 3: We measure the performance gap for dynamic policies between evaluations in Habiat-Dynamic and
iGibson-Dynamic. The gap is always postive, and in all cases but one, the performance gaps increase with more
RL training, demonstrating that the dynamic policies overfit to the simulator and controller it was trained on.

References

[1] J. Truong, D. Yarats, T. Li, F. Meier, S. Chernova, D. Batra, and A. Rai. Learning naviga-
tion skills for legged robots with learned robot embeddings. In International Conference on
Intelligent Robots and Systems (IROS), 2020.

[2] A. Murali, T. Chen, K. V. Alwala, D. Gandhi, L. Pinto, S. Gupta, and A. Gupta. Py-
robot: An open-source robotics framework for research and benchmarking. arXiv preprint
arXiv:1906.08236, 2019.

[3] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals. Robotics: Science and Systems (RSS), 2020.

	Robot Details
	Additional Evaluation Results
	Actuation Noise Modeling Details
	Additional Low-level Controller Details
	Additional Policy Details
	High-level policy parameters.
	Reward function.
	Dynamic Simulation Overfitting Details.

