
Supplementary Materials

In this supplementary, Section A shows the detailed definition of Theorem 1 (Contraction Metric),
and proof of Proposition 2 (Policy Evaluation), Proposition 3 (Policy Improvement), Theorem
4 (Convergence) and Theorem 5 (Training Acceleration). Section B shows the detailed nominal
dynamic model of quadrotor, and description of parameters. Section C shows the algorithm details of
QuaDUE, combining with DDPG algorithm. Section D shows the algorithm details of the reference
trajectory generation, i.e., Kino-JSS. Section E gives the implementation details of QuaDUE-CCM.

A Detailed definition of Contraction; and proof of Proposition 2,
Proposition 3, Theorem 4 and Theorem 5

Contraction is described as follows. We firstly consider general time-variant autonomous systems
ẋ = fc(x, t). Then we have δẋ = ∂fc

∂x (x, t)δx, where δx is a virtual displacement. Next, two
neighboring trajectories are considered in the field ẋ = fc(x, t). The square distance between these
two trajectories is defined as δxT δx, where the rate of change is given by d

dt (δx
T δx) = 2δxT δẋ =

2δxT ∂fc
∂x δx. Let λm(x, t) < 0 be the largest eigenvalue of the symmetrical part of the Jacobian ∂fc

∂x

such that there exists d
dt (δx

T δx) ≤ 2λmδxT δx. Therefore, we have ∥δx∥ ≤ e
∫ t
0
λm(x,t)dt ∥δxo∥.

Such a system can be called contracting. Therefore, we have the following Theorem 1.

Theorem 1 (Contraction Metric): In a control-affine system, if there exists: Ṁ + sym(M(A +
BK)) + 2λM ≺ 0, then the inequality ∥x(t)− xref (t)∥ ≤ Re−λt ∥x(0)− xref (0)∥ with
∀t ≥ 0, R ≥ 1 and λ > 0 holds, where A = A(x,u) and B = B(x) are defined above, and
Ṁ = ∂f(x)+g(x)uM =

∑n
i=1

∂M
∂xi ẋ

i, sym(M) = M +MT , and xref (t) is a sequential reference
trajectory. Therefore, the system is contracting.

Proof can be found in [1, 2].

Proposition 2 (Policy Evaluation): Given a deterministic policy π, a quantile approximator ΠW1

and Zk+1(s,a) = ΠW1
T πZk(s,a), the sequence Zk(s,a) converges to a unique fixed point

∼
Zπ

under the maximal form of the∞-Wasserstein metric
−
d∞.

Proof : The combined operator ΠW1
T π is an∞-contraction [3], as there exists:

−
d∞(ΠW1T πZ1,ΠW1T πZ2) ≤

−
d∞(Z1, Z2) (1)

Based on the Banach’s fixed point theorem, we have a unique fixed point
∼
Zπ of T π . Since all

moments of Z are bounded in Zθ(s,a) :=
1
N

N∑
i=1

δqi(s,a), the sequence Zk(s,a) converges to
∼
Zπ

in
−
d∞ for p ∈ [1,∞]. ■

Proposition 3 (Policy Improvement): Denoting an old policy by πold and a new policy by πnew,
there exists E[Z(s, a)]πnew(s, a) ≥ E[Z(s, a)]πold(s, a), ∀s ∈ S and ∀a ∈ A.

Proof : We firstly denote the expectation of Z(s, a) by Q(s, a). Then based on:

T Z(s,a)
D
:= R(s,a) + γZ(s′, argmax

a′
E
p,R

[Z(s′,a′)])

Zθ(s,a) :=
1

N

N∑
i=1

δqi(s,a)

(2)

there exists:

V π(st) = EπQ
π(st, π(st)) ≤ max

a∈A
EπQ

π(st, a) = Eπ′Qπ(st, π
′(st)) (3)
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where Eπ[·] =
∑

a∈A π(a|s)[·], and V π(s) = EπE[Zk(s, a)] is the value function. According to
Equation 2 and Equation 3, it yields:

Qπold = Qπold(st,πnew(st)) = rt+1 + γEst+1
Eπold

Qπold(st+1,πold(st+1))

≤ rt+1 + γEst+1
EπnewQ

πold(st+1,πnew(st+1))

≤ rt+1 + Est+1
Eπnew [γrt+2 + γ2Est+2

Qπold(st+2,πnew(st+2))|]
≤ rt+1 + Est+1

Eπnew [γrt+2 + γ2rt+3 + ...] = rt+1 + Est+1
V πnew(st+1)

= Qπnew

(4)

Thus, there exists E[Z(s, a)]πnew(s, a) ≥ E[Z(s, a)]πold(s, a). ■

Theorem 4 (Convergence): Denoting the policy of the i-th policy improvement by πi, there exists
πi → π∗, i→∞, and E[Zk(s, a)]

π∗
(s, a) ≥ E[Zk(s, a)]

πi

(s, a), ∀s ∈ S and ∀a ∈ A.

Proof : Proposition 3 shows that E[Z(s, a)]π
i ≥ E[Z(s, a)]π

i−1

, thus E[Z(s, a)]π
i

is monotoni-
cally increasing. The immediate reward is defined as:

Rt+1(s, a, θ) = Rcontraction(s, a, θ) +Rtrack(s, a) (5)

Extending to Equation 5, the reward function is defined as:

Rcontraction(s, a, θ) =− ωc,1[mI −M ]ND(s)− ωc,2[M −mI]ND(s)

− ωc,3[Ĉm + 2λM ]ND(s, a, θ)

Rtrack(s, a) =− (xt(s, a)− xref,t)
TH1(xt(s, a)− xref,t)− uT

t (s, a)H2ut(s, a)

(6)

where m, m are hyper-parameters, H1 and H2 are positive definite matrices, and [A]ND is for
penalizing positive definiteness where [A]ND = 0 iff. A ≺ 0, and [A]ND ≥ 0 iff. A ⪰ 0.

According to Equation 1, Equation 5 and Equation 6, the first moment of Z, i.e., E[Z(s, a)]π
i

, is
upper bounded. Therefore, the sequential E[Z(s, a)]π

i

converges to an upper limit E[Z(s, a)]π
∗

satisfying E[Zk(s, a)]
π∗

(s, a) ≥ E[Zk]
πi

. ■

Theorem 5 (Training Acceleration): In the training process of the distribution RL (i.e. QuaDUE):

1) Let sampling steps T = 4kl2EJ(θ0)/τ
2, if there exists κ ≤ 0.25τ2/σ2, the Jθ optimized by

stochastic gradient descend converges to a τ -stationary point.

2) Let sampling steps T = kl2EJ(θ0)/(κτ
2), if there exists κ > 0.25τ2/σ2, the Jθ optimized by

stochastic gradient descent will not converge to a τ -stationary point.

Proof: As Jθ(ps,a, a
s,a
θ ) is kl2-smooth, we have:

EJ(θt+1)− EJ(θt) ≤ ⟨∇EJ(θt), θt+1 − θt⟩+ (kl2/2) ∥θt+1 − θt∥2

= −ι⟨∇EJ(θt),∇Jθ(ps,a, as,aθ )⟩+ (kl2ι2/2) ∥∇Jθ(ps,a, as,aθ )∥2

≤ −(ι/2) ∥∇EJ(θt)∥2 + (ι/2) ∥∇EJ(θt)− Jθ(p
s,a, as,aθ )∥2

(7)

Next we take the expected value of Equation 7 and consider T steps:

E[EJ(θT )− EJ(θ0)] ≤ E[
T−1∑
t=0

−(ι/2) ∥∇EJ(θt)∥2] + E[
T−1∑
t=0

(ι/2) ∥∇EJ(θt)− Jθ(p
s,a, as,aθ )∥2]

≤ −(ι/2)
T−1∑
t=0

E[∥∇EJ(θt)∥2] + (ι/2)[(1− 1/(1 + κ))σ2 + (κ/(1 + κ))σ2]

(8)
According to Equation 8 above, if we have a first-order stationary point at T step, then:

(1/T )

T−1∑
t=0

E[∥∇EJ(θt)∥2] ≤ 2kl2EJ(θ0)/T + 2κσ2 (9)
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If we have T = 4kl2EJ(θ0)/τ
2 and κ ≤ 0.25τ2/σ2, then Jθ converges to a τ -stationary point

with (1/T )
∑T−1

t=0 E[∥∇EJ(θt)∥2] ≤ τ2. Thus, (1) is proved. If we have T = kl2EJ(θ0)/(κτ
2)

and κ > 0.25τ2/σ2, then (1/T )
∑T−1

t=0 E[∥∇EJ(θt)∥2] ≤ 4κτ2, where the stationary point is
dependent on κ, i.e., the degree of the approximation. Therefore, (2) is proved. ■

B Nominal Dynamic Model of Quadrotor

The quadrotor is assumed as a six Degrees of Freedom (DoF) rigid body of mass m, i.e., three linear
motions and three angular motions [4]. Different from [5, 6], the aerodynamic effect (disturbance)
ef is integrated into the quadrotor dynamic model as follows [7]:

ṖWB = VWB

V̇WB = gW +
1

m
(qWB ⊙ c+ ef )

q̇WB =
1

2
Λ(ωB)qWB

ω̇B = J−1(τB − ωB × JωB)

(10)

where PWB , VWB and qWB are the position, linear velocity and orientation expressed in the world
frame, and ωB is the angular velocity expressed in the body frame [7]; c is the collective thrust
c = [0, 0,

∑
Ti]

T; the operator ⊙ denotes a rotation of the vector by the quaternion; τB is the body
torque; J = diag(jx, jy, jz) is the diagonal moment of inertia matrix; gW = [0, 0,−g]T; and, the
skewsymmetric matrix Λ(ω) is defined as:

Λ(ω) =

 0 −ωx −ωy −ωz

ωx 0 −ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

 (11)

Then we reformulate Equation 10 in its control-affine form:

ẋ = f(x, ef k) + g(x)u+w (12)

where f : Rn 7→ Rn and g : Rn 7→ Rn×m are assumed by the standard as Lipschitz continuous
[8, 9]. x = [PWB ,VWB , qWB ,ωB ]

T ∈ X, u = Ti∀i ∈ (0, 3) ∈ U and w ∈ W are the state,
input and additive uncertainty of the dynamic model, where X ⊆ Rn, U ⊆ Rnu and W ⊆ Rnw are
compact sets as the state, input and uncertainty space, respectively. Given an input : R≥0 7→ U and
an initial state x0 ∈ X, our goal is to design a quadrotor tracking controller u such that the state
trajectory x can track any reference state trajectory xref (satisfied the quadrotor dynamic limits)
under a bounded uncertainty w : R≥0 7→W.

C The detailed algorithm of QuaDUE

The objective of this work is to design a distributional-RL-based estimator for CCM uncertainty,
which we define as combined wind estimation and CCM uncertainty estimation, for tracking the
reference state xref of the nominal model (Equation 10). The detailed algorithm of QuaDUE is
shown in Algorithm 1.

D The detailed algorithm of Kino-JSS

Quadrotor route searching primarily focuses on robustness, feasibility and efficiency. The Kino-RS
algorithm [10] is a robust and feasible online searching approach. However, the searching loop is
derived from the hybrid-state A* algorithm, making it relatively inefficient in obstacle-dense envi-
ronments. On the other hand, JPS offers robust route searching, and runs at an order of magnitude
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Algorithm 1 QuaDUE
Input: sk, sk+1, uk, θµ, θQ
Output: ak

1: Initialize:
- θµ

t ← θµ, θQ
t ← θQ update the target parameters from the predicted parameters

- the replay memory D ← Dk−1

- the batch B, and its size
- a small threshold ξ ∈ R+

- the random option selection probability ϵ - the option termination probability β
- quantile estimation functions {qi}i=1,...,N

2: Repeat
3: for each sampling step from D do
4: Select a candidate option zk from

{
z0, z1, ..., zM

}
5: zk ←


zk−1 w.p. 1− β

random option w.p. βϵ

argmaxzQ(sk, z) w.p. β(1− ϵ)
6: Execute wk, get reward rk and the next state sk+1

7: D.Insert([sk,uk, rk, sk+1])
8: B ← D.sampling
9: yk,i ← ρKτi(rk + γq′i(sk+1, w

∗
k)

10: Jθµ ← 1
N

N∑
i=1

N∑
i′=1

[yk,i′ − qi(sk, wk)]

11: y ← βargmaxz′Q(sk+1, z
′) + (1− β)Q(sk+1.zk)

12: JθQ ← (rt + γy −Q(st, zt))
2

13: θµ ← θµ − lµ∇θµJθµ

14: θQ ← θQ − lθ∇θQJθQ

15: end for
16: Until convergence, , Jθ

Q < ξ

faster than the A* algorithm [11]. A common problem of geometric methods such as JPS and A* is
that, unlike kinodynamic searching, they consider heuristic cost (e.g., distance) but not the quadrotor
dynamics and feasibility (e.g., line 5 of Algorithm 3 and line 10 of Algorithm 4) when generating
routes [12]. checkFea() is the feasibility check to judge the acceleration and velocity constrains
based on the quadrotor dynamics. Kino-JSS, proposed in [7], generates a safe and efficient route in
unknown environments with aerodynamic disturbances. In [7], Kino-JSS, described by Algorithms
2, 3 and 4, is demonstrated to run an order of magnitude faster than Kino-RS [10] in obstacle-dense
environments, whilst maintaining comparable system performance.

Algorithm 2 Kinodynamic Jump Space Search [7]
INPUT: scur
OUTPUT: KinoJSSRoute

1: initialize()
2: openSet.insert(scur )
3: while !openSet.isEmpty() do
4: scur ← openSet.pop()
5: closeSet.insert(scur )
6: if nearGoal(scur ) then
7: return KinoJSSRoute
8: end if
9: KinoJSSRecursion()

10: end while

scur denotes the current state, spro denotes the propagation of current state under the motion mi, and
Ef denotes the aerodynamic disturbance estimated by VID-fusion [13]. In Algorithm 3, motionSet,
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Algorithm 3 KinoJSSRecursion [7]
INPUT: scur, Ef , openSet, closeSet
OUTPUT: void

1: motions← JSSMotion(scur ,Ef )
2: for each mi ∈ motions do
3: spro ← statePropagation(scur ,mi))
4: inClose← closeSet .isContain(spro)
5: if isFree(spro)

∧
checkFea(spro ,mi)

∧
inClose then

6: if checkOccupiedAround(spro) then
7: spro.neighbors← JSSNeighbor(spro)
8: costpro ← scur .cost + edgeCost(spro)
9: costpro ← costpro + heuristic(spro)

10: if !openSet .isContain(spro) then
11: openSet.insert(spro)
12: else if spro .cost ≤ costpro then
13: continue
14: end if
15: spro.parent← scur
16: spro.cost← costpro
17: else
18: KinoJSSRecursion()
19: end if
20: else
21: continue
22: end if
23: end for

Algorithm 4 JSSMotion [7]
INPUT: scur, Ef

OUTPUT: motions

1: Efcor ← Ef +GaussianNoise()
2: for each mi ∈ motionSet do
3: mcor ← mi + Efcor

4: motions← push_back(mcor )
5: end for
6: neighSize← scur.neighbors.size()
7: while neighSize ̸= 0 do
8: neighSize = neighSize− 1
9: neighMotion← posToMotion(scur .neighbors)

10: if checkFea(scur ,neighMotion) then
11: motions← push_back(neighMotion)
12: end if
13: end while
14: return motions
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Table 1: Parameters of QuaDUE-CCM

Parameters Definition Values
lθa Learning rate of actor 0.0015
lθc Learning rate of critic 0.0015

θa
Actor neural network: fully connected with two

hidden layers (128 neurons per hidden layer) -

θc
Critic neural network: fully connected with two

hidden layers (128 neurons per hidden layer) -

D Replay memory capacity 104

B Batch size 256
γ Discount rate 0.9995
- Training episodes 1000
Ts MPC Sampling period 50ms
N Time steps 20

which is defined as a pyramid shown, offers improved efficiency whilst retaining the advantages of
Kino-RS [10].

E The implementation details of QuaDUE-CCM

The performance of our proposed QuaDUE-CCM is evaluated using a DJI Manifold 2-C (Intel i7-
8550U CPU) for real-time computation. We use RotorS MAVs simulator [14], where programmable
aerodynamic disturbances can be generated. The nominal force nf is estimated by VID-Fusion [13].
The noise bound of aerodynamic forces is set as 0.5 m/s2, based on the benchmark established in
[15]. Since the update frequency of the aerodynamic force ef estimation is much higher than our
QuaDUE-CCM framework frequency, we sample ef based on our framework frequency. We also
assume the collective thrust c is a true value, which is tracked ideally in the simulation platform.

The parameters of our proposed framework are summarized in Table 1. Then we operate
a training process by generating external forces in RotorS [14], where the programmable
external forces are in the horizontal plane with range [-3,3] (m/s2). The training process
has 1000 iterations where the quadrotor state is recorded at 16 Hz. The training process
occurs over 1000 iterations. The matrices H1 and H2 in Equation 6 are chosen as H1 =
diag{2.5e−2, 2.5e−2, 2.5e−2, 1e−3, 1e−3, 1e−3, 2.5e−3, 2.5e−3, 2.5e−3, 2.5e−3, 1e−5, 1e−5, 1e−5}
and H2 = diag{1.25e−4, 1.25e−4, 1.25e−4, 1.25e−4}, respectively.
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