
Supplementary Material
CADSim: Robust and Scalable in-the-wild 3D

Reconstruction for Controllable Sensor Simulation

Jingkang Wang1,2 Sivabalan Manivasagam1,2 Yun Chen1,2 Ze Yang1,2
Ioan Andrei Bârsan1,2 Anqi Joyce Yang1,2 Wei-Chiu Ma1,3 Raquel Urtasun1,2

Waabi1 University of Toronto2 Massachusetts Institute of Technology3
{wangjk,manivasagam,zeyang,yun,iab,ajyang,urtasun}@cs.toronto.edu weichium@mit.edu

Abstract: In this supplementary material, we provide additional details on our
method and experiments, and then show additional application results using CAD-
Sim. For our method, we describe how we create a shared low-dimensional
representation space for optimizing over a set of CAD models (Sec A.1), pro-
vide details on our selected appearance representation (Sec A.2), and the exact
inference optimization procedure performed and hyperparameters used CADSim
(Sec A.3). For our experiments, we first provide implementation details of the
baselines compared against (Sec B), as well as dataset and metric details (Sec C).
We then report thorough ablations on our choice of geometry and appearance
(Sec D.1), demonstrate the robustness of CADSim to data noise (Sec D.2), show
our approach applied to non-vehicle objects (Sec D.3), and show more experiment
results of our model improving perception evaluation (Sec D.5). Finally, we show
additional applications of CADSim. We show using CADSim for multi-sensor
simulation examples for scenario replay (Sec E.1) and mixed reality (Sec E.2), as
well as showing CADSim naturally supporting texture transfer for creating diverse
assets (Sec E.3). Additionally, we include a supplementary video, supplemen-
tary 56.mp4 providing an overview of our methodology, as well as video results
on novel-view synthesis, and realistic multi-sensor simulation.

A CADSim Implementation Details

A.1 Learning a shared representation

As discussed in Sec 3, we create a shared representation space over a set of CAD models to handle
a wide variety of vehicle shapes during optimization. Specifically, we apply principal component
analysis (PCA) on the vertex coordinates of the CAD models to obtain a shared low-dimensional
code z. Formally, we have

z = W> (V − µ) ,

M̂ = {V̂, F}, where V̂ = Wz + µ.
(1)

µ ∈ R|V |×3 is the mean vertices of the meshes, and W is the top K principle components. z, M̂ and
V̂ are the latent code, reconstructed mesh and vertices respectively. We note that since all the CAD
models are parameterized with Eq. (1) from the main paper, the reconstructed mesh M̂ by nature
consists of parts and supports wheel articulation. As shown in Fig. A1 (first row), the deformed
meshes maintain important geometry details of vehicles such as rear-view mirrors and car grilles.

CAD library alignment. In order to learn a low dimension code over a variety of vehicles, we
must align the templates from different CAD models and establish a one-to-one dense correspondence
among the vertices. The original CAD models are unaligned, as they have a varying number of
vertices and the vertex ordering differs across models. Specifically, we select a single template mesh
Msrc as the source mesh and deform its vertices V such that it fits other meshes well. We exploit the

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

vertices of the simplified target mesh (denoted as Pcad) and minimize the following energy:

Ealign(V,Pcad) = Echamfer(V,Pcad) + λshape · Eshape(Msrc). (2)

Here, Echamfer refers to the asymmetric Chamfer distance, and Eshape is the same as described in
Sec. 3.2. We note that this is an offline procedure separate from the energy minimization in Sec 3.3.

A.2 Appearance Representation

In addition to geometry, our mesh representation must accurately capture how light interacts with its
surface so that we can realistically reproduce sensor observations. Towards this goal, we parameterize
the mesh appearance using a physically-based appearance representation. Specifically, we represent
appearance using a micro-facet BRDF model with the differentiable split sum environment lighting [1]
proposed by Munkberg et al. [2]. Since the topology of the mesh is fixed, we can build a one-to-one
mapping relationship between each point on the mesh surface and each point in the 2D (u, v) space.
We use a Physics-Based Rendering (PBR) material model from Disney [3], which contains a diffuse
lobe kd with an isotropic, specular GGX lobe [4]. Following the standard convention, we store
them together with normals in three texture images kd, korm and kn. korm = (o, r,m) where o is
left unused, r is the roughness value and m is the metalness factor that interpolates between plastic
and metallic appearance by computing a specular highlight color: ks = (1 −m) · 0.04 + m · kd.
For the lighting model, we use a differentiable version of the split sum shading model introduced
by Munkberg et al. [2]. Specifically, we optimize a cube map (6× 512× 512), where the base level
represents the pre-integrated lighting for the lowest supported roughness value and each smaller
mip-level is reconstructed using [5]. We refer the readers to [2] for more details.

Intensity retrieval. For LiDAR simulation, the optimized meshes are enriched with per-vetex
intensity by retrieving the top 10 closest points for aggregated point cloud and taking the average
intensity value. Empirically we find the performance is similar to direct energy optimization on the
vertex intensity.

A.3 Inference Details

Since all operations are differentiable, one straightforward way to conduct inference is to directly
minimize the full energy with gradient-based methods. Unfortunately, due to the highly non-convex
structure of the energy model as well as the noise in the observations, such an approach will often
lead to sub-optimal solutions. We thus adopt the following curriculum strategy.

First, we optimize the latent code z initialized from 0 with Adam optimizer (learning rate 3e-2)
for 200 iterations (Eq. 8 in the main paper), while keeping the other variables fixed. Given the
initializationMinit, we jointly optimize the vertices V, appearance variables A, and sensor poses Π
as described in Eq. (3). At the beginning of the optimization (first 500 iterations), we do not addEcolor

term so that the model will focus on geometry (e.g., Emask, Elidar, etc). The hyperparameters are set
as λmask = λlidar = 0.5, λshape = 0.1. To enforce the learned geometry for vehicles to be symmetric,
we flip the vertices of optimized mesh along the symmetry axis and add a symmetric Chamfer distance
(λsym = 0.5) between the original and flipped meshes. We use AdamUniform [6] (learning rate
3e-2) to optimize the vertices and standard Adam (learning rate 1e-4) to optimize the intrinsics and
the extrinsics of the sensors Π. Then in the next 500 iterations, we add Ecolor term to optimize the
appearance variables A as well as refine the sensor poses and geometry through RGB information.
We set the coefficients for appearance energy term as follows: λapp = 1, λmat = 1e-9, λlight = 1e-2.
We use the Adam optimizer [7] with a learning rate scheduler with an exponential falloff from 0.03
to 0.01 over 500 iterations. Empirically we find this simple weighting strategy very effective.

B Implementation Details for Baselines

We compare our approach with a wide range of state-of-the-art 3D reconstruction methods, which
can be roughly divided into: (1) Neural radiance fields: NeRF++ [10], and Instant-NGP [11]. (2)
Implicit surface representations: NeRS [12], NVDiffRec [2], and NeuS [13]. (3) Explicit geometry-
based approaches: single-image view-warping (SI-ViewWarp) [14], which warps the source image
to the novel target view using depth estimated by LiDAR points, and multi-image view-warping
(MI-ViewWarp), which blends multiple source images to the target view. We also compare against

2

Figure A1: Collect watertight and vertex-aligned vehicle meshes from CAD models. Given a
collection of CAD vehicles, we first use a robust algorithm [8, 9] to obtain watertight manifolds. Then,
we pick one simplified mesh as the source mesh and deform it to the other meshes by minimizing the
shape energy. Finally, we build the PCA basis on deformed meshes with latent codes stored for each
object.

SAMP [15], a CAD model mesh optimization approach which leverages SDF-aligned CAD models
for joint pose and shape optimization. In the following, we provide the overview and implementation
details of these reconstruction baselines.

B.1 NeRF-based Approaches

NeRF++ [10]. NeRF++ introduced an inverse sphere parameterization to extending NeRF to large-
scale and unbounded 3D scene. To train NeRF++ properly on PandaVehicle, we first scale the scene
to normalize all cameras’ position within a unit sphere. Then we adopt the same hyperparameters
from the official code repository1 except that we train for 100k iterations because PandaVehicle has
fewer views and the model converges with fewer iterations.

Instant-NGP [11]. Instant-NGP achieved the state-of-the-art performance by introducing the
efficient hash encoding and fully fused MLPs. In our experiments, we properly scale the objects to be
reconstructed in the unit cube and set aabb scale as 4 to handle the background visible outside the
unit cube. We tuned aabb scale to be 1, 2, 4, 8 and 16 and find 4 leads to the best performance. The
model is trained for 5k iterations and converges on the training views. During inference, we render
with 4 samples per pixel for better results (effectively doing 4x superresolution for anti aliasing).

B.2 Implicit Surface Representations.

NeRS [12]. Zhang et al. proposed a neural surface representation combined with differentiable
rendering to generalize with sparse in the wild data. We followed the official NeRS2 implementation.
On MVMC, we use the official evaluation code and focus on the “fixed optimized camera” setting.
For PandaVehicle, we initialized the cuboid template with the assets’ coarse 3D dimensions and set
the level of unit ico-sphere as 6. We employ a three-stage training process: sequentially optimizing
the shape, texture, and illumination parameters. To ensure better visual quality and semantic metrics,
we increased the weights of the chamfer loss and perceptual loss to 0.04 and 1.0, respectively. We
also removed off-screen loss as not all input views contain the complete vehicle shapes. Moreover,
we increased the training iterations on the three stages to 3k, 12k, 3k since more input views are
provided in PandaVehicle and it takes longer to converge. We also applied symmetry constraints to
the deformed textured meshes along the heading axis.

NVDiffRec [2]. Munkberg et al. proposed an efficient differentiable rendering-based reconstruction
approach that combines differentiable marching tetrahedrons and split-sum environment lighting. It
achieves the state-of-the-art performance on a wide variety of synthetic datasets with dense camera
views. We follow the official code implementation3. We set the tetrahedron grid resolution as 64 and
the mesh scale as 5.0 (real vehicle scale). The model is trained for 5k iterations (batch size 8) with a
learning rate exponentially decayed from 0.03 to 0.003.

1https://github.com/Kai-46/nerfplusplus
2https://github.com/jasonyzhang/ners
3https://github.com/NVlabs/nvdiffrec

3

https://github.com/Kai-46/nerfplusplus
https://github.com/jasonyzhang/ners
https://github.com/NVlabs/nvdiffrec

NeuS [13]. We follow the official code repository4 and train each asset for 200k iterations. We
perform scene normalization to make the asset’s region of interest fall inside a unit sphere, and model
the background by NeRF++ [10]. To train the NeuS with LiDAR supervision, we render the LiDAR
depth map, and use it to supervise the volume rendered depth similar to DS-NeRF [16].

B.3 Geometry-based Approaches.

SI-ViewWarp [17]. For warping based methods, we follow the implementation in GeoSim [17].
Give an asset mesh, we first render the mesh at the target viewpoint to generate the target depth
map. Then, we un-project the target depth map to source images and get the corresponding pixel
color using the inverse warping operations. We compare un-projected depth in source view and
asset-rendering depth in source view to filter invisible region. This approach doesn’t need training
for rendering. To get the best rendering results, we warp using all source images as candidates, and
heuristically pick the one with minimum unseen region in the target view.

MI-ViewWarp. Since there are often unobserved regions at the target view when warping from a
single source view, we further extend SI-ViewWarp to warp from multiple source images progressively
(MI-ViewWarp). Specifically, we sort the source images in an increasing order according to the
distance of the viewpoints (or camera matrices) between source and target images. Then we iterate
on the sorted source images, conduct SI-ViewWarp and fill in the pixels progressively only if not
occupied. We find this heuristic warping strategy works well in practice as it takes the “confidence”
(according to distance) of each source image into account. Compared with simple averaging of all
warped single images, our strategy produces non-blurry results and better metrics.

SAMP [15]. Given the processed CAD library where each mesh is watertight and simplified, we
compute volumetric SDFs for each vehicle in metric space (volume dimension 100× 100× 100).
Following [15, 18], we apply PCA on the SDF volumes and set the embedding dimension as 25.
During inference, we jointly optimize the shape latent code, a scaling factor on the SDF (handle
diverse shapes) and relative vehicle pose (rotation, translation) to fit the LiDAR points. We adopt the
L1 loss on the SDF difference and a total variation loss on the scale factor to penalize abrupt local
SDF changes. The weights of data and regularization terms are 1 and 0.1. We use the Adam optimizer
with a learning rate of 0.01. The mesh is extracted from the SDF volume via marching cubes [19].
Given the optimized shape, we then use a similar CADSim-like energy minimization procedure to
optimize a 2D UV texture image using a differentiable renderer. Compared with CADSim, optimized
SAMP geometries usually have fewer fine-grained details and have worse image alignments.

C Dataset and Metric Details

C.1 PandaVehicle Details

We derive PandaVehicle from the PandaSet [20] dataset. PandaSet is a dataset captured by a self-
driving vehicle platform equipped with six cameras (left, front left, front, front right, right and back
cameras) and two LiDARs (a top 360◦ mechanical spinning LiDAR and a forward-facing LiDAR).
In PandaVehicle, we select vehicles that are observed by the main top Pandar64 sensor, as well as the
left, front left and front cameras. We observe that there is poorer calibration for the front right, right
and back cameras and therefore do not use them for quantitative evaluation. We train or reconstruct
vehicle meshes with observations from the top LiDAR and the left camera images only. In the novel
view synthesis task, we test by rendering the mesh and comparing with images from the front left and
front cameras. We generate all semantic segmentation masks with PointRend [21].

We selected 10 vehicles that have high-quality camera-LiDAR alignment for evaluation. Fig. A19
shows the aggregated LiDAR points and images used for one of the selected vehicles. Table A10
includes detailed information for all 10 selected vehicles.

4https://github.com/Totoro97/NeuS

4

https://github.com/Totoro97/NeuS

C.2 LiDAR Rendering Metrics

We provide additional details on how we compute LiDAR rendering metrics used in the main paper
Table 3. Given the aggregated point clouds P , we apply voxel downsampling with a resolution of
5cm to obtain the input point clouds Pinput for reconstruction. Then the held-out real LiDAR points
can be written as Pheld = P \ Pinput. We evaluate the average per-ray `2 error and what fraction of
real held-out LiDAR points have a corresponding simulated point (i.e., Hit rate). Lastly, we place the
reconstructed vehicle mesh in its original location and perform ray-casting to generate a simulated
point cloud and report the Chamfer and Hausdorff distance with original aggregated point clouds P .

D Additional Experiments and Analysis

In this section, we show additional experiments on MVMC and PandaVehicle, including geometry
comparison with NeRS on MVMC, NVS with larger extrapolation, and ablation studies on LiDAR
supervision, mesh initialization and appearance representation. We also show additional downstream
perception results.

D.1 Ablation Experiments on MVMC and PandaVehicle

Method Geometry MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FIDS ↓

SI-ViewWarp [14] NeRS 0.0683 12.3 0.659 0.288 93.5
Ours 0.0587 12.9 0.674 0.257 79.1

MI-ViewWarp NeRS 0.0430 14.4 0.665 0.225 67.2
Ours 0.0311 15.6 0.687 0.185 51.4

UV Map Opt. NeRS 0.0371 15.1 0.690 0.215 74.6
Ours 0.0215 17.1 0.725 0.160 51.6

Table A1: Comparison of geometry quality with NeRS [12] on MVMC.

Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Instant-NGP [Müller et al., 2022] 0.0302 15.68 0.417 0.479
NeuS [Wang et al., 2021] 0.0280 16.17 0.403 0.439
SAMP [Engelmann et al., 2017] 0.0258 16.42 0.401 0.362
CADSim (ours) 0.0218 16.87 0.424 0.334

Table A2: Evaluation of novel-view synthesis on extreme views (left→ front camera) on PandaSet.

Geometry Comparison on MVMC. To further demonstrate CADSim is able to reconstruct higher-
quality geometries, we report the NVS results comparing our reconstructed mesh compared to NeRS
[12] mesh on various appearance representations. We follow the same evaluation setting as Table 1 in
the main paper. We only change how the texture for the mesh is created, while keeping the optimized
geometry fixed. As shown in Table A1, our geometry consistently leads to better NVS performance
due to better alignment with images and improved optimization with CAD priors.

Additional Qualitative Results. We provide additional qualitative results on PandaVehicle in
Figure A2. CADSim is able to outperform all baselines consistently on large extrapolation setting.
This is because we leverage CAD priors during shape and appearance optimization and produce
higher quality geometry. In contrast, NeRF-based and implicit surface approaches usually suffer
from obvious artifacts due to shape-radiance ambiguity [10]. The other geometry-based approaches
either relies on non-manifold surfel meshes or coarse volumetric SDFs thus leading to missing pixels,
blurry results and large image-geometry misalignment.

NVS for Extreme Views on PandaVehicle. To test the robustness of CADSim in the self-driving
context, we conduct a more challenging NVS task: left camera → front camera. Fig. A19 (left)
visualizes the significant change in viewpoint. Since there is no overlap in the field-of-view between

5

Figure A2: Additional qualitative results on PandaVehicle for novel view synthesis. Compared
to existing reconstruction approaches, CADSim produces more robust and realistic results on large
extrapolation.

left and front cameras on Pandaset5, it requires better geometry and appearance for large extrapolation.
We pick the baselines with the best performance on each category in Sec B. As shown in Table A2,
our approach results in the best performance, especially on LPIPS which measures how well the
machine learning models perceive the simulated images.

Investigation of LiDAR Supervision. Compared to previous reconstruction approaches, CADSim
can leverage the LiDAR points that are usually accessible in the self-driving applications. While
it is not our focus to extend existing baselines to leverage LiDAR properly, we choose one of the
best performing baselines, NeuS, and use the rendered LiDAR depth map to supervise the volume
rendered depth, similar to DS-NeRF [16]. Moreover, we also remove the LiDAR branch Elidar

of CADSim for comparison. As shown in Table A3 and Table A4, adding depth supervision for
NeuS helps improve the NVS performance (especially on LPIPS) and LiDAR rendering results
by reducing the ambiguity caused by sparse views. We note that although the LiDAR rendering
metrics have improved, the geometry obtained by NeuS is still not complete. This may lead to a
dramatic performance decrease when we place actors in completely new locations and viewpoints for
simulation. In contrast, CADSim is less dependent on LiDAR supervision and our assets are always
complete with the help of CAD shape priors.

Method MSE ↓ PSNR ↑ SSIM ↑ LPIPS

NeuS [Wang et al., 2021] 0.0115 21.37 0.640 0.247
NeuS + LiDAR 0.0103 21.42 0.649 0.228

CADSim - LiDAR 0.0096 21.59 0.665 0.231
CADSim (ours) 0.0087 21.72 0.674 0.220

Table A3: Evaluation of novel-view synthesis (left→ front-left camera) on PandaSet.

Geometry L2 error ↓ Hit rate ↑ Chamfer↓ Hausdorff↓
NeuS [13] 0.367 90.3% 0.424 1.151
NeuS + LiDAR 0.191 95.3% 0.261 1.017

CADSim - LiDAR 0.155 95.2% 0.249 0.988
CADSim (ours) 0.151 96.3% 0.245 0.972

Table A4: Comparison of LiDAR rendering metrics.

Geometry and Reflectance Model Ablation Study. We rigorously evaluate that our method’s
use of a CAD model improves performance in Table A5, where we replace the proposed CAD

5https://scale.com/open-datasets/pandaset

6

initialization with the following alternatives: a unit sphere, a rescaled ellipsoid, and geometries from
either SAMP [15] or NeRS [12]. Our CAD mesh initialization has the highest performance. We
also evaluate our reflectance model choice [4] in Table A6. Our physics-based material and lighting
model performs the best and generalizes well to novel views.

Initialization PSNR ↑ SSIM ↑ LPIPS ↓
Sphere 20.61 0.631 0.243
Ellipsoid 21.10 0.653 0.233
SAMP [15] 21.32 0.667 0.230
NeRS [12] 21.58 0.665 0.235
CAD (ours) 21.72 0.674 0.220

Table A5: Ablation on the mesh initialization.

Texture Model PSNR ↑ SSIM ↑ LPIPS ↓
SI-ViewWarp [22] 17.81 0.540 0.318
MI-ViewWarp 19.22 0.570 0.277
Per-vertex Color 19.37 0.595 0.270
Texture UV Map 19.51 0.618 0.263

Phong Model [23] 20.13 0.645 0.248
Cook-Torrance Model [4] 21.72 0.674 0.220

Table A6: Ablation on varied texture models.

D.2 Robustness of CADSim to Data Noise

CADSim is designed to handle real-world driving data captured by SDVs that inevitably contains
noise. Sources of noise include: incomplete LiDAR scans, corrupted object masks, noisy actor
poses and imperfect lidar-camera calibration. Examples of noise in PandaVehicle data are shown
in Figure A3. Existing approaches do not perform as well on sparse and noisy in-the-wild data as
shown in Figure A3 and Table 1. Our approach achieves stronger results in this setting qualitatively
and quantitatively.

To further demonstrate the robustness of CADSim, we conduct the following additional experiments.

Robustness to actor poses. To investigate the robustness of our approach on the noise in the actor
poses (3D bounding boxes), we add synthetic noise to the bounding box annotations in PandaVehicle.
Specifically, we apply zero-mean Gaussian noise to the center location of the bounding boxes (x, y, z)
with variance increasing from 0m to 0.5m. We also insert zero-mean Gaussian noise with variance
of 5 degree to the yaw angle. The results for actor 1d79eded-2fb0-4f89-ba35-323926f45ade
are presented in Table A7. Compared to Instant-NGP [11], our reconstruction performance only
drops slightly as actor pose noise increases. This is because our framework also jointly optimizes
the actor pose (i.e., ξ in Eqn. (4)). Note that for Instant-NGP, we also enable the camera extrinsics
optimization. Finally, we disable the actor pose optimization component and re-run the experiment.
Qualitative results in Figure A4 show the effectiveness of pose optimization in obtaining non-blurry
rendering results.

Noise (µ = 0) Method PSNR ↑ SSIM ↑ LPIPS ↓

σxyz = 0m
CADSim 23.32 0.761 0.181
Instant-NGP [11] 22.66 0.759 0.223

σxyz = 0.1m
CADSim 23.30 (-0.02) 0.757 (-0.004) 0.188 (+0.007)
Instant-NGP [11] 20.26 (-2.40) 0.661 (-0.098) 0.439 (+0.216)

σxyz = 0.2m
CADSim 23.12 (-0.20) 0.744 (-0.017) 0.195 (+0.014)
Instant-NGP [11] 19.77 (-2.89) 0.655 (-0.104) 0.461 (+0.238)

σxyz = 0.5m
CADSim 22.91 (-0.41) 0.725 (-0.036) 0.230 (+0.049)
Instant-NGP [11] 19.19 (-3.47) 0.649 (-0.110) 0.471 (+0.248)

Table A7: Robustness to noisy actor poses.

Robustness to corrupted object mask. To evaluate the impact of corrupted masks, following [2],
we add synthetic noise into the predicted object masks. Specifically, we find the contour of the object
and perturb each contour point pixel location with a zero-mean Gaussian noise. The variance is set
from 0px to 50px. We train the model using the front camera and corrupted object masks and test
on the front-left camera for the actor 1d79eded-2fb0-4f89-ba35-323926f45ade. Experiments
in Table A8 show that our approach is quite robust to the corrupted masks even in a high-noise
regime (e.g., σ = 50px) thanks to the robust CAD initialization and our carefully designed energy
formulation.

7

 LiDAR noise Corrupted object masks

 Imperfect LiDAR-camera calibration Noisy bounding boxes

Ours

Ellipsoid Deform

 NeRS

 SAMPSphere Deform

 NVDiffRec NeuS

Figure A3: Visualizations of data noise on PandaVehicle. Sources of noise include (clockwise
from top-left): incomplete and noisy LiDAR scans, corrupted object masks, noisy actor bounding
boxes and imperfect lidar-camera calibration. Reconstruction with this in-the-wild data is challenging
as (a:left) Sparse and incomplete LiDAR points can result in collapsed shapes on the invisible side.
(a:right) Noisy LiDAR aggregation will lead to inaccurate or non-smooth geometry surface; (b) The
corrupted object masks due to inaccurate segmentation predictions can result in inaccurate geometry
and appearance; (c) The lidar-camera calibration errors will result in imperfect geometry that does
not align with the images well and potentially has blurry appearance. (d) The noise in bounding
boxes will lead to blurry appearance and imperfect initialization and alignment. Compared to existing
approaches, CADSim is robust to those data noise meanwhile maintaining fine-grained geometry
details and editable parts.

Noise (µ = 0) PSNR ↑ SSIM ↑ LPIPS ↓
σ = 0px 23.32 0.761 0.181
σ = 5px 23.29 (-0.03) 0.756 (-0.005) 0.192 (+0.011)
σ = 10px 23.22 (-0.10) 0.753 (-0.008) 0.198 (+0.017)
σ = 20px 22.99 (-0.34) 0.743 (-0.018) 0.214 (+0.023)
σ = 50px 22.56 (-0.66) 0.737 (-0.024) 0.223 (+0.032)

Table A8: Robustness to corrupted object masks.

In summary, we believe that our approach is more robust to data noise and recovers more accurate
geometries from sparse/noisy data compared to existing approaches.

D.3 Reconstruction of Non-Vehicle Classes

While we mainly focus on the vehicle reconstruction as vehicles are the primary traffic participants,
we note that CAD models are readily available for most object classes, and that our approach can be
extended to other classes. In this section, we showcase the reconstruction of motorcycles and cones
on PandaSet using CADSim.

8

3615�������
/3,36�������

3615�������
/3,36�������

&$'6LP�ZLWK�FOHDQ�SRVH&$'6LP&$'6LP�Z�R�SRVH�RSW�

3615�������
/3,36�������

1RLV\�SRVH

Figure A4: Ablation study on the pose optimization for CADSim. From left to right, we show (a)
noisy actor bounding box ξ (red) by inserting synthetic Gaussian noise; (b) CADSim learning using
perturbed actor poses but with the actor pose optimization module disabled; (c) CADSim learning
with noisy poses; (d) CADSim learning using clean actor poses. We can observe the effectiveness of
pose optimization in CADSim for obtaining non-blurry rendering results.

Challenges: Motorcycles are more challenging to reconstruct in-the-wild. Since they are smaller
than vehicles, the scanned lidar points are sparser and noisier, and there are fewer image pixels
corresponding to the motorcycles. Moreover, due to complex topology and occlusion, the object
masks predicted by PointRend are more corrupted (see Figure A5) and there are larger relative
camera/lidar misalignments for small objects. Please refer to Sec D.4 for potential future directions.

We encode the semantic priors for a single CAD asset and obtain three parts (handlebar, front wheel,
and the rest body). We optimize the per vertex offset for the body and handlebar parts. To make
motorcycle behave in a physically plausible manner, for front wheel and handlebar, we also optimize
the relative pose to the motorcycle origin, scale factors, relative rotation, and translation offset. As
shown in Figure A5, CADSim is able to reconstruct motorcycles with reasonable geometry and
appearance in spite of large data noise (i.e., large LiDAR image misalignment shown in the leftmost
column, coarse and noisy segmentation mask) and very sparse observations. In Figure A6, we use
CADSim to reconstruct a traffic cone, demonstrating that CAD priors enable efficient and accurate
mesh reconstruction for very small objects as well.

D.4 Additional Limitations

In addition to the limitations described in the main paper, we describe additional limitations and
possible extensions. Our method does not allow for arbitrary changes in mesh topology and it might
lead to some unexpected behavior when the topology changes within one class (see the windshield in
Figure A5), which is an exciting future direction to address. Futhermore, we use aggregated LiDAR
points instead of doing per-frame registration. This may make the approach less robust to LiDAR
image misalignment, especially for small or far-away objects. While CADSim is more robust than
other reconstruction approaches, it might still produce unexpected results on extremely noisy data
(e.g., large calibration misalignment, highly corrupted object masks).

With regards to potential extensions, rigging additional parts (e.g., vehicle doors) or even automatic
rigging may be conducted in future works. Finally, our experiments also focus on sensor simulation
for perception models, and we may investigate the performance for downstream planning tasks for
future works.

D.5 Additional Downstream Evaluation on Camera Simulation

To verify if CADSim helps reduce domain gap for downstream perception tasks consistently, we
evaluate another perception model on simulated camera images at novel views. Specifically, we follow
the same setting as Table 4 in the main paper except replacing Mask R-CNN [24] with PointRend [21]
algorithms. As shown in Table A9, using CADSim assets usually leads to the largest agreement with
real images under different settings. This indicates the effectiveness of reconstructed CADSim assets
for end-to-end autonomy testing.

9

Figure A5: Reconstruction of motorcycles on PandaSet.

10

Figure A6: Reconstruction of traffic cones on PandaSet.

Left camera→ Front-left camera Left camera→ Front camera
Blending [17] Copy-Paste Blending [17] Copy-Paste
Det. Segm. Det. Segm. Det. Segm. Det. Segm.

Instant-NGP 86.18 87.03 79.84 80.61 71.74 71.22 50.08 49.05
NeuS 94.59 95.24 92.83 93.72 75.03 74.65 69.47 68.91
SAMP 90.82 90.01 90.88 90.85 81.79 78.00 82.39 82.01
CADSim 94.71 94.43 94.68 94.66 82.68 80.81 82.33 81.32

Table A9: Evaluation of downstream perception tasks (i.e., object detection, instance segmentation)
on camera simulation. We report the metric agreement (instance-level IoU) with the model evaluated
on real data.

E Realistic and Controllable Simulation

E.1 Log-Replay Simulation with CADSim Assets

We now show that CADsim can reconstruct the static vehicles at scale from sequences of sensor data.
In Figures A7-A12 we show the original sensor data for both camera and LiDAR, the reconstructed
meshes with CADsim rendered by normal and RGB appearance, and then show the simulated sensor
data generated when placing the assets in their original views. For camera simulation, we follow
GeoSim [17], where given a scenario configuration, we first render the asset to the target view and
then apply a post composition network and conduct occlusion reasoning to seamlessly blend the actor
to real backgrounds. For LiDAR simulation, similar to [25, 26], we use a high-fidelity Pandar64 [20]
simulator that conducts LiDAR ray-casting on the added actor according to the LiDAR calibration
and remove points in the real LiDAR sweep that are occluded by the added actor. CADsim reliably
constructs the nearby vehicles with high quality geometry and appearance, and have high fidelity
with the original sensor data. These assets thereby provide a more accurate way of generating sensor
data for simulation scenarios.

E.2 Mixed Reality with Realistic Animated Vehicle Insertion

The previous section demonstrated CADSim generates assets that match with the original sensor
data. We can now insert these assets into existing scenarios and create new variations. As we have
accurate 3D meshes, we can also render shadows for the inserted actor. We use the rasterization

11

Figure A7: Reconstruction of all nearby vehicles and camera re-simulation on PandaSet Log028.

Figure A8: LiDAR re-simulation using CADSim assets on PandaSet Log028.

12

Figure A9: Reconstruction of all nearby vehicles and camera re-simulation on PandaSet Log030.

Figure A10: LiDAR re-simulation using CADSim assets on PandaSet Log030.

13

Figure A11: Reconstruction of all nearby vehicles and camera re-simulation on PandaSet Log139.

Figure A12: LiDAR re-simulation using CADSim assets on PandaSet Log139.

14

engine PyRender [27] to generate the shadow based on the geometry of the inserted actor, assuming a
top-down light.

We now show how CADsim assets can be inserted into new scenes and can be manipulated to create
variations. As shown in Figure A13, we render the CADsim asset at a new pose and blend the rendered
image segment into the new scene. The position and rotation of the added car are manipulated. Since
our assets are multi-sensor consistent, we can generate the LiDAR point cloud (left) and the camera
image (right) for the modified scene. Both simulated sensor data look realistic. We notice that the
wheels spin when moving forward and backward, and the wheels rotating when model turning.

Figure A13: Mixed reality actor manipulation with articulated CADSim vehicle.

15

We can also generate interesting new scenarios with CADSim assets to test our autonomy systems.
In Figure A14, we generate two safety-critical scenarios (left: an actor aggressively turning right
into our lane; right: a moving vehicle aggressively changing two lanes at once) and show realistic
image and LiDAR simulation. The simulated camera and LiDAR data are blended seamlessly into
the original scenario, creating more interesting long-tail scenarios. Note that the occlusion and actor
movement are physically plausible. We provide more examples of actor insertion in Figure A15.

Figure A14: Realistic multi-sensor simulation for safety-critical mixed reality scenarios.

Finally, we compared to directly inserting a CAD model into the original scenario (Figure A16), our
inserted CADsim assets have more realistic appearance and harder to distinguish as simulated.

E.3 Texture Transfer and Synthesis

Finally, we show that our approach can align textures across different vehicle shapes, enabling texture
transfer to create new asset variations. Unlike recent work (e.g., AUV-Net [28]) that focuses on
synthetic objects with unrealistic textures, we demonstrate the texture transfer across multiple actors
in the real world and use it for realistic camera simulation. Figure A17 shows in each column the
texture trasferred across different vehicle types, while each row shows the same vehicle shape having
different textures. In Figure A18, we choose three nearby actors and transfer the texture from one
actor to the other ones. Our assets are vertex-aligned with high-quality part correspondence across
different shapes, allowing us for realistic and seamless simulation. This technique can also be used to
generate diverse textured assets that have never been observed.

16

Figure A15: Realistic multi-sensor actor insertion simulation.

Training view frame id Testing view frame id
Actor UUID Seq id Left camera Front camera Front-left camera

1d79eded-2fb0-4f89-ba35-323926f45ade 139 46-63 - 44-55

f7bd1486-1fbe-4f33-ba28-f00dae3e0298 139 57-77 38-53 54-69

526e2f5e-e294-415c-aad6-578d27921465 030 38-78 0-28 35-55

56e10a51-35ed-43b0-837c-cea8aff216cc 139 26-52 - 25-46

ba222d39-2f13-4849-8ff4-91e247d5cedf 120 12-37 0-6 0-25

2160d735-3fda-49f8-9bd9-e2cba3b51faa 038 34-47 0-30 27-41

1be68ce6-68c5-467f-abb1-fa5e03d1db7a 053 33-36, 40-49 0-29 25-41

2ee4d8f8-af0a-48f3-bb6c-ed479a7829e7 039 47-67 0-44 28, 31-59

94c06b25-d17a-4ee7-a2df-7faa619bee89 035 49-58, 60-61 4, 7, 9-42 47-51

5ce5fb69-038d-4f82-8c64-90b73c6f6681 030 17-62 0-17 0-45

Table A10: Actors and camera image frame ids used in PandaVehicle. ‘-’ means no images are
available for the associated camera.

17

Figure A16: Comparison of camera actor insertion with CAD or CADSim assets. CADSim assets
have more realistic textures and blend in better with the real image. CADSim enables generation of
sensor data for completely new scenarios.

18

Figure A17: Texture transfer for reconstructed real-world assets.

Figure A18: Swapping vehicle textures in the real world.

19

Figure A19: Illustration of vehicle 526e2f5e-e294-415c-aad6-578d27921465 (in the red bound-
ing box) in Pandaset sequence 030. (Top) Image and LiDAR points from the left camera view used
during mesh reconstruction. (Bottom) Front camera and front left camera views used during testing
for the novel view synthesis task.

20

References
[1] B. Karis. Real shading in unreal engine 4. Proc. Physically Based Shading Theory Practice, 4

(3):1, 2013.

[2] J. Munkberg, J. Hasselgren, T. Shen, J. Gao, W. Chen, A. Evans, T. Müller, and S. Fidler. Extract-
ing triangular 3D models, materials, and lighting from images. arXiv preprint arXiv:2111.12503,
2021.

[3] S. McAuley, S. Hill, N. Hoffman, Y. Gotanda, B. Smits, B. Burley, and A. Martinez. Practical
physically-based shading in film and game production. In ACM SIGGRAPH 2012 Courses,
pages 1–7. 2012.

[4] B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. Microfacet models for refraction through
rough surfaces. Rendering techniques, 2007:18th, 2007.

[5] S. Hill, S. McAuley, L. Belcour, W. Earl, N. Harrysson, S. Hillaire, N. Hoffman, L. Kerley,
J. Patry, R. Pieké, et al. Physically based shading in theory and practice. In ACM SIGGRAPH
2020 Courses, pages 1–12. 2020.

[6] B. Nicolet, A. Jacobson, and W. Jakob. Large steps in inverse rendering of geometry. ACM
TOG, 40(6):1–13, 2021.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2015.

[8] J. Huang, H. Su, and L. Guibas. Robust watertight manifold surface generation method for
shapenet models. arXiv preprint arXiv:1802.01698, 2018.

[9] J. Huang, Y. Zhou, and L. Guibas. Manifoldplus: A robust and scalable watertight manifold
surface generation method for triangle soups. arXiv preprint arXiv:2005.11621, 2020.

[10] K. Zhang, G. Riegler, N. Snavely, and V. Koltun. NeRF++: Analyzing and improving neural
radiance fields. arXiv, 2020.

[11] T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a
multiresolution hash encoding. arXiv preprint arXiv:2201.05989, 2022.

[12] J. Y. Zhang, G. Yang, S. Tulsiani, and D. Ramanan. NeRS: Neural reflectance surfaces for
sparse-view 3d reconstruction in the wild. In NeurIPS, 2021.

[13] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. NeuS: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction. In NeurIPS, 2021.

[14] S. Tulsiani, R. Tucker, and N. Snavely. Layer-structured 3d scene inference via view synthesis.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 302–317, 2018.

[15] F. Engelmann, J. Stückler, and B. Leibe. SAMP: shape and motion priors for 4d vehicle
reconstruction. In WACV, 2017.

[16] K. Deng, A. Liu, J.-Y. Zhu, and D. Ramanan. Depth-supervised NeRF: Fewer views and faster
training for free. arXiv, 2021.

[17] Y. Chen, F. Rong, S. Duggal, S. Wang, X. Yan, S. Manivasagam, S. Xue, E. Yumer, and
R. Urtasun. Geosim: Realistic video simulation via geometry-aware composition for self-
driving. In CVPR, 2021.

[18] S. Duggal, Z. Wang, W.-C. Ma, S. Manivasagam, J. Liang, S. Wang, and R. Urtasun. Mending
neural implicit modeling for 3d vehicle reconstruction in the wild. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, 2022.

[19] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction
algorithm. ACM siggraph computer graphics, 21(4):163–169, 1987.

[20] P. Xiao, Z. Shao, S. Hao, Z. Zhang, X. Chai, J. Jiao, Z. Li, J. Wu, K. Sun, K. Jiang, et al.
Pandaset: Advanced sensor suite dataset for autonomous driving. In ITSC, 2021.

21

[21] A. Kirillov, Y. Wu, K. He, and R. Girshick. PointRend: Image segmentation as rendering. In
CVPR, 2020.

[22] S. Tulsiani, N. Kulkarni, and A. Gupta. Implicit mesh reconstruction from unannotated image
collections. arXiv preprint arXiv:2007.08504, 2020.

[23] B. T. Phong. Illumination for computer generated pictures. Communications of the ACM, 1975.

[24] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In ICCV, pages 2961–2969, 2017.

[25] S. Manivasagam, S. Wang, K. Wong, W. Zeng, M. Sazanovich, S. Tan, B. Yang, W.-C. Ma, and
R. Urtasun. LiDARsim: Realistic lidar simulation by leveraging the real world. In CVPR, 2020.

[26] J. Wang, A. Pun, J. Tu, S. Manivasagam, A. Sadat, S. Casas, M. Ren, and R. Urtasun. Advsim:
Generating safety-critical scenarios for self-driving vehicles. In CVPR, 2021.

[27] M. Matl et al. Pyrender, 2019.

[28] Z. Chen, K. Yin, and S. Fidler. AUV-Net: Learning aligned UV maps for texture transfer and
synthesis. In CVPR, 2022.

22

	CADSim Implementation Details
	Learning a shared representation
	Appearance Representation
	Inference Details

	Implementation Details for Baselines
	NeRF-based Approaches
	Implicit Surface Representations.
	Geometry-based Approaches.

	Dataset and Metric Details
	PandaVehicle Details
	LiDAR Rendering Metrics

	Additional Experiments and Analysis
	Ablation Experiments on MVMC and PandaVehicle
	Robustness of CADSim to Data Noise
	Reconstruction of Non-Vehicle Classes
	Additional Limitations
	Additional Downstream Evaluation on Camera Simulation

	Realistic and Controllable Simulation
	Log-Replay Simulation with CADSim Assets
	Mixed Reality with Realistic Animated Vehicle Insertion
	Texture Transfer and Synthesis

