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Abstract: Realistic long-horizon tasks like image-goal navigation involve ex-
ploratory and exploitative phases. Assigned with an image of the goal, an embod-
ied agent must explore to discover the goal, i.e., search efficiently using learned
priors. Once the goal is discovered, the agent must accurately calibrate the last-
mile of navigation to the goal. As with any robust system, switches between ex-
ploratory goal discovery and exploitative last-mile navigation enable better re-
covery from errors. Following these intuitive guide rails, we propose SLING
to improve the performance of existing image-goal navigation systems. Entirely
complementing prior methods, we focus on last-mile navigation and leverage the
underlying geometric structure of the problem with neural descriptors. With sim-
ple but effective switches, we can easily connect SLING with heuristic, reinforce-
ment learning, and neural modular policies. On a standardized image-goal naviga-
tion benchmark [1], we improve performance across policies, scenes, and episode
complexity, raising the state-of-the-art from 45% to 55% success rate. Beyond
photorealistic simulation, we conduct real-robot experiments in three physical
scenes and find these improvements to transfer well to real environments. Code
and results: https://jbwasse2.github.io/portfolio/SLING
Keywords: Embodied AI, Robot Learning, Visual Navigation, Perspective-n-
Point, AI Habitat, Sim-to-Real.

1 Introduction

Imagine you are at a friend’s home and you want to find the couch you have seen in your friend’s
photo. At first, you use semantic priors i.e. priors about the semantic structure of the world, to
navigate to the living room (a likely place for the couch). But as soon as you get the first glimpse
of the couch, you implicitly estimate the relative position of the couch, use intuitive geometry, and
navigate towards it. We term the latter problem, of navigating to a visible object or region, as last-
mile navigation.

The field of visual navigation has a rich history. Early approaches used hand-designed features with
geometry for mapping followed by standard planning algorithms. But such an approach fails to
capture the necessary semantic priors that could be learned from data. Therefore, in recent years,
we have seen more efforts and significant advances in capturing these priors for semantic navigation
tasks such as image-goal [2, 3, 4, 1, 5, 6] and object-goal navigation [7, 8, 9, 10]. The core idea
is to train a navigation policy using reinforcement or imitation learning and capture semantics. But
in an effort to capture the semantic priors, these approaches almost entirely bypass the underlying
geometric structure of the problem, specifically when the object or view of interest has already been
discovered.

One can argue that last-mile navigation can indeed be learned from data itself. We agree that, in
principle, it can be. However, we argue and demonstrate that an unstructured local policy for last-
mile navigation is either (a) sample inefficient (billions of frames in an RL framework [11]) or
(b) biased and generalize poorly when learned from offline demonstrations (due to distributional
shift [12, 13]). Therefore, our solution is to revisit the basics! We propose Switchable Last-Mile
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Figure 1: Switchable Last-Mile Image-Goal Navigation. (a) Long-horizon semantic tasks such as
image-goal navigation involves exploratory discovery of goals and exploitative last-mile navigation,
(b) An overview of SLING that allows for switching between policies from prior work and our
last-mile navigation system.

Image-Goal Navigation (SLING) – a simple yet very effective geometric navigation system and
associated switches. Our approach can be combined with any off-the-shelf learned policy that uses
semantic priors to explore the scene. As soon as the object or view of interest is detected, the
SLING switches to the geometric navigation system. We observe that SLING provides significant
performance gains across baselines, simulation datasets, episode difficulty, and real-world scenes.

Our key contributions are: (1) A general-purpose last-mile navigation system and switches, that
we connect with five diverse goal discovery methods, leading to improvements across the board.
(2) A new state-of the-art of 54.8% success i.e. a huge jump of 21.8% vs. published work [5] and
9.2% vs. a concurrent preprint [6], on the most widely-tested fold (Gibson-curved) of the AI Habitat
image-goal navigation benchmark [1]; (3) Extensive robot experiments of image-goal navigation
in challenging settings with improved performance over a neural, modular policy [1] trained on
real-world data [14].

2 Related Work
Prior work in visual navigation and geometric 3D vision is pertinent to SLING.

Embodied navigation. Anderson et al. [15] formalized different goal definitions and metrics for the
evaluation of embodied agents. In point-goal navigation, relative coordinates of the goal are avail-
able (either at all steps [16, 11, 17, 18, 19] or just at the start of an episode [9, 20, 21]). Successful
navigation to a point-goal could be done without semantic scene understanding, as seen by compet-
itive depth-only agents [16, 11]. Semantic navigation entails identifying the goal through an image
(image-goal [1, 2, 22]), acoustic cues (audio-goal [23, 24]), or a category label (object-goal [8, 9]).
Several extensions of navigation include language-conditioned navigation following [25, 26, 27, 28],
social navigation [29, 30, 31, 32, 33], and multi-agent tasks [34, 35, 36, 37, 38, 39]. However, each
of these build-off single-agent navigation and benefit from associated advancements. For more em-
bodied tasks and paradigms, we refer the reader to a recent survey [40]. In this work, we focus on
image-goal navigation in visually rich environments.

Image-goal navigation. Chaplot et al. [3] introduced a modular and hierarchical method for nav-
igating to an image-goal that utilizes a topological map memory. Kwon et al. [41] introduced a
memory representation based on image similarity, which in turn is learned in an unsupervised fash-
ion from unlabeled data and the agent’s observed images. Following up on [3], NRNS [1] improves
the topological-graph-based architecture and open-sourced a public dataset and IL and RL base-
lines [11, 3] within AI Habitat. This dataset has been adopted for standardized evaluation [5, 6].
ZER [5] focuses on transferring an image-goal navigation policy to other navigation tasks. In a con-
current preprint, Yadav et al. [6] utilize self-supervised pretraining [42] to improve an end-to-end
visual RL policy [11] for the image-goal navigation benchmark. Our contributions are orthogonal
to the above and can be easily combined with them, as we demonstrate in Sec. 4.
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Beyond simulation, SLING finds relevance to the rich literature of navigating to an image-goal on
physical robots. Meng et al. [4] utilize a neural reachability estimator and a local controller based on
a Riemannian Motion Policy framework to navigate to image-goals. Hirose et al. [43] train a deep
model predictive control policy to follow a trajectory given by a sequence of images while being
robust to variations in the environment. Even in outdoor settings, meticulous studies have shown
great promise, based on negative mining, graph pruning, and waypoint prediction [44] and utilizing
geographic hints for kilometer-long navigations [45]. Complementing this body of work, SLING
tackles image-goal navigation in challenging indoor settings, without needing any prior data of the
test environment (similar to [1, 6, 3]) i.e. during evaluation no access to information (trajectories,
GPS, or top-down maps) in the test scenes is assumed.

Last-mile navigation. The works included above focus primarily on goal discovery. In contrast,
recent works have also identified ‘last-mile’ errors that occur when the goal is in sight of or close to
the agent. For multi-object navigation, Wani et al. [46, 47] observed a two-fold improvement when
allowing an error budget for the final ‘found’ or ‘stop’ actions. Chattopadhyay et al. [48] found
the last step of navigation to be brittle i.e. small perturbations lead to severe failures. Ye et al. [10]
identified last-mile errors as a prominent error mode (10% of the failures) in object-goal navigation.
However, none of these works address the problem with the last-mile of navigation. From a study
inspired by [46], we infer that better (or more tolerant to error) last-mile navigation can indeed lead
to better performance in the image-goal navigation task (details in Appendix H).

Connections to 3D vision. The objective of our last-mile navigation system is to predict the relative
camera pose between two images i.e. agent’s view and image-goal. To this end, pose estimation
of a calibrated camera from 3D-to-2D point correspondences connects our embodied navigation
task to geometric 3D computer vision. The Perspective-n-Point (PnP) formulation, with extensive
research and efficient solvers [49, 50, 51], fits this use case perfectly. To find an accurate PnP
solution, locating correspondences between the local features of the two images is critical. We
utilize SuperGlue [52] which is based on correspondences learned via attention graph neural nets and
partial assignments. We defer details of PnP and finding correspondences to Sec. 3.3, to make the
approach self-sufficient. Notably, different from related works in 3D vision [53, 54, 55], we apply
SLING to sequential decision-making in embodied settings, particularly, image-goal navigation. To
take policies to the real world, we utilized robust SLAM methods [56, 57] for local odometry and
pose estimation, which has also been found reliable by prior works in sim-to-real [58, 59, 60].

3 SLING

In this section, we begin with an overview of the task and the entire pipeline of SLING. We then
discuss the implementations for goal discovery, our proposed system for last-mile navigation, and
switches to easily combine it with prior works. While we explain key design choices in the main
paper, a supplementary description and a list of hyperparameters, for effective reproducibility, is
deferred to Appendix A.

3.1 Overview

We follow the image-goal navigation task benchmark by Hahn et al. [1] (similar to the prior formu-
lations [2, 3]). The agent observes an RGB image Ia, a depth map Da, and the image-goal Ig . The
agent can sample actions fromA = {move forward, turn right, turn left, stop}. The stop
action terminates the episode.

As shown in Fig. 1a, we divide image-goal navigation into – a goal discovery and a last-mile nav-
igation phase. In the goal discovery phase, the agent is responsible for discovering the goal i.e.
navigating close enough for the goal to occupy a large portion of the egocentric observation (‘goal
discovered’ image). Fig. 1b shows how the control flows between our system. If the explore )exploit
switch isn’t triggered, learning-based exploration will continue. Otherwise, if the explore )exploit
switch triggers, the agent’s observations now overlap with the image-goal and the control flows
to the last-mile navigation system. We find that a one-sided flow (as attempted in [1, 3]) from
explore )exploit is too optimistic. Therefore, we introduce symmetric switches, including one that
flows control back to goal discovery.
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Figure 2: Last-Mile Navigation system. Neural keypoint feature descriptors are extracted and
matched to obtain correspondences between the agent’s view and the image-goal. The geometric
problem of estimating the relative pose between the agent and goal view is solved using efficient
perspective-n-point. A exploit )explore switch, if triggered, flows control back to the goal discovery
phase. Else, the estimations are fed into a local policy head to decide the agent’s actions.

3.2 Goal Discovery
We can combine our versatile last-mile navigation system and switching mechanism with any prior
method. These prior methods are previously suggested solutions to image-goal navigation. We
demonstrate this with five diverse goal discovery (GD) implementations.

Straight [61]. A simple, heuristic exploration where the agent moves forward and unblocks itself,
if stuck, by turning right (similar to an effective exploration baseline in [61]).

Distance Prediction Network (NRNS-GD) [1]. Exploratory navigation is done by proposing way-
points in navigable areas (determined utilizing the agent’s depth mask), history is maintained using
a topological map, and processed using graph neural nets. The minimum cost waypoint is chosen
utilizing outputs from a distance prediction network. More details are given in Appendix B and [1].

Decentralized Distributed PPO (DDPPO-GD) [11]. An implementation of PPO [62] for pho-
torealistic simulators where rendering is the computational bottleneck. This has been a standard
end-to-end deep RL baseline in prior works, across tasks [18, 1, 5, 6, 63].

Offline Visual Representation Learning (OVRL-GD) [6]. A DDPPO network, with its visual
encoder pretrained using self-supervised pretext tasks [42] on images obtained from 3D scans [64].

Environment-State Distance Prediction (Oracle-GD). To quantify the effect of errors coming
from the goal discovery phase, we devise an upper bound. This is a privileged variant of NRNS-GD
that accesses the ground-truth distances from the environment, exclusively for the goal discovery
phase. For fine details of its construction, particularly, how we curtail this to be an oracle explorer
and not an oracle policy, see Appendix B.

3.3 Last-Mile Navigation
The proposed last-mile navigation module transforms the agent’s observations and image-goal into
actions that take the agent closer to the goal. The steps are shown in Fig. 2 and detailed next.

Neural Feature Extractor. We first transform the agent’s RGB Ia to local features (X̂a,Fa), where
X̂a ∈ Rna×2 are the positions and Fa ∈ Rna×k are the visual descriptors in the agent’s image. Here,
na is the number of detected local features and k is the length of each descriptor. Similarly, Ig leads
to features (X̂g,Fg), where X̂g ∈ Rng×2 and Fg ∈ Rng×k with ng local features in the image-
goal. Following DeTone et al. [65], we adopt an interest-point detector, pretrained on synthetic data
followed by cross-domain homography adaptation (here, k = 256).

Matching Module. From extracted features (X̂a,Fa) and (X̂g,Fg), we predict matched subsets
Xa ∈ Rn×2 and Xg ∈ Rn×2. The matching is optimized to have Xa and Xg correspond to
the same point. We utilize an attention-based graph neural net (GNN) that tackles partial matches
and occlusions well using an optimal transport formulation, following Sarlin et al. [52]. The above
neural feature extractor and GNN-based matcher help enjoy benefits of learning-based methods, par-
ticularly, those pretrained on large offline visual data without needing online, end-to-end finetuning.
The geometric components, relying on these neural features, are described next.

Lifting Points from 2D )3D. Next, the agent’s 2D local features are lifted to 3D with respect to the
agent’s coordinate frame i.e. Pa ∈ Rn×3. This is done by utilizing the camera intrinsic matrix K
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(particularly, principle point px, py and focal lengths fx, fy) and the corresponding depth values for
each position in Xa, say da ∈ Rn. The ith row of Pa is calculated as

Pa (i, :) =

(
Xa(i, 1)− px

fx
∗ da(i),

Xa(i, 2)− py
fy

∗ da(i),da(i)

)
, (1)

where Xa(i, 1) and Xa(i, 2) correspond to the x and y coordinate of ith feature in Xa, respectively.
Formally, da(i) := Da (Xa(i, 1),Xa(i, 2)).

Perspective-n-Point. The objective of the next step i.e. Perspective-n-Point (PnP) is to find the
rotation and translation between the agent and goal camera pose that minimized reprojection error.
Concretely, for a given rotation matrix R ∈ R3×3 and translation vector t ∈ R3, the 3D positions
Pa of local features can be reprojected from the coordinate system of the agent to that of the goal
camera: [

X̃g

1

]
= K [R|t]

[
Pa

1

]
; Reprojection error e = ‖X̃g −Xg‖22. (2)

where X̃g are the reprojected positions. Minimizing the reprojection error e, via ePnP [51] and
RANSAC [49] (to handle outliers), we obtain the predicted rotation and translation. The reprojec-
tion is visualized in Fig. 2, where the agent’s amber point is lifted and reprojected in goal camera
coordinates. The reprojection is different from its correspondence in the goal image.

Estimating Distance and Heading to Goal. The predicted translation t can help calculate the
distance ρ = ‖t‖2 from the agent to the goal. Similarly, the heading φ from the agent to the goal
can be obtained from the dot product of the unit vectors along the optical axis (of the agent’s view)
and t. Concretely, φ = sgn(t[1]) ∗ arccos (t · oa/‖t‖2‖oa‖2). The sign comes from t[1] which
points along the axis perpendicular to the agent’s optical axis but parallel to the ground. The sign
is particularly important when calculating the heading as it distinguishes between the agent turning
right or left.

Local policy. Finally, the distance ρ and heading φ between the agent’s current position to the
estimated goal are utilized to estimate actions in the action space A to reach the goal. Following
accurate implementations [66, 1], we adopt a local metric map to allow the agent to heuristically
avoid obstacles and move towards the goal. For further details, see Appendix A.

3.4 Switches
We define simple but effective switches between the two phases of goal discovery (explore) and last-
mile navigation (exploit). The explore )exploit switch is triggered if the number of correspondences
n > nth, where nth is a set threshold. This indicates that the agent’s image has significant overlap
with the image-goal, so control can flow to the last-mile navigation phase. We find that this simple
switch performs better than training a specific deep net to achieve the same (variations attempted
in [1, 3, 4]). For exploit )explore, if the optimization for R, t (see Eq. (2)) fails or if the predicted
distance is greater than dth (tuned to 4m), the agent returns to the goal discovery phase.

4 Experiments
We report results for image-goal navigation both in photorealistic simulation and real-world scenes.

4.1 Data and Evaluation
We evaluate image-goal navigation policies on the benchmark introduced by Hahn et al. [1]
and follow their evaluation protocol and folds. The benchmark consists of numerous folds:
{Gibson [67], MP3D [68]}×{straight, curved}×{easy, medium, hard}. For a direct comparison
to prior work [3, 1, 5, 6] that reports primarily on ‘Gibson-curved’ fold, we follow the same in the
main paper. Consistent performance trends are seen in ‘Gibson-straight’ and in the MP3D folds as
well. These results are deferred to Appendix C and Appendix F. Performance on image-goal navi-
gation is chiefly evaluated via two metrics – percentage of successful episodes (success) and success
weighted by inverse path length (SPL) [15]. For top-performing baselines, we also include the av-
erage distance to the goal at the end of the episode in Appendix G. The objective of the image-goal
navigation task is to execute stop within 1m of the goal location. The agent is allowed 500 steps.
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Table 1: Results for ‘Gibson-curved’ episodes Note the significant gains by adding SLING to prior
works. Consistent trends are seen in ‘Gibson-straight’ (Appendix C) and MP3D-curved episodes
(Appendix F).

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

1 BC w/ Spatial Memory [69] 1.3 1.1 3.1 2.5 0.8 0.7 0.2 0.1
2 BC w/ GRU [69, 70] 1.7 1.3 3.6 2.8 1.1 0.9 0.5 0.3
3 DDPPO [11] (from [1]) 15.7 12.9 22.2 16.5 20.7 18.5 4.2 3.7
4 NRNS [1] 21.7 8.1 31.4 10.7 22.0 8.2 11.9 5.4
5 ZER [5] 33.0 23.6 48.0 34.2 36.0 25.9 15.1 10.8
6 OVRL [6] 45.6 28.0 53.6 31.7 47.6 30.2 35.6 21.9
7 DDPPO-LMN + OVRL-GD 44.3 30.1 52.4 36.6 48.6 32.6 31.9 21.2
8 SLING + Straight-GD 31.0 12.8 39.2 14.3 33.0 14.3 21.0 9.9
9 SLING + DDPPO-GD 37.9 22.8 52.2 32.7 42.2 25.2 19.4 10.5
10 SLING + NRNS-GD 43.5 15.1 58.7 17.4 47.0 17.4 25.0 10.5
11 SLING + OVRL-GD 54.8 37.3 65.4 45.7 59.5 40.6 39.6 25.5

4.2 Methods
We compare our last-mile navigation with several standardized baselines [69, 11, 1]. Note that
field-of-view, rotation amplitude, etc. vary across baselines and we adopt the respective settings for
fair comparison (implementation details of SLING are in Appendix A). Prior methods use a mix
of sensors including RGB, depth, and agent pose, but no dense displacement vector to the goal.
While we did include the most relevant baselines in Sec. 3.2, we also compare SLING to several
other image-goal solvers. This includes imitation learning baselines such as Behavior Cloning (BC)
w/ Spatial Memory [69] and BC w/ Gated Recurrent Unit [69, 70]. We also compare to estab-
lished reinforcement learning baselines – DDPPO [11] and Offline Visual Representation Learning
(OVRL) [6]. OVRL also makes use of pretraining using a self-supervised objective. Finally, we
compare to related modular baselines include NRNS [1] and Zero Experience Replay (ZER) [5].
We defer a detailed discussion of these baselines to Appendix B.

SLING & Ablations. For a comprehensive empirical study, we combine SLING with Straight-GD,
NRNS-GD, DDPPO-GD, OVRL-GD, and Oracle-GD (see Sec. 3.2 for details). We also introduce
a neural baseline, DDPPO-LMN, a DDPPO model trained to perform last-mile navigation.

Further, we include clear ablations to show the efficacy of the components of our method and
robustness to realistic pose and depth sensor noise:
• w/ MLP switch: instead of SLING’s explore )exploit switch (that utilizes geometric structure), if a
MLP1 detects similarity between the agent and goal images (as in [1]).
• w/o Recovery: if the exploit )explore switch is removed i.e. one-sided flow of control.
• w/o Neural Features: if the neural features [65] are replaced with traditional features [71].
• w/ Pose Noise: add noise to pose that emulates real-world sensors [66, 72] (same as [3, 1]).
• w/ Depth Noise: imperfect depth by adopting the Redwood Noisy Depth model [73] in AI Habitat.
• w/ Oracle-GD: privileged baseline where NRNS-GD can access ground-truth distances to move
the agent closer to the goal during exploration (see Sec. 3.2 and Appendix B).
• w/ Oracle-LM-Pose: privileged last-mile system with perfect displacement from agent to goal
• w/ Oracle-LP: privileged baseline where local policy can teleport agent to the goal prediction

4.3 Quantitative Results
In the following, we include takeaways based on the results in Tab. 1 and Tab. 2.

State-of-the-art performance. As Tab. 1 details, SLING + OVRL-GD outperforms a suite of IL,
RL, and neural modular baselines. The Gibson-curved fold is widely adopted in prior works and
hence the focus of the main paper. With a 54.8% overall success and 37.3 SPL we are the best-
performing method on the benchmark, improving success rate by 21.8% vs. ZER and 9.2% vs.
OVRL (‘overall success’ column of rows 5, 6, & 11). In Appendix I, we also demonstrate state-of-
the-art performance when panoramic images are used.

1trained over an offline dataset of expert demonstrations, where adjacent nodes in a topological graph (that
they maintain) are considered positives
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Table 2: Ablations on ‘Gibson-curved’ episodes. Both switches are key to SLING’s performance.
SLING is resilient to sensor noise. Similar trends can be observed over ablations performed with
OVRL-GD in Appendix F. The privileged last-mile navigation system establishes an upper bound
for last-mile navigation. Even with Oracle-GD, performance improves if SLING is added.

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

1 NRNS [1] 21.7 8.1 31.4 10.7 22.0 8.2 11.9 5.4

2 SLING + NRNS-GD 43.5 15.1 58.7 17.4 47.0 17.4 25.0 10.5
3 w/ MLP Switch 42.5 14.8 55.4 16.7 47.3 17.3 24.9 10.5
4 w/ MLP Switch w/o Recovery 31.5 11.5 45.6 14.3 32.8 12.9 16.1 7.3
5 w/o Neural Features 33.7 11.3 47.5 13.5 35.9 13.0 17.7 7.5
6 w/ Pose Noise 43.7 14.3 58.6 16.1 47.6 16.8 24.9 10.1
7 w/ Pose & Depth Noise 43.5 14.0 56.9 15.9 47.2 15.9 26.6 10.3

Privileged Last-Mile Navigation

8 w/ Oracle-LP 45.1 17.8 60.8 21.2 48.7 20.3 25.8 12.1
9 w/ Oracle-LM-Pose 53.3 19.3 72.3 23.4 57.1 21.6 30.5 13.1
10 w/ Oracle-LM-Pose & Oracle-LP 53.7 22.4 72.6 27.7 57.6 24.7 31.0 14.9

Privileged Goal Discovery

11 NRNS + Oracle-GD (upper bound) 67.7 60.2 68.5 58.4 71.2 63.7 63.5 58.7
12 SLING + Oracle-GD (upper bound) 86.2 74.8 85.9 72.2 88.6 77.7 84.3 74.6

SLING works across methods. Using switches, we add our last-mile navigation system to
DDPPO [11], NRNS [1], and OVRL [6], and observe gains across the board. As shown in Tab. 1,
SLING improves the success rate of DDPPO by 22.2%, NRNS by 21.8%, and OVRL by 9.2%
(rows 3 & 9, 4 & 10, 6 & 11, respectively). Quite surprisingly, SLING even with simple straight
exploration, can outperform deep IL, RL, and modular baselines. (rows 1, 2, 3, 4, & 8).

SLING outperforms neural policies for last-mile navigation. SLING surpasses DDPPO trained
over 400M steps for last-mile navigation by 10.5% on success rate (rows 7 & 11).

SLING succeeds across scene datasets. Similar improvements are also seen in MP3D scenes –
adding SLING to OVRL improves success by 5.1%. Further details and results can be found in
Appendix F.

SLING is resilient to sensor noise. As shown in rows 6 & 7 of Tab. 2, minor drops in perfor-
mance are observed despite challenging noise in pose and depth sensors – SPL successively reduces
15.1 )14.3 )14.0% (rows 2 )6 )7).

Geometric switches are better. Performance reduces if we swap out SLING’s explore )exploit
switch with the MLP switch of NRNS [1]. The effect is exasperated when SLING’s exploit )explore
switch is also removed, leading to a drop of 12% (Tab. 2, rows 2 & 4). The neural features utilized
in SLING are useful, as seen by comparing rows 2 and 5. Further, over a set of 6500 image pairs,
we evaluate the accuracy of switches. SLING’s explore )exploit switch is 92.0% accurate and MLP
switch [1] is only at 82.1%. Also, SLING exploit )explore switch is 84.1% accurate while NRNS
doesn’t have such a recovery switch (details of this study in Appendix D).

Large potential for last-mile navigation. When Oracle-LM-Pose and Oracle-LP are used there
is a 10.2% overall improvement in success from 43.5 to 53.7% (Tab. 2, rows 2 & 10). Notably,
in easy episodes, oracle performance is an ambitious upper bound with an increase in success of
13.9% (58.7 )72.6%). For the hard (i.e. longer) episodes, the oracle components have a relatively
lower impact. This is quite intuitive as goal discovery errors are a more prominent error mode in
long-horizon episodes instead of last-mile navigation.

Improvements with Oracle-GD. Even if we assume a perfect variant of goal discovery system
from [1], we observe that performance saturates at 67.7% success (row 11, Tab. 2). Comparing rows
11 and 12, SLING can boost this asymptotic success rate by 18.5% (67.7 )86.2%).

Analysis: Why is SLING more robust? In Fig. 3a, we visualize the frequency distribution of
heading (from the agent to the target) in expert demonstrations [1] (‘train GT’) and that observed
at inference (‘test GT’). With no geometric structure, NRNS picks up the bias in training data, par-
ticularly, towards the heading of 0 (optimal trajectories entail mostly moving forward). Concretely,
72.2% of the training data is within [−15°, 15°]. This drops to 39.4% at test time when the last-mile
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Figure 3: (a) Significant distribution shift between training and test heading from agent to goal
(Sec. 4.3), (b) Navigation policies deployed on a robot in cluttered real-world scenes (Sec. 4.4).

navigation phase is reached (using the best-performing Oracle-GD). Quantified with (first) Wasser-
stein distance, W (Test GT,NRNS) = 0.0134 vs. W (Test GT,SLING) = 0.0034, demonstrating
SLING can better match the distribution at inference.

4.4 Physical Robot Experiments
We test the navigation policies on a TerraSentia [74] wheeled robot, equipped with an Intel®
RealSense™ D435i depth camera (further hardware details in Appendix E). The robot is initial-
ized in an unseen indoor environment and provided an RGB image-goal. We ran a total of 120
trajectories, requiring 30 human hours of effort, across three scenes and two levels of difficulty.
Following the previously collected simulation dataset [1], easy goals are 1.5-3m from the starting
location and hard goals are 5-10m from the starting location. Particularly, we test within an office
and the common areas in two department buildings, over easy and hard episodes (following defi-
nitions from [1]). The physical setup (office) is shown in Fig. 3b. As in simulation, the agent is
successful if it executes stop action within 1m of the goal. Examples of the image-goal utilized in
physical robot experiments and precautions taken are included in Appendix E.

As shown in Tab. 3, for sim-to-real experiments, we base the goal discovery system on the
NRNS model. We choose NRNS as the authors published an instantiation trained exclusively
on real-world trajectories, particularly, RealEstate10K [14] (house tours videos from YouTube).

Easy Hard
Method Succ↑ SPL↑ Succ↑ SPL↑
NRNS [1] 40.0 37.7 3.3 3.3
+ SLING 56.6 53.7 20.0 19.3

Table 3: Results in real-world scenes.

In preliminary experiments, we verified that this NRNS
instantiation outperformed its simulation counterpart. For
a direct comparison, in SLING + NRNS-GD, we utilize
the same goal discovery system but add our switching
and last-mile navigation system (SLING) around it. With
SLING, we improve performance from 40.0% success to
56.6%. The gains become more prominent as the task horizon increases, leading to an improvement
in success rate from 3.3% to 20.0%. The large gains in hard episodes (which are exploration heavy)
are accounted to SLING’s better explore )exploit switch and SLING’s last-mile navigation system
that is not biased to zero heading (particularly important for curved and long episodes).

5 Conclusion
In this work, we identify and leverage the geometric structure of last-mile navigation for the chal-
lenging image-goal navigation task [1]. With analysis of data distributions, we demonstrate that
learning from expert demonstrations may lead to developing a bias. Being entirely complementary
to prior work, we demonstrate that adding SLING leads to improvements across data splits, episode
complexity, and goal discovery policies, establishing the new state-of-the-art for image-goal navi-
gation [1]. We also transfer policies trained in simulation to real-world scenes and demonstrate sig-
nificant gains in performance. Further improvements in the switching mechanism, neural keypoint
features, visual representations from view augmentations, etc. complement our proposed approach
to help improve performance in future work.

Like any method, SLING has several aspects where follow-up works can improve on. We list them
explicitly: (1) Our method is limited by mistakes in matching correspondences. (2) We add addi-
tional parameters that need to be tuned. (3) We make a single prediction for last-mile navigation. (4)
We assume access to depth and pose information. More details of these aspect as well as a discussion
on pose errors, depth noise, and the nuanced image-goal navigation definition in Appendix J.
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Appendix – Last-Mile Embodied Visual Navigation

In this Appendix, we include additional details about the following:

A Implementations details of SLING and sensors used for experiments in AI Habitat.
B Goal Discovery modules used for exploration in SLING as well as Image-Goal Navigation

Solvers.
C Extended results on the Gibson-straight and MP3D-straight dataset folds.
D Experimental setup used to compare SLING’s geometric switch with a neural based switch

in Hahn et al. [1].
E Hardware configuration and visualizations of real-robot experiments.
F Further results on the curved data folds, ablations, and across multiple seeds.
G Final distance to goal for top-performing baselines.
H ‘Stop’ budget to show the potential of last-mile navigation (following [46]).
I SLING applied to best prior methods operating on panoramic images.
J Further analysis of the limitations of SLING.

Code of SLING with DDPPO-GD and OVRL-GD:
� https://github.com/Jbwasse2/SLING

Code of SLING with Straight-GD, NRNS-GD, and Oracle-GD:
� https://github.com/Jbwasse2/SLING/tree/nrns

A Implementation Details of SLING

Here we include finer details of SLING that we deferred from the main paper. It was straightforward
to connect prior baselines with SLING (∼ 100 lines of additional code) as prior baselines are reused
largely. We were able to test SLING on the robot without any online fine-tuning in the real world.

Input configurations (Extending Sec. 4.1) At every time step the agent receives an RGB image,
depth image, and the pose of the agent. Policies that are based on NRNS-GD and Straight-GD,
following prior work [1], the images are given as 640 × 480 with a FoV of 120°. Policies that are
based on OVRL-GD and DDPPO-GD, for a head-on comparison, the agent is given 128×128 images
with a FoV of 90°. The pose is given as the position and heading of the agent in the environment.

Depth noise. We use the Redwood depth noise model [73] to insert noise into the depth image. For
the pose noise, we follow the convention from prior work [1, 3], for a direct and fair comparison.

Pose noise. Prior work [66] built a Gaussian mixture model to capture pose noise from a real-world
LoCoBot. We take the same error model, sample from it, and add the sampled noise to the agent’s
pose.

Local policy (Extending Sec. 3.3) For a fair comparison, we use the same local policy as prior
visual navigation works [1, 66]. The local policy takes distance and heading to create a waypoint
to navigate to. Building over (near-solved) setting of point-goal navigation, and a fast marching
method to build a local map, the agent can localize itself and the goal and navigate towards it.

Additional hyperparameters. Beyond the hyperparameters of goal discovery modules (Straight-
GD [61], DDPPO-GD [11, 6], NRNS-GD [1], OVRL-GD [6], and Oracle-GD), our last-mile navi-
gation module introduces only a few hyperparameters which we include in Tab. 4. Note that we use
different # of matches (50 in SLING + NRNS-GD vs. 20 in SLING + OVRL-GD) because the dif-
ferent methods use different input image sizes. No automated or grid-search tuning was conducted
to find these hyperparameters.

B Goal Discovery Systems and Image-Goal Navigation Solvers
(Extending Sec. 4.2 and Sec. 3.2)

The goal discovery modules, that show the compatibility and efficacy of SLING, are utilized
in Sec. 4. Next, we include additional details for these.
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Table 4: Key hyperparameter choices for SLING.
Hyperparamter Value

last-mile navigation module

Min # of Matches for explore )exploit switch (for NRNS/Straight) 50
Min # of Matches for for explore )exploit switch (OVRL) 20
Max Predicted Distance 4 meters
Confidence threshold for feature matcher module [52] 0.5

Behavior Cloning with Spatial Memory. Applies imitation learning (IL) wherein Ia and Ig are
represented with ResNet18 [75]. Moreover, using the depth map Da, the observations are repre-
sented as a spatial metric map (found to be effective across embodied AI tasks [66, 46]).

Behavior Cloning with GRU. Another IL baseline where the observations at each time step are en-
coded identically to the above. However, instead of the spatial metric map, a GRU [70] is employed
(CNN-RNN architectures have been effective for semantic navigation [76, 77, 23, 78]).

Zero Experience Replay (ZER) [5]. A recent plug-and-play RL policy trained using rewards ob-
tained from moving closer to the goal and looking towards it, as well as view augmentation. The
authors shared metrics over the folds of the benchmark [1], particularly Gibson-curved and cross-
domain transfer results on MP3D, which we include in Tab. 1.

DDPPO [11], NRNS [1], OVRL [6]. These methods have been described as part of goal discovery,
see Sec. 3.2. For DDPPO, we report results from Hahn et al. [1], trained for 100M steps (10x more
compute than NRNS). For NRNS, we report the reproducible metrics from their official implemen-
tation (differs slightly from the paper [1]). At the time of submission, OVRL is the best-performing
method on Gibson-curved fold of the benchmark [1]. For OVRL, we requested their checkpoints
and re-evaluated them to report detailed metrics across easy-medium-hard folds.

DDPPO-LMN DDPPO [11] is a widely-adopted end-to-end deep RL baseline for embodied AI
tasks [18, 10, 6] in AIHabitat [16]. We train DDPPO, exclusively for last-mile navigation. This
last-mile navigation DDPPO (termed DDPPO-LMN) was trained on agents initialized at most 3m
from the goal. DDPPO-LMN was trained to convergence on these trajectories over 400M steps, in
the Gibson scenes. For a fair comparison, we allow DDPPO-LMN to use the same explore )exploit
switch as SLING.

Straight-GD. Following the strategies of robot vacuums and studies in [61], this exploration module
moves straight till it collides with an obstacle and then turns right (15◦). A collision is estimated
if, after completing an action, the pose difference between the agent’s movement and its expected
displacement is less than 0.1m.

NRNS-GD. As introduced by Hahn et al. [1], NRNS utilizes four graph convolution layers to extract
an embedding from the topological map. The extracted graph embedding (of size 768) along with the
goal embedding are fed into a linear layer which predicts the distance estimate from the unexplored
nodes to the goal. The next node that the agent navigates to is the node that minimizes this distance
plus the distance from the agent to the node. We remove redundant nodes from being added to the
topological map, which led to improved performance.

DDPPO-GD. For DDPPO-GD, we used the trained checkpoint we obtained from the OVRL [6]
authors, added SLING over it and evaluated it on different data folds. The DDPPO agent was
trained for 500M (NRNS [1] train for a max of 100M) steps over RGB observations on the episode
dataset from [79].

OVRL-GD. For our OVRL experiments, we use the pretrained visual encoders provided by OVRL’s
authors. The downstream policy is trained using DDPPO on either the MP3D episode dataset
(matching [1]) or the Gibson episode dataset (following [79]) for their respective experiments. We
match OVRL’s [6] training setup by using a set of 32 GPUs with 10 episodes each and train the agent
for 500M steps. Each worker is allowed to collect up to 64 frames of experience in the environment
and then trained using 2 PPO epochs with 2 mini-batches, with a learning rate of 2.5 x 10−4.

Oracle-GD. This has the same architecture as NRNS-GD from Hahn et al. [1], where the agent
builds a topological map to represent the environment. However, this method has privileged access,
particularly, to the perfect distances from each node in the map to the goal. The planner will then
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deterministically navigate the agent to the node in the map that has the lowest distance to the goal.
We also found additional tweaks and edits to improve performance: (1) removing the agent to node
distance and (2) removal of redundant nodes in the topological map.

Importantly, even when using Oracle-GD for goal discovery, the last-mile navigation modules do
not have access to the ground truth distance to the goal. Furthermore, the oracle does not use its
information to switch between goal discovery and last-mile navigation. So there is still a long way
to perfect navigation, despite using a Oracle-GD.

C Results on Straight Data Folds (Extending Sec. 4.3)

In Tab. 5, we supplement the results of Gibson-curved and MP3D-curved (from Tab. 1 and Tab. 8),
to include takeaways based on the straight counterparts. ZER [5] does not report results on the
straight split, hence, could not be included in Tab. 5.

Table 5: Results for ‘Gibson-straight’ and ‘MP3D-straight’ episodes. Note the significant gains
by adding SLING to prior works. SLING + NRNS-GD performs the best on Gibson-straight and
SLING + Straight-GD performs best on MP3D-straight.

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

Dataset = Gibson-straight

1 BC w/ Spatial Memory [69] 12.5 12.1 24.8 23.9 11.5 11.2 1.3 1.2
2 BC w/ GRU State [69, 70] 19.5 18.7 34.9 33.4 17.6 17.0 6.0 5.9
3 DDPPO [11] (from [1]) 29.0 26.8 43.2 38.5 36.4 34.8 7.4 7.2
4 OVRL [6] 44.9 30.0 53.6 34.7 48.6 33.3 32.5 21.9
5 NRNS [1] 47.3 39.8 70.1 62.7 50.7 41.5 21.2 15.4
6 SLING + Straight-GD 63.5 55.5 84.3 79.0 65.6 57.3 40.6 30.2
7 SLING + DDPPO-GD 38.6 26.0 54.9 39.5 41.0 27.2 20.0 11.3
8 SLING + OVRL-GD 58.1 42.5 71.2 54.1 60.3 44.4 43.0 29.1
9 SLING + NRNS-GD 68.4 58.0 85.0 76.8 71.3 60.6 49.0 36.6

Dataset = MP3D-straight

10 BC w/ Spatial Memory [69] 13.3 12.7 25.8 24.8 11.3 10.6 3.0 2.9
11 BC w/ GRU State [69, 70] 15.7 15.4 30.2 29.5 12.7 12.4 4.4 4.3
12 DDPPO [11] (from [1]) 27.4 24.5 36.4 30.8 33.8 31.4 12.0 11.5
13 OVRL [6] 52.6 39.4 69.5 54.0 51.7 39.2 36.7 25.0
14 NRNS [1] 36.7 30.2 56.9 49.2 33.7 27.1 19.6 14.4
15 SLING + Straight-GD 61.3 54.3 83.0 77.9 60.2 52.3 40.9 32.9
16 SLING + DDPPO-GD 2 31.7 21.4 49.6 36.2 31.4 20.1 14.2 7.9
17 SLING + OVRL-GD 58.3 47.1 78.8 68.5 58.7 46.3 37.4 26.5
18 SLING + NRNS-GD 60.6 49.6 82.0 76.1 59.1 46.5 40.8 26.3

State-of-the-art performance also on straight data folds. Similar to the curved results, utilizing
SLING with previous goal discovery modules results in the highest performance across the Gibson-
straight and MP3D-straight data folds. Over previous state-of-the-art (NRNS [1]), we improve the
success rate by 21.1% (rows 5 & 9 under overall success) on Gibson and by 24.6% (rows 14 & 15
under overall success) on the MP3D dataset.

SLING significantly boosts all prior policies. On the Gibson dataset, using SLING improved the
success rate on NRNS by 21.1% (rows 5 and 9), on DDPPO by 9.6% (rows 3 and 7), and OVRL by
13.2% (rows 4 and 8). Similar trends hold for the MP3D dataset. Quite surprisingly, even using the
very simple Straight-GD with SLING (row 6) works really well for the straight fold. Note that this
straight-exploring agent outperforms all other neural policies on MP3D.

2Due to limited compute, we were unable to retrain DDPPO-GD from scratch. Therefore, we use DDPPO-
GD trained on Gibson, without SLING this model had an overall success and SPL of 9.0% and 4.4% respec-
tively.
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D Details of Switch Experiment (Extending Sec. 4.3)

In Sec. 4.3, under ‘Geometric switches are better’, we presented that our switches are more accu-
rate. Particularly, SLING’s explore )exploit switch is 92.0% accurate and MLP switch [1] is only
at 82.1%. Also, SLING exploit )explore switch is 84.1% accurate while NRNS doesn’t have such
a recovery switch. These are summarized in Tab. 6. Next, we provide the deferred details of this
study and evaluation data.

We sampled 500 image pairs per scene – 250 positives and 250 negatives for last-mile navigation.
These are sampled randomly from 13 test environments (a total of 6500 image pairs). What is a
positive for last-mile navigation? This is not well defined in prior works [1, 3, 4]. We say two views
are positive (for last-mile navigation), if they are (1) less than 3m apart, (2) the angular difference
is less than 22.5°, and (3) the ratio of the geodesic distance over the euclidean distance is less than
1.2. An example of a positive and negative pair for last-mile navigation is visualized in Fig. 4a
and Fig. 4b.

(a) Positive image pair (b) Negative image pair
Figure 4: Positive and negative pairs for last-mile navigation. (a) The given image pair is similar
(or positive) as the views are close and have significant overlap. (b) The image pair is dissimilar
(or a negative) because they were taken in different rooms (their euclidean distance and geodesic to
euclidean distance ratio are quite high (> 1.2).

Table 6: Comparing accuracy of switches. Our explore )exploit simple switching mechanisms are
more accurate than MLP switches [1].

Switching Mechanism Explore )Exploit Accuracy Exploit )Explore Accuracy

MLP switch from NRNS [1] 82.1 N/A
SLING switch 92.0 84.1

E Robotic Experiments (Extending Sec. 4.4)

While we included all major real-robot results in the main paper (Sec. 4.4), we deferred several
details, which we describe next.

Sensing details. The TerraSentia robot utilizes an Intel® RealSense™ D435i depth camera with a
horizontal and vertical FoV of 69° and 42°, respectively. The depth image is spatially aligned to
the RGB image. When using Robot Operating System (ROS), the RGB and depth images are not
necessarily published at the same time. Therefore, RGB and depth images are paired with the closest
temporal message. To obtain the pose estimate, we utilize ORB-SLAM2 [56].

Safety. In order to protect the motors on the robot from getting damaged, and to make the image-
goal task more realistic, we stop the robot when it crashes into an obstacle. After stopping we take
the measurements needed to acquire the reported metrics.

Nonlinear model predictive control. Our real-robot system deploys Nonlinear Model Predictive
Control (NMPC) [80] for the robot to execute actions. We utilize skid-steer dynamics to model the
behavior of the TerraSentia. The controller optimizes the cost function consisting of penalties for
errors between the robot’s states and states up to and including the final estimation state, and the
magnitude of the control input.

Environments and examples. We choose a diverse set of three scenes for our real-robot study
including a total of 120 demonstrations. These environments are challenging, containing diverse
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layouts and furniture, several obstacles, varying lighting conditions, long hallways, and visually-
confounding common spaces (due to repeated patterns.) We show qualitative examples for each
scene, particularly, a reconstruction from the robot, third-person views to show the scene, and tra-
jectory examples. These trajectories and reconstructions were not used for real-world robotics ex-
periments. They are strictly added for visualization purposes. The office, department1, and
department2 environments are visualized in Fig. 5, Fig. 6, and Fig. 7, respectively.

F Additional Results for Gibson-curved and MP3D-curved
(Extending Sec. 4)

We supplement the results on the curved dataset. Particularly, we include ablations of SLING +
OVRL-GD (Tab. 7), MP3D curved episodes (Tab. 8), and multi-seed runs (Tab. 9).

Ablation results on OVRL (Extending Tab. 2). We performed several ablations (see Sec. 4.2)
on the SLING + NRNS-GD method in Tab. 2. We test the same on the SLING + OVRL-GD in
Tab. 7. Results follow a trend similar to SLING + NRNS-GD, with performance drops when key
components of SLING are taken away. The biggest drop (overall success drop from 55.4 )37.9)
is observed without our switches i.e. replacing our explore )exploit switch with MLP switch [1]
and removing the exploit )explore switch (useful for error recovery). Notably, our method shows
resistance to noise with an SPL change of +0.2% (rows 2 and 8) when depth noise is added. Unlike
the NRNS-GD counterpart, OVRL-GD goal discovery module is quite less resilient to pose noise.

Table 7: SLING + OVRL-GD ablations on ‘Gibson-curved’ episodes. Ablations demonstrate
the need for using two switches as well as utilizing learned features. Further testing demonstrates
SLING + OVRL-GD is resilient to sensor noise.

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

1 OVRL [6] 45.6 28.0 53.6 31.7 47.6 30.2 35.6 21.9

2 SLING + OVRL-GD 54.8 37.3 65.4 45.7 59.5 40.6 39.6 25.5
3 w/ MLP Switch 43.5 18.0 50.9 19.5 46.0 21.7 31.9 16.3
4 w/ MLP Switch w/o Recovery 37.9 16.7 47.7 18.1 43.0 21.3 28.2 15.2
5 w/o Neural Features 53.7 34.6 64.0 41.9 56.9 36.8 40.2 25.2
6 w/ Pose Noise 46.6 29.2 55.1 33.0 50.4 33.0 34.4 21.5
7 w/ Pose & Depth Noise 46.0 28.4 54.7 33.1 49.5 31.2 33.8 20.9
8 w/ Depth Noise 55.8 37.6 67.6 45.9 58.1 40.3 41.8 26.7

Additional in-domain MP3D results (extending Tab. 1). Consistent with previous results, SLING
improves performance across several methods (compare rows 3 vs. 7, 4 vs. 8, and 5 vs. 9 of Tab. 8).
Results for ZER are not included as they do not present results for this split.

Table 8: Results for ‘MP3D-curved’ episodes. Extending Tab. 1, adding SLING to prior works
improves navigation results.

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

Dataset = MP3D-curved

1 BC w/ Spatial Memory [69] 2.2 1.9 4.9 4.2 1.4 1.2 0.4 0.3
2 BC w/ GRU [69, 70] 1.3 1.1 3.1 2.6 0.8 0.7 0.1 0.0
3 DDPPO [11] (from [1]) 12.9 10.0 17.9 13.2 15.0 12.1 5.9 4.8
4 NRNS [1] 15.5 7.4 23.1 10.8 15.1 7.3 8.4 4.1
5 OVRL [6] 41.6 24.4 52.4 35.2 42.6 26.3 29.7 16.9
6 SLING + Straight-GD 25.3 10.8 31.1 11.9 27.2 12.1 17.7 8.5
7 SLING + DDPPO-GD 3 27.1 15.8 41.1 25.3 27.7 15.5 12.6 6.5
8 SLING + NRNS-GD 32.6 14.9 43.2 19.7 32.5 15.1 22.1 9.9
9 SLING + OVRL-GD 46.7 30.1 62.6 41.1 48.4 31.5 29.2 17.7
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Table 9: Multi-seed runs. Mean and standard deviation of three runs with random seeds.
Overall Easy Medium Hard

Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑
Dataset = Gibson-curved

SLING + DDPPO-GD 39.4 ± 2.5 24.8 ± 2.3 52.8 ± 2.4 35.2 ± 2.8 43.4 ± 2.6 27.1 ± 2.9 22.0 ± 2.9 12.0 ± 1.4
SLING + OVRL-GD 56.3 ± 2.4 37.3 ± 0.7 66.6 ± 2.0 45.0 ± 0.7 61.2 ± 3.8 41.5 ± 1.7 41.1 ± 1.6 25.4 ± 0.8

Table 10: Distance to goal decreases with SLING. Adding SLING to previous goal discovery
methods decreases their average distance from the final agent location to the goal.

Method Overall Final Dist. ↓ Easy Final Dist. ↓ Med Final Dist. ↓ Hard Final Dist. ↓
DDPPO 3.05 2.28 2.75 4.11
SLING + DDPPO-GD 2.61 1.68 2.18 3.96
NRNS 2.96 1.99 2.74 4.15
SLING + NRNS-GD 2.42 1.41 2.10 3.75
OVRL 2.43 1.58 2.12 3.59
SLING + OVRL-GD 2.17 1.28 1.70 3.52

Multi-seed runs for OVRL-GD and DDPPO-GD (Extending Tab. 1). In this experiment we ran
SLING + OVRL-GD and SLING + DDPPO-GD on 2 more seeds and present the results in Tab. 9.
We see a slight improvement in the performance of both of the methods compared to the results
presented in Tab. 1. Note that Yadav et al. [6] report overall success metrics and conduct a similar
robustness study with 3 random seeds. They report a similar standard deviation for OVRL of 2.7%
in overall success rate (SLING + OVRL-GD is 2.4%) and 1.7% in SPL (SLING + OVRL-GD is
0.7%).

G Final Distance to Goal for Top-Performing Baselines (Extending Sec. 4.3)

Recall, the final distance to goal metric reports the distance, from agent to goal, at the end of an
episode. This metric is averaged across test episodes and reported in Tab. 10.

Across DDPPO, NRNS, and OVRL, consistent trends hold. First, SLING significantly reduces the
final distance to goal. Next, the final distance to goal is much lower than the initial distance to the
goal. As stated in averages, base OVRL starts ∼2.25m from the goal in easy episodes (1.5-3m) and
reaches 1.58m from it, starts ∼4m from the goal in medium episodes (3-5m) and reaches 2.12m
from it, and starts ∼7.5m from the goal in hard episodes (5-10m) and reached 3.59m from it. The
final trend we find is that the final distance to goal is within range of last-mile navigation. Showing
that last-mile navigation is a challenge for many previous methods.

H Potential of Last-Mile Navigation – ‘Stop’ Budget Study (Extending
Sec. 2 and Sec. 3.4)

Recall that the image-goal navigation task can be completed either by calling the ‘stop’ action, or
having the agent reach the maximum number of steps in an episode. In this study, we evaluate if last-
mile navigation is a prominent error mode for image-goal navigation like it has been shown for other
datasets and tasks [48, 46, 10]. Following the corresponding study for multi-object navigation [46],
we study the performance of NRNS [1] as we increase the budget of the ‘stop’ action errors. This
stop budget allows the agent to continue last-mile navigation beyond a hard failure, until this ‘stop’
budget is exhausted. As shown in Tab. 11, with just a budget of one, success increased from 28%
to 51%. This shows that improving the last-mile of navigation and recovering from mistakes has
immense potential that SLING taps into.

3Due to limited compute, we were unable to retrain DDPPO-GD from scratch. Therefore, we use DDPPO-
GD trained on Gibson, without SLING this model had an overall success and SPL of 7.5% and 3.2% respec-
tively.
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Table 11: Results testing tolerance towards. Adding an increasing ‘stop’ budget causes the agent
to perform better. This shows that being able to recover from mistakes has great potential to improve
navigation success. †denotes that we edited the NRNS implementation to prevent redundant nodes
from being added to the topological map. This leads to clear gains at no cost.

‘Stop’ action budget Overall Success ↑ Overall SPL ↑
0 from [1] 21.7 8.1
0 (reproduced†) 27.8 10.7
1 50.8 17.0
2 68.4 21.4
3 81.2 25.1
4 90.9 28.3
5 96.2 30.0
6 98.8 31.0
7 99.8 31.2
8 100.0 31.3

I SLING with Panoramic Images (Extending Sec. 4.3)

Image-Goal navigation performance is highly correlated to the field-of-view (FoV) of the agent.
This is intuitive as an agent that sees more about the environment and associated context in one
observation will do better. Methods like NTS [3] and VGM [41] operate on panoramic observations
and enjoy this advantage. However, other methods benchmarked in most prior works [6, 11, 5, 1]
and ours operated on non-panoramic images. In order to have a fair comparison to methods that
use panoramic images, we retrain OVRL with panoramic images and then apply SLING to this
new model. To get SLING to work with panoramic images, we take the front-facing subsection
of the panoramic goal and agent image and give it to SLING. For this experiment, we once again
utilize the start and goal images on the Gibson-curved split, but with panoramic images. The results
of this experiment are shown in Tab. 12 where we demonstrate that utilizing SLING with OVRL-
GD yields the overall state-of-the-art on image-goal navigation while utilizing panoramic images.
Notably, SLING improves the overall success and SPL of OVRL by 1.9% and 1.0% respectively
(rows 2 and 3).

Table 12: Results on the Gibson-Curved Panoramic dataset. Adding SLING to OVRL allows
us to improve their model to yield the new state-of-the-art when panoramic images are used for the
image-goal navigation task.

Overall Easy Medium Hard
Method Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑ Succ↑ SPL↑

1 VGM [41] 74 51 81 46 79 60 62 47
2 OVRL [6] 76.7 59.4 88.8 71.8 78.6 62.9 62.9 43.6
3 SLING + OVRL-GD 78.6 60.4 90.1 72.9 82.1 65.0 63.7 43.4

J Limitations (Extending Sec. 5)

First, we rely on correspondences i.e. mistakes in keypoint feature extraction or matching failures
directly lead to errors in predicted actions (neural features [65] reduce this effect). Second, as we add
structure to the last-mile navigation problem, we also add design parameters like distance threshold
dth and correspondence threshold nth. The latter we tuned depending on the size of the image
(640×480 in NRNS and 128×128 in OVRL). Third, currently in SLING, we utilize only the agent’s
current observation for estimating distance and heading. Using temporal smoothening could make
our prediction more robust.

Following the baselines proposed in the benchmark [1], we also assume access to depth and pose
sensors. Studies in [5] also show improvements when using depth and pose sensors. For physical
experiments, the robot comes equipped with an inexpensive depth camera and uses SLAM [56] for
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pose estimations. While we demonstrate robustness to sensor noise (Tab. 2), in future work, we
could try relaxing this assumption with a depth prediction module.

Pertinent to physical experiments, other limitations are:
(1) Errors in pose prediction when the keypoints are located in a small area of the image. However,
this can be fixed heuristically with the exploit )explore switch.
(2) Large depth noises; this could be managed with various denoising techniques [81, 82].
(3) SLING must directly observe the goal image in order to have enough overlap to navigate to it.
Because the current image-goal navigation success criterion only requires the agent to be within
1 meter from the goal, we can not take full advantage of the task definition. However, we assert
that looking at the image-goal would be more aligned with how a human would attempt image-goal
navigation.
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(a) Scene snapshots

(b) SLING example trajectories.

(c) NRNS example trajectories.

Figure 5: Office scene. The map size is approximately 30m by 11m. (a) office equipment
serves as obstacles in this scene (b,c) Topdown map reconstruction with RTAB-Map of image-goal
navigation task.
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(a) Scene snapshots

(b) SLING examples

Figure 6: Department1 scene. The Map size is approximately 95m by 32m (large width due to
the LIDAR going through a door in the upper left side of image). (a) long corridors make images
agent’s views quite similar and make navigation challenging (b) Topdown map reconstruction with
RTAB-Map of image-goal navigation task.
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(a) Scene snapshots

(b) SLING examples

(c) NRNS examples.

Figure 7: Department2 scene. The map size is approximately 42m by 22m for the shown floor.
(a) several furniture items and specular floors are challenging for navigation, (b,c) Topdown map
reconstruction with RTAB-Map of image-goal navigation task.
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