
Where To Start?
Transferring Simple Skills to Complex Environments

–Supplementary Material–

Vitalis Vosylius and Edward Johns
The Robot Learning Lab
Imperial College London

United Kingdom
{vitalis.vosylius19, e.johns}@imperial.ac.uk

1 Behaviour Cloning Skills

In our experiments, we test our method on two robotic skills: 1) grasping novel objects and 2) placing
a held object inside novel containers. However, our approach is not limited to these types of tasks.
We acquired these skills using Behavioural Cloning (BC) solely in simulated environments. Our
learnt skills operate in 6D end-effector action space using segmented point clouds as observations.

1.1 Training Data

We create a set of expert demonstrations (DBC = {(P0
target, T 0), (P1

target, T 1), ..., (PT
target, T T)}N1)

using a simulated environment and scripted policies that use privileged information such as object
geometries and their poses. Here Pt

target and T t represent the point cloud of the target object and
end-effector SE(3) pose, respectively.

To generalise across novel objects for grasping, we use 40 different categories of objects from
ShapeNet [1], and their annotated grasps from the ACRONYM [2] dataset 1. In total, we use 200
different objects. For the placing policy, we use different types of containers from ShapeNet [1]
(Bowls, Pans, Trash Bins, Baskets etc.) totalling 200 different objects. For both policies, we create
1000 expert demonstrations from close proximity to the target. All expert demonstrations are create
in a tabletop environment without any obstacles present. For a better chance of a sim2real trans-
fer, we add noise to the depth images according to [3], use noisy camera extrinsic and imperfect
segmentations.

1.2 Training

We train Behaviour Cloning policies that map the point cloud of the object represented in the end-
effector frame to the relative transformation between subsequent SE(3) end-effector frames in the
expert trajectory (a∗eef = T −1t Tt+1) and a binary action for the gripper a∗grip. To train the BC
policies, we use a combination of the Point Matching loss defined in Equation 1 [4], that jointly
optimises translation and orientation of the 6D pose and a Binary Cross-Entropy loss for predicting
the action for the gripper.

Losspose(T1, T2) =
1

|Xg|
∑
x∈Xg

||T1(x)− T2(x)||1 (1)

Here, Xg is a set of points defined on the gripper, T1, T2 ∈ SE(3). Our network outputs the 3D
translation and 6D representation of rotation that we use to create homogeneous transformations in

1We adjust and re-validate all the used grasp poses through the physics simulation due to the use of a
different gripper from the one used to create the ACRONYM [2] dataset.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

a differentiable manner. We then use these transformations in Equation 1 to calculate the Losspose.
The complete loss function used to train BC skills is

LossBC = αLosspose(aeef , a
∗
eef) + βBCE(agrip, a

∗
grip) (2)

Here we use α and β to scale different parts of the loss function in order to keep the losses of
comparable magnitude for each part of the action. In our experiments, we set α and β to 1 and
1e−3, respectively. In addition, because a∗eef is only equal to 1 at the end of an expert trajectory,
we weigh positive examples in the BCE loss part with a factor of 10. All training was done using a
single machine with AMD Ryzen 9 5900X CPU and NVIDIA GeForce RTX 3080ti GPU and took
approximately 2 hours per skill.

During deployment, the aeef outputted by the BC skill is time-scaled to obtain end-effector veloci-
ties that are applied to the robot at a 30Hz rate. When the skill predicts agrip, the closed-loop skill
execution is stopped, and the gripper closes or opens depending on the skill (grasping or placing).

1.3 Architectures

We train separate models for the two skills we are considering. However, the network architecture
for both skills is exactly the same. Our policy network is composed of the PointNet++ [5] followed
by an LSTM cell. PointNet++ is composed of two Set Abstraction layers followed by a global
PointNet layer compressing the point cloud observation into a 512-dimensional vector. This vector
is then passed to an LSTM cell with a hidden dimension of 128. Finally, separate linear layers
predict 3D translation and 6D representation of rotation. The total size of the model is around 2M
trainable parameters. We use Adam [6] as the optimiser for training and keep a constant learning rate
throughout the training at 1e−4. We experimented with different learning rates and their schedulers
but found no significant improvement.

2 Graph-based Affordance Model

2.1 Architecture

The network architecture used to learn the affordance model is composed of PointNet++ Set Ab-
straction (SA) layers [5] for coarsening the point clouds and a heterogeneous graph neural network.

We use separate SA layers to process the point clouds of the target object and the surrounding
obstacles. For both, we use 2 SA layers that produce a set of points with 256-dimensional vectors
describing their local neighbourhood. In total, point clouds are coarsened to ∼ 3% of their original
size. We represent the robot configuration in Cartesian space as a set of positions of the centre of
mass of different links of the robot and one-hot encoding specifying which link it represents. In our
experiments, we use eight robot key points. We use these feature vectors and the ones obtained by
coarsening the point clouds to construct a fully connected heterogeneous graph. We represent edge
features as 3-dimensional vectors - relative translations in XYZ between the nodes.

For our model’s graph neural network part, we use two layers of GATv2 operations [7]. We trans-
form a homogeneous version of our graph neural network into a heterogeneous version using the
Pytorch-Geometric Deep Learning Library [8]. For GATv2 operations, we use a single attention
head and encode each node in the heterogeneous graph into a 256-dimensional vector. A global
vector describing the graph is then obtained using a global attention pooling layer [9] and passed
through a Sigmoid activation to get an affordance score estimate. The whole network is trained
end-to-end. In total, our model has around 3.5M trainable parameters.

2.2 Training

We train the affordance model using a dataset composed of positive and negative samples created
by rolling out the learnt skills from the different configurations and recording the outcome. Skills
rollouts are done in different randomised versions of the environment, such that the wrist camera
is pointing toward the object, and the robot is not colliding with the environment. In addition, we
add extra negative examples to the dataset where the wrist camera is pointing away from the object,
knowing that the skill can not succeed without seeing the object. This could be circumvented by

2

adding additional constrain that the target object needs to be in the field of view of the camera to the
optimisation problem at inference.

We use the Binary Cross-Entropy loss function, and Adam [6] as the optimiser for training, keeping
a constant learning rate throughout the training at 1e−4. We experimented with different learning
rates and their schedulers but found no significant improvement.

All training was done using a single machine with AMD Ryzen 9 5900X CPU and NVIDIA GeForce
RTX 3080ti GPU and took approximately 1.5 hours per affordance model.

2.3 Deployment

During deployment, we want to maximise the predicted affordance score with respect to the robot’s
configurations (joint angles). We do this using gradient-based optimisation. Because we add addi-
tional, non-linear constraints, this constitutes solving constrained, non-convex optimisation problem.
In practice, instead of maximising the predicted affordance score, we minimise the negative logits
of our model.

Through the optimisation, the observation (segmented point cloud) does not change. Therefore,
we only need to create a heterogeneous graph once and only update the edge features representing
relative positions between the nodes. This can be efficiently done using Forward Kinematics.

We start the optimisation with a robot configuration that does not collide with the environment,
and the wrist camera points towards the target object. We find this configuration using the same
procedure used to generate the dataset for training the affordance model, resulting in initialisation
that is in distribution for the learnt affordance model. We run gradient-based optimisation from 3
different configurations to avoid local minima and use the one with the highest affordance score,
ensuring that the target object can be seen by the wrist camera.

Note that this approach could be easily extended to a full trajectory optimisation framework without
needing an additional sampling-based motion planner. However, we found that it is unnecessary and
can even hinder performance due to a higher susceptibility to local minima.

3 Simulated Environments

To create a dataset of rollouts and evaluate our method, we procedurally generate a set of simulated
environments with varying amounts of clutter. We do so by placing a target object on the tabletop,
selecting a number of obstacles in the scene and placing them, ensuring there are no collisions. We
randomise all the poses of objects and the number of obstacles for each generated environment. We
use a mixture of primitive shapes and random objects from ShapeNet as obstacles. To accurately
represent collision geometries, we use convex-decomposition of watertight meshes of ShapeNet
objects before adding them to the environment. For environments 3-6, we construct a structure
with random dimensions and orientation, ensuring the target is inside. Examples of the randomised
environments can be seen in Figure 1.

Finally, we validate that it is possible to complete the considered task in generated environments
using the same oracle used to create demonstrations for Behaviour Cloning Skills. The oracle is
designed to provide demonstrations in an open and unconstrained environment and does not take
obstacles into account. Therefore, if it can complete the task without any collisions, a converged
policy trained on demonstrations obtained from it should also be able to do it.

4 Experimental Results

Here we present the same results as in the main paper but in the form of graphs to better showcase
the underlying trends. In addition, we further discuss the baselines used in our experiments and the
reasons for choosing them.

4.1 Comparison Against Learning a Single End-to-End Policy

In our experiments, we use skills for grasping and placing acquired using Behaviour Cloning. There-
fore, for a fair comparison, our single policy baselines trained end-to-end in cluttered environments

3

Env 1 Env 2 Env 3 Env 4 Env 5 Env 6

Complexity

Figure 1: Examples of randomised evaluation environments used in our simulation experiments.
Inherently different structures introduce a different complexity in each type of environment. Target
object and obstacles are depicted in green and black, respectively.

are also acquired using Behaviour Cloning. We did not include additional baselines that main to
learn manipulation skills in constraint environments in our evaluation as it would not have allowed
for direct comparison with using a priori acquired skill in unconstrained scenes.

These baselines do not use a priori acquired skills but rather control the robot for the entire trajectory,
from the initial configuration to the interaction with the object. This requires learnt policies to reason
about both avoiding obstacles and completing the task. On the other hand, our approach has two
networks: one for finding a suitable starting configuration for a skill and one for executing that skill
without avoiding obstacles.

We compare our approach against two BC policies that use different action spaces (end-effector
velocities and joint velocities). We do this because in some environments, controlling the entire
configuration of the robot is necessary to avoid collisions, but completing the task is more straight-
forward when considering only the end-effector. Results for this set of experiments in a graph form
are shown in Figure 2.

1 2 3 4 5 6
Environment Type

0

20

40

60

80

Su
cc

es
s R

at
e

Grasping

BC(eef)
BC(joint)
Ours

1 2 3 4 5 6
Environment Type

0

20

40

60

80

Su
cc

es
s R

at
e

Placing

BC(eef)
BC(joint)
Ours

Figure 2: Success rates of our method and single end-to-end BC policies trained in cluttered envi-
ronments. The curves represent the mean of the success rates averaged over 6 experiments, each
with a different random seed. Error bars represent the standard deviation.

We can see that the more complex the environment the higher the performance gains of our method
over learning a single end-to-end policy. This is mainly because end-to-end policies need to gener-
alise across the whole workspace and learn how to complete the task, navigate free space and avoid

4

obstacles. By using a priori acquired skills that focus on completing the task and a motion planner to
navigate the free space and reach the predicted starting configuration, the search space is drastically
reduced which results in a better performance.

4.2 Different Ways of Finding Starting Configurations

Our objective is to deploy skills acquired in unconstrained environments directly in constrained ones
without the need to re-learn them, which can be extremely inefficient in environments where small
adjustments to the original skills are not enough. Therefore, we did not include baselines that try to
adjust already acquired skills based on the new environment. Instead, we devised several different
baselines to compare our method against. These baselines also reach a specific configuration and
execute the a priori acquired skill.

The naive baseline does not consider the obstacles in the environment, only ensuring that the camera
is pointing towards the target object and the robot is not colliding with the obstacles at the start. It
aims to validate the need to learn the starting configurations for a priori acquired skills.

The generative baseline directly regresses joint angles from which the skill should be executed.
It allows us to validate our approach to finding these starting configurations. The distribution of
suitable starting configurations is inherently multimodal. Therefore, for a fair comparison, we train
a Conditional Variational Auto Encoder (CVAE) [10] capable of capturing such distributions.

Finally, the BC2 baselines jointly learn the distribution of suitable starting configurations and control
policy on how to reach them. This can be seen as a more complex task and allows us to validate the
added benefit of the second step in our framework - reaching a starting configuration using a motion
planner. Again, we use two different BC policies using different action spaces for the same reasons
as in Section 4.1. Results for this set of experiments in a graph form are shown in Figure 3.

1 2 3 4 5 6
Environment Type

0

20

40

60

80

Su
cc

es
s R

at
e

Grasping

Naive
Generative
BC2(eef)
BC2(joint)
Ours

1 2 3 4 5 6
Environment Type

20

40

60

80

Su
cc

es
s R

at
e

Placing

Naive
Generative
BC2(eef)
BC2(joint)
Ours

Figure 3: Success rates of our method and other considered baselines. The curves represent the
mean of the success rates averaged over 6 experiments, each with a different random seed. Error
bars represent the standard deviation.

4.3 Ablations

Results for our ablation set of experiments in a graph form are shown in Figure 4.

1 2 3 4 5 6
Environment Type

0

10

20

30

40

50

60

70

80

Su
cc

es
s R

at
e

Grasping

PointNet(Cartesian)
PointNet(joint)
Ours(eef only)
Ours

1 2 3 4 5 6
Environment Type

20

40

60

80

Su
cc

es
s R

at
e

Placing

PointNet(Cartesian)
PointNet(joint)
Ours(eef only)
Ours

Figure 4: Success rates of our method when using different types of architecture to learn the affor-
dance model. The curves represent the mean of the success rates averaged over 6 experiments, each
with a different random seed. Error bars represent the standard deviation.

5

References
[1] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,

S. Song, H. Su, et al. Shapenet: An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015.

[2] C. Eppner, A. Mousavian, and D. Fox. Acronym: A large-scale grasp dataset based on sim-
ulation. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages
6222–6227. IEEE, 2021.

[3] M. S. Ahn, H. Chae, D. Noh, H. Nam, and D. Hong. Analysis and noise modeling of the
intel realsense d435 for mobile robots. In 2019 16th International Conference on Ubiquitous
Robots (UR), pages 707–711. IEEE, 2019.

[4] Y. Labbé, J. Carpentier, M. Aubry, and J. Sivic. Cosypose: Consistent multi-view multi-object
6d pose estimation. In European Conference on Computer Vision, pages 574–591. Springer,
2020.

[5] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information processing systems, 30, 2017.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[7] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? arXiv preprint
arXiv:2105.14491, 2021.

[8] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[9] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks.
arXiv preprint arXiv:1511.05493, 2015.

[10] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. Advances in neural information processing systems, 28:3483–3491, 2015.

6

	Behaviour Cloning Skills
	Training Data
	Training
	Architectures

	Graph-based Affordance Model
	Architecture
	Training
	Deployment

	Simulated Environments
	Experimental Results
	Comparison Against Learning a Single End-to-End Policy
	Different Ways of Finding Starting Configurations
	Ablations

