
x

P
ro
b
a
b
il
it
y
d
en
si
ty

fu
n
ct
io
n

α = 0

Prior, p
Posterior, qα

x

α = 3

x

α = 100

R
(x
)
=
−
0.
5
∗(
x
−

5)
2

Figure 5: Visualization of Example 1 for three values of α, showing interpolation between no
update and towards the Newton update.

A Extended Discussion Points and Results

This section discusses specific details not covered at length in the main section.

Posterior policy iteration as optimization. For clarity, we can ground inference-based optimiza-
tion clearly by considering Gaussian inference and quadratic optimization (Example 1).

Example 1. (Newton method via Gaussian inference). Consider minimizing a function f(x) from
a Gaussian prior p(x) = N (µi,Σi). Considering a second-order Taylor expansion about the
prior mean, f(x) ≈ f(µi) +∇xf(µi)(x − µi) + 1

2 (x − µi)>∇xxf(µi)(x − µi), the Gaussian
pseudo-posterior qα(x) = N (µi+1,Σi+1) ∝ exp(−αf(x)) p(x) is

µi+1 = µi − αΣi+1∇xf(µi), Σi+1 = (Σi + α∇2
xxf(µi))

−1.

As α→ 0, qα→ p, while as α→∞, the mean update tends to the Newton step,

µi+1 → µi −∇2
xxf(µi)

−1∇xf(µi).

Therefore, α acts as a learning rate and regularizer, with repeated inference performing regularized
Newton decent. This regularization is beneficial for non-convex optimization, as the Hessian may be
negative definite.

Minimum relative entropy problems. To motivate REPS as a form of constrained Gibbs posterior,
we reverse the objective and constraint, which yields the minimum relative entropy problem (Lemma
1). The posterior of this problem is the same as REPS and the temperature is also a Lagrangian
multiplier, but the constraint is now defined by the expectation value rather than the KL divergence.

x

P
ro
b
ab

il
it
y
d
en
si
ty

fu
n
ct
io
n

α = 0

Prior, p
Next prior

x

α = 3

x

α = 100

R
(x
)
=
−
0.
5
∗(
x
−

5)
2

Im
p
or
ta
n
ce

w
ei
gh

ts
,
lo
g
q α

(x
)

Figure 6: Visualization of Example 1 for three values of α, using self-normalized importance
sampling. High values of α lead to the posterior collapsing around a few samples. Moreover,
compared to the Gaussian case, the update is limited to the support of the samples.

14

Lemma 1. (Minimum relative entropy [48]) Find q that minimizes the relative entropy from p, given
a function f that describes random variable x, minq DKL[q(x) || p(x)] s.t. Ex∼q(·)[f(x)] = f̂ .

The solution to this problem is q(x) ∝ exp(−λ>f(x))p(x), where λ is the Lagrange multiplier
required to satisfy the constraint. When p(x) is uniform, q(x) is a maximum entropy distribution.

Interestingly, in maximum entropy problems, function f defines the sufficient statistics of the ran-
dom variable. For our setting, f is based on the reward function (episodic return), which indicates
the reward objective is used to ‘summarize’ the random policy samples.

Rényi-2 divergence and the effective sample size. The LBPS objective uses the effective sample
size as a practical estimator for the exponentiated Rényi-2 divergence (Lemma 2).
Lemma 2. (Exponentiated Rényi-2 divergence estimator [51]) The effective sample size diagnostic
(N̂) is an estimate of the exponentiated Rényi-2 divergence for finite samples, as d2(p||q)/N ≈ N̂−1,

lim
N→∞

1

N

(
∑
n wq/p(xn))2∑
n wq/p(xn)2

=

∫
p(x)

q(x)
dx = expD2(p || q)−1 = d2(p || q)−1.

This result connects divergence-based stochastic optimization methods, such as REPS, to ‘elite’-
based stochastic solvers such as CEM, as the number of elites is equal to the effective sample size of
the weights, as discussed below.

Time Shifting with Gaussian Process We derive the multivariate normal posterior shifting update
introduced in Section 4, that is facilitated by continuous-time Gaussian process priors.
Proposition 1. Given a Gaussian process prior GP(µ(t),Σ(t)) and multivariate normal posterior
qα(at1:t2) =N (µt1:t2|R,Σt1:t2|R) for t1 to t2, the posterior for t3 to t4 is expressed as

µt3:t4|R =µt3:t4+ Σt3:t4,t1:t2νt1:t2 , Σt3:t4|R = Σt3:t4−Σt3:t4,t1:t2Λt1:t2Σ
>
t3:t4,t1:t2 , (7)

where νt1:t2=Σ−1
t1:t2(µt1:t2|R−µt1:t2) and Λt1:t2=Σ−1

t1:t2(Σt1:t2−Σt1:t2|R)Σ−1
t1:t2 .

Proof. For this update, we require the Gaussian likelihood N (µR|t1:t2 ,ΣR|t1:t2) that achieves the
posterior qα(at1:t2) given the prior p(at1:t2). UsingKt1:t2 = Σt1:t2Σ

−1
R|t1:t2

, we write the Gaussian
posterior update in the Kalman filter form

µt1:t2|R = µt1:t2 +Kt1:t2(µR|t1:t2 − µt1:t2),

Σt1:t2|R = Σt1:t2 −Kt1:t2ΣR|t1:t2K
>
t1:t2 .

We introduce ν and Λ to capture the unknown terms involving aR|t1:t2 w.r.t. at1:t2 and at1:t2|R,

νt1:t2 = Σ−1
R|t1:t2

(µR|t1:t2 − µt1:t2) = Σ−1
t1:t2(µt1:t2|R − µt1:t2),

Λt1:t2 = Σ−1
R|t1:t2

= Σ−1
t1:t2(Σt1:t2 −Σt1:t2|R)Σ−1

t1:t2 .

When extrapolating to the new time sequence, we use the Kalman posterior update again, but with
the prior for the new time sequence. This step computes the joint over old and new timesteps,
conditions on the objective (i.e. Bayes’ rule), and marginalizes out the old timesteps (see Equation
6), so

µt3:t4|R = µt3:t4+ Σt3:t4,t1:t2νt1:t2 ,

Σt3:t4|R = Σt3:t4−Σt3:t4,t1:t2Λt1:t2Σ
>
t3:t4,t1:t2 .

Using the geometric interpretation of the Kalman filter [83], this update can be seen as projecting
the solution from the previous sequence into the new time sequence, given the correlation structure
defined by the GP prior.

Augmented Cost Design versus Prior Design. Prior work enforces smoothness using an aug-
mented reward function term, e.g. −λs||at − at+1||2 per timestep [68]. For PPI, the PPI objective
also augments the reward objective with a KL term (Equation 3). For the Monte Carlo setting here,
this KL term is 1

α

∑
n w

(n)(logw(n) − log p(A(n))), where w(n)∝ exp(αR(n)). When p(A) is a

15

Gaussian process, the log probability has the familiar quadratic form, but this time applies to the
whole sequence A, due to the episodic setting. Independent white noise only applies a quadratic
penalty per action, due to its factorized covariance. A first-order Markovian GP would regularize
one-step correlations, as its inverse covariance is banded [84]. The squared exponential kernel, used
in this work, has infinite order [33] and a dense inverse covariance matrix and therefore regularizes
the whole sequence, which is why it was chosen to achieve smoothness.

Episodic or sequential inference? For the Monte Carlo setting, sequential Monte Carlo (SMC) [85]
is an obvious choice for inference given its connection to Bayesian smoothing methods. However,
we found that an SMC approach provided limited benefits for control. The variance reduction when
resampling decreases exploration from the optimization viewpoint.

Moreover, SMC smoothing reweighs the particles sampled in the forward pass, with O(N2T) com-
plexity for N particles [85]. Therefore, no exploration occurs during the backward pass, in contrast
to Gaussian message passing where smoothing performs Riccati equation updates on the state-action
distribution. When considering just sequential importance sampling for trajectories, we arrive at the
episodic case, as w(n)

T = exp
(
αr

(n)
T

)
w

(n)
T−1 = exp

(
α
∑T
τ=0 r

(n)
τ

)
.

Connection to rare event simulation and maximum estimators. The cross entropy method is
a popular and effective Monte Carlo optimizer [19]. It broadly works by moment matching an
exponential family distribution onto ‘elite’ samples. The elite samples are chosen according to
Pq(x)(f(x) > f∗), a rare event simulator, where improving upon f∗ is treated as the rare event. In
practice, elites are chosen by sorting the top k samples according to the objective. Our lower-bound
reflects CEM in two ways. One, the rare event inequality reflects the expected return bound used in
the LBPS objective. Secondly, the k in the top-k estimator matches the effective sample size, used
in LBPS and ESSPS. One can view CEM and IS approaches through their maximum estimators

Maxk[R] =

∑k
n=1Rn∑k
n=1 1

, Maxα[R] =

∑N
n=1 exp(αRn)Rn∑k
n=1 exp(αRn)

.

We can see that the SNIS expectation is equivalent to the Boltzmann softmax, used in reinforcement
learning [86]. Using k or α this estimator is bounded between the true maximum over the samples
and the mean. Therefore the estimators behave in a similar fashion when α is chosen such that the
ESS is k. The key distinction is the sparse and uniform weights of CEM vs. the posterior weights of
PPI methods, which seems to have an equal or more important influence on optimization, based on
the black-box optimization results.

Connection to mirror descent. Functional mirror descent for online learning optimizes a dis-
tribution q and introduces a Bregman divergence D for information-geometric regulation, i.e.
qi+1 = arg minq∈Q Ex∼q(·)[f(x)] + αiD[q || qi] [87]. The temperature typically follows a pre-
defined schedule that comes with convergence guarantees, e.g. αi∝

√
i, such that α→∞ as

i→∞ [88]. Considering Equation 3, the DMD view applies to our setting when using KL regu-
larization, so DMD view opens up alternative Bregman divergences for regularization.

B Extended Related Work

The methods presented in the main section have been investigated extensively in the prior literature.
This section provides a more in-depth discussion of the differences in approach and implementation.

Temperature tuning approaches. Across control-as-inference methods, the temperature value
plays an important role. By the construction of the policy updates, mis-specification of the temper-
ature leads overly greedy or conservative optimization. Table 1 provides a summary. A popular and
often effective approach is to tune a fixed temperature, as done in AICO [23] and MPPI [18]. However,
the optimization behavior depends the values of the objective, and nonlinear optimization methods
such as Levenberg–Marquardt and mirror descent suggest an adaptive regularization scheme may
perform better. Reward-weighted regression (RWR) [22], and later input inference for control (I2C)
[27], take a completely probabilistic view of the Gibbs likelihood and used a closed-form update to
optimize the temperature using expectation maximization. However, this update is motivated by the
probabilistic interpretation of the optimization, not the optimization itself, so there is no guarantee
this approach improves optimization, beyond the attractive closed-form update. Follow-up work
regulated optimization by normalizing the returns, using the range or standard deviation [64, 56].

16

Table 1: A review of different adaptive temperature strategies across episodic control-as-inference
methods and settings. We propose LBPS and ESSPS as optimization-driven methods with intuitive
hyperparameters.

Algorithm Method Description
MPPI [18], AICO [23] Constant α
PI2 [64], PoWER [56] Normalization ᾱ/(max[R]−min[R]), ᾱ/σR

RWR [22], I2C [37] EM αi+1 =
∑
n exp

(
αiR

(n)
i

)
/
∑
nR

(n)
i exp

(
αiR

(n)
i

)
REPS [47], MORE [17] KL bound arg minα ε/α+ 1

α log
∑
n exp(αR(n))

LBPS (this work) IS lower-bound arg maxα Eqα [R]− ER(δ, N̂α)

ESSPS (this work) ESS arg minα |N̂α −N∗|

While this resolved the objective dependency, it is a heuristic and not interpretable from the opti-
mization perspective. Later, REPS framed the update as a constrained optimization problem, subject
to a KL constraint [47, 9]. The temperature was them obtained by minimizing the Lagrangian dual
function. However, in practice this dual is approximated using Monte Carlo integration which lim-
its the constraint accuracy. Moreover, a hard KL constraint now requires a distribution-dependent
hyperparameter. This work introduces LBPS and ESSPS. LBPS optimizes a lower-bound of the
importance-sampled expected return, with the hyperparameter controlling greediness via the confi-
dence of the concentration inequality and therefore is objective- and distribution independent. ESSPS
bridges LBPS and CEM, optimizing for a desired effective sample size as an analogy to elite samples.
Finally, self-paced contextual episodic policy search has previously adopted the minimum KL form
of the REPS optimization problem, in order to assess the expected performance per context task [78].

Gaussian message passing methods. Using Bayesian smoothing of the state-action distribution,
trajectory optimization can be performed by treating a step-based objective analogously to the ob-
servation log likelihood in state estimation [23, 27]. While the control prior defined as tempo-
rally independent in prior work, the smoothing of the state-action distribution imbues an inherent
smoothness to the solution (e.g. Figure 6, [27]). Approximate inference can be performed using lin-
earization or quadrature, which, while effective are less amenable to parallelization and therefore do
not scale so gracefully to high-dimensional state and action spaces [27]. Moreover, these methods
require access to the objective function for linearization, rather than just rollout evaluations.

Mirror descent model predictive control. Mirror descent, used for proximal optimization, intro-
ducing information geometric regularization through a chosen Bregman divergence DΨ. Dynamic
mirror descent (DMD), motivates an autonomous update Φ to the optimization variable to improve
performance for online learning. DMD-MPC [46] incorporates this into an MPC scheme by incor-
porating an explicit time shift operator Φ, so θt+1 = Φ(θ), and θ = arg minθ∈Θ∇lt(θt)>θ +
Dψ(θ||θt). Unlike mirror descent, DMD-MPC does not consider an adaptive temperature strategy.
Moreover, it introduces CEM- and MPPI- like updates by explicitly transforming the objective and
preforming gradient descent, rather than estimating the posterior.

Path integral control. Path integral theory connects Monte Carlo esimations to partial differen-
tial equation (PDE) solutions [28]. Using this, path integral control is used to motivate sample-
approximation to the continuous-time Hamiltonian-Jacobian PDE. Crucially, the exponential trans-
form is introduced to the value function term to make the PDE linear, a requirement to path integral
theory. Path integral theory is limited to estimating a optimal action trajectory, given an initial state,
and requires several additional assumptions on the dynamics and disturbance noise [64]. Later, a
divergence-minimization perspective was applied to path integral methods, to produce algorithms
for more general settings and discrete time, referred to both as (information theoretic) IT-MPC [10]
and also MPPI [89]. This alternative view is closer to PPI and no longer contains the key assumptions
that apply to path integral theory.

Variational Inference MPC Variational MPC [5] is the same posterior policy iteration scheme out-
lined in the main text. The key difference is a posterior entropy bonus, like MORE, added to the
objective

min
q

Eq[R] +
1

λ1
DKL[q || p] +

1

λ2
H[q].

17

This results, once reparameterized, in the usual posterior update with an annealing coefficient κ on
the prior

wn ∝ exp(αrn) p(an)−κ.

Due to hyperparameter sensitivity, this entropy regularization required a normalization step itself

p(a)−κ = exp (−κ log p(a))→ exp

(
−κ̄ log p−max log p

min log p−max log p

)
. (8)

As a result, the entropy regularization is dynamic in practice. The mechanism of this update is
to increase the weight of low-likelihood samples such that the entropy of the posterior increases.
In the ablation study, the effect of this regularization was relatively small with limited statistical
significance. The work also uses a Gaussian mixture model as the variational family for multi-modal
action sequences. As an MPPI baseline, the authors use PI2 for MPC with an adaptive temperature
through normalization with ᾱ set to 10.

Variational Inference MPC using Tsallis Divergence Adopting the ‘generalized’ variational infer-
ence approach, Wang et al. replace the KL divergence with the Tsallis divergence [66], resulting in
discontinuous, rather than exponential, expression for the posterior weights

wn ∝ max(0, 1 + (γ − 1)α rn)
1

γ−1 , γ > 0. (9)

In practice, like in the CEM, k elites are used to define the r∗ threshold

wn ∝
{

exp
(

1
γ−1 log

(
1− rn

r∗

))
if rn < r∗,

0, otherwise.
(10)

The resulting parameterization, essentially combines the CEM- and importance sampling ap-
proaches, using elites but weighing them through γ. For the implementation, the number of elites
and γ were tuned but kept constant during MPC. From the perspective outlined in this work, this
approach limits the effective sample size at a maximum value, but allows it to drop if there is suffi-
cient range in the elite returns. As a result, its optimization is greedier than CEM, resulting in better
downstream control performance. In the paper, the authors compare to MPPI with a static tempera-
ture and do not consider adaptive schemes. In theory, the Tsallis divergence could be combined with
LBPS to optimize γ adaptively.

Stein Variational Inference Model Predictive Control Stein variational gradient descent (SVGD)
is an approximate inference method for learning multi-modal posteriors parameterized by particles
and a kernel function, q(·) =

∑
n k(·,xn). The key quality of SVGD is the kernel, which provides a

repulsion force during learning to encourage particle diversity.

For control, SVGD can be used to infer multi-modal action sequence which exhibit high entropy for
exploration, as done in SV-MPC [65]. Due to the limitation of kernel methods with high-dimensional
inputs, the kernel is designed to be factorized in time and action. The kernel design is also Marko-
vian, so it considers the temporally adjacent variables as well, encouraging smoothness. This design
decomposes the kernel into the sum ofH(H−1)da one dimensional kernels forH timesteps. More-
over, extrapolation into the future is realized by copying the last timestep (i.e. a zero-order hold).
SVGD requires gradients of the loglikelihood, using backpropagation through the dynamics or Monte
Carlo estimates. SV-MPC has an additional learning rate hyperparameter and uses an independent
Gaussian action prior across timestemps.

18

Algorithm 1 Open-loop Episodic Monte Carlo Posterior Policy Iteration
Requires:
Markov decision process MDP, initial policy π1, posterior strategy GibbsPosterior, initial state s0.

1: for i← 1 to N do
2: Sample action sequences and associated parameters θ,A(n), θ(n) ∼ πi(·|s0)
3: Obtain returns R(n) ∼ MDP(A(n))
4: Compute importance weights, w← GibbsPosterior(R) to estimate qα(A|O)
5: Update policy πi+1 ← MProjection(w,θ), performing minπ DKL[qα || π]
6: end for

C Implementation Details

Algorithm 1 describes the general routine of Monte Carlo PPI. The specific GibbsPosterior up-
date must be chosen, e.g. REPS, PI2, MPPI, LBPS or ESSPS. CEM corresponds to uniform importance
weights applied to the elite samples in GibbsPosterior. By definition, MPPI has a fixed covari-
ance. For MPC, CEM methods reset their covariance each timestep. For actuator limits, we treat them
as properties of the dynamics, and later fit the posterior using the clipped actions. This recognizes
that the applied policy is not necessarily the same as the sampled one and is observed along with
the reward. For feature regression weights, clipping is applied but cannot be incorporated into the
fitting, as the model weights are being fit, which may explain its worse performance for MPC.

As done in REPS and MORE, the temperature optimization uses off-the-shelf minimizers, such as
those found in scipy.opt.minimize [90]. While REPS and MORE use gradient-based solvers such
as LBFGS-B, for LBPS and ESSPS, the brent method in scipy.opt.minimize scalar was found
to be slighly faster, presumably due to its quasi-convex objective (see Section F).

For the matrix normal distribution, a weighted maximum likelihood fit and sampling is very similar
to the normal distribution. Sampling a matrix normalMN (M ,K,Σ) is achieved using

X(n) = M +AW (n)B, K = AA>, Σ = B>B, W
(n)
ij ∼ N (0, 1).

The weighted maximum likelihood fit of the input covariance is computed using [91]

K =
∑
n wn(X(n) −M)(X(n) −M)>Σ−1, where

∑
n wn = 1.

For the feature approximation of the squared exponential kernel, we used RBF features and quadra-
ture RFFs (QRFF). RBF features require careful normalization in order to approximate the SE kernel at
the limiting case [33]. A d-dimensional RBF feature for a SE kernel approximation with lengthscale
l is defined as

φ(t) =
1√√
π dλ

exp

(
− (t− c)2

2λ2

)
,

where λ = l/
√

2. The d-dimensional centers c are linearly placed along the task horizon.

Quadrature random Fourier features require d = (2ν)k features for order ν and input dimension k.
Therefore, for time-series we require 2ν features where

φj(t) =

{
wj cos(ωjt) j ≤ ν
wj−ν sin(ωj−νt) ν < j ≤ 2ν

Gauss-Hermite quadrature provides points u and weights v for a given order, to be used form ap-
proximating integrals. In QRFFs, the Monte Carlo integration with Gaussian frequencies [60] is
replaced with quadrature. As a results, wi = 2vj/

√
π Incorporating the lengthscale, ωi =

√
2ui/l.

See Mutný et al. for a more in-depth description of QRFFs, including for higher-dimensional in-
puts [62].

A practical issue in stochastic search methods is maintaining a sufficiently exploratory search distri-
bution. In accordance with Bayesian methods, PPI methods maintain a belief and do not keep a fixed
covariance like MPPI. However, for some tasks it was found that the search distribution had insuffi-
cient variance to solve the task effecively, therefore, we introduced an adjustment to Equation 7 to

19

Algorithm n samples
16 128 1024

MPPI (white noise) 0.06 0.37 2.63
iCEM (coloured noise) 0.07 0.18 1.08
LBPS (SE kernel) 0.06 0.36 2.74
MPPI (SE kernel) 0.06 0.36 2.74
LBPS (RBF features) 0.06 0.37 2.79

Table 2: Wall-clock time (s) of one MPC calculation for HumanoidStandup-v2. Averaged over 10
timesteps and 5 seeds. Computation was performed on a AMD Ryzen 9 3900X 12-Core Processor
@ 3.8GHz, parallelized across 24 processes.

‘anneal’ the covariance, recognizing the the update subtracts a likelihood-based term from the prior.
Using

Σt3:t4,t3:t4|O = Σt3:t4,t3:t4 − γΣt3:t4,t1:t2Λt1:t2Σ
>
t3:t4,t1:t2 , 0 ≤ γ ≤ 1,

we perform standard PPI for γ= 1, but adopt an MPPI-like approach for γ= 0. For
HumanoidStandup-v2, γ= 0.5 was required to transition from standing to stabilization effectively.
Appendix D.3.4 provides ablation studies of this aspect.

Investigating the runtime of these methods, comparing iCEM, MPPI and LBPS in Table 2, PPI methods
are slower than CEM/iCEM, increasing with sample size. Rather than due to the α optimization or
kernel-based prior construction, the bottleneck is using all the samples in the matrix normal MLE step
for the covariance, computed using einsum operations on the sampled parameters. Based on this
study, one approximation to speed up PPI methods is use the ESS to reduce the number of samples
used in the matrix normal MLE step, pruning samples that have negligible weight, like in CEM.

20

D Extended Experimental Results
D.1 Black-box Optimization

k = 3 k = 8 k = 16

200 400 600

−6,000
−4,000
−2,000

0

R

Rosenbrock

200 400 600

−200
−150
−100
−50

Rastrigin

200 400 600

−600
−500
−400

Styblinski

200 400 600

−600
−400
−200

0

NoisySphere

200 400 600
10−2
10−1
100
101
102

k
l

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600

−300
−200
−100

0

e
n
t

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

0
10
20
30

Total samples

e
ss

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

Figure 7: Black-box optimization with CEM and Monte Carlo sampling, with 32 samples over 20
episodes, displaying quartiles over 25 seeds. k is the number of ‘elite’ samples.

N∗ = 3 N∗ = 8 N∗ = 16

200 400 600

−6,000
−4,000
−2,000

0

R

Rosenbrock

200 400 600

−200
−150
−100

Rastrigin

200 400 600

−650
−600
−550
−500

Styblinski

200 400 600

−600

−400

−200

NoisySphere

200 400 600
10−2
10−1
100
101
102

k
l

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600

−300
−200
−100

0

e
n
t

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

0
10
20
30

Total samples

e
ss

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

Figure 8: Black-box optimization with ESSPS and Monte Carlo sampling, with 32 samples over 20
episodes, displaying quartiles over 25 seeds. N∗ is the desired effective sample size.

21

ε = 0.1 ε = 1 ε = 10

200 400 600

−1

−0.5

0
·104

R

Rosenbrock

200 400 600

−300

−200

−100

Rastrigin

200 400 600

−650
−600
−550
−500
−450

Styblinski

200 400 600

−600

−400

−200

NoisySphere

200 400 600
10−2
10−1
100
101
102

k
l

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600

−300
−200
−100

0

e
n
t

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

0
10
20
30

Total samples

e
ss

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

Figure 9: Black-box optimization with REPS and Monte Carlo sampling, with 32 samples over 20
episodes, displaying quartiles over 25 seeds. ε is the KL bound.

δ = 0.1 δ = 0.5 δ = 0.9

200 400 600

−6,000
−4,000
−2,000

0

R

Rosenbrock

200 400 600

−200
−150
−100

Rastrigin

200 400 600

−650

−600

−550

Styblinski

200 400 600

−600

−400

−200

NoisySphere

200 400 600
10−2
10−1
100
101
102

k
l

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600
10−2
10−1
100
101
102

200 400 600

−300
−200
−100

0

e
n
t

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

−300
−200
−100

0

200 400 600

0
10
20
30

Total samples

e
ss

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

200 400 600

0
10
20
30

Total samples

Figure 10: Black-box optimization with LBPS and Monte Carlo sampling, with 32 samples over 20
episodes, displaying quartiles over 25 seeds. δ is the probability of the lower bound.

22

D.2 Policy Search

REPS LBPS ESSPS

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0

0.5

1

Rollouts

S
u
cc
es
s
ra
te

BallInACup

Figure 11: Success rate for policy search with RBF features over 20 seeds, using 128 rollout samples
per episode. Displaying uncertainty in quartiles

REPS LBPS ESSPS

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500

0

0.5

1

Rollouts

S
u
cc
es
s
ra
te

BallInACup

Figure 12: Success rate for policy search with RFF features over 20 seeds, using 128 rollout samples
per episode. Displaying uncertainty in quartiles

23

D.3 Model Predictive Control

CEM LBPS ESSPS MPPI PI2

16 32 64 128 256 512 1024
100

101

102

103

Rollout samples

e
ss

HumanoidStandup-v2

16 32 64 128 256 512 1024

Rollout samples

door-v0

16 32 64 128 256 512 1024

Rollout samples

hammer-v0

Figure 13: Average ESS for Monte Carlo MPC with white noise priors. Displaying quartiles over 50
seeds.

iCEM (coloured noise) LBPS (SE kernel) ESSPS (SE kernel)
MPPI (smooth actions) MPPI (smooth noise) MPPI (SE kernel)

16 32 64 128 256 512 1024
100

101

102

103

Rollout samples

e
ss

HumanoidStandup-v2

16 32 64 128 256 512 1024

Rollout samples

door-v0

16 32 64 128 256 512 1024

Rollout samples

hammer-v0

Figure 14: Average ESS for Monte Carlo MPC with smooth noise priors. Displaying quartiles over
50 seeds. iCEM and ESSPS both have an ESS of 10, due to iCEM having 10 elites.

24

D.3.1 MPC with finite feature approximations

LBPS ESSPS RFF RBF

0

0.5

1

·105
R
et
u
rn
↑

HumanoidStandup-v2

0

2,000

4,000

door-v0

0

1

2

3 ·104
hammer-v0

16 32 64 128 256 512 1024

0
20
40
60
80

100

Rollout samples

S
m
o
o
th
n
es
s↓

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

Figure 15: Monte Carlo MPC with with RBF and RFF policies. Displaying quartiles over 50 seeds.

16 32 64 128 256 512 1024
100

101

102

103

Rollout samples

e
ss

HumanoidStandup-v2

16 32 64 128 256 512 1024
100

101

102

103

Rollout samples

door-v0

16 32 64 128 256 512 1024
100

101

102

103

Rollout samples

hammer-v0

Figure 16: Average ESS for Monte Carlo MPC with RBF and RFF policies. Displaying quartiles over
50 seeds.

16 32 64 128 256 512 1024

0

0.5

1

·105

R
et
u
rn
↑

HumanoidStandup-v2

16 32 64 128 256 512 1024

0

2,000

4,000

door-v0

16 32 64 128 256 512 1024

0

1

2

3 ·104
hammer-v0

16 32 64 128 256 512 1024

0
20
40
60
80

100

Rollout samples

S
m
o
ot
h
n
es
s↓

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

Figure 17: Monte Carlo MPC with RBF and RFF policies, using a (shrinking) planning horizon of
250 rather than 30, the full task duration. Displaying quartiles over 20 seeds.

25

D.3.2 Visualizing actuation profiles

To accompany the smoothness metric used in the MPC evaluation, we showed how the SE kernel
with PPI produces smoother and lower amplitude policies than alternative priors. Due to the high-
dimensional action spaces, we depict all actions overlapped as they are normalized.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 18: iCEM MPC, with coloured noise, action sequence using 16 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 19: iCEM MPC, with coloured noise, action sequence for using 1024 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 20: LBPS MPC, using the SE kernel, action sequence using 16 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 21: LBPS MPC, using the SE kernel, action sequence using 1024 rollouts.

26

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a
HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 22: ESSPS MPC, using the SE kernel, action sequence using 16 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 23: ESSPS MPC, using the SE kernel, action sequence using 1024 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 24: MPPI MPC, using the SE kernel, action sequence using 16 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 25: MPPI MPC, using the SE kernel, action sequence using 1024 rollouts.

27

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 26: MPPI MPC, using smooth action noise, action sequence using 16 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 27: MPPI MPC, using smooth action noise, action sequence using 1024 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 28: MPPI MPC, using smooth exploration noise, action sequence using 16 rollouts.

0 100 200

−0.4
−0.2

0
0.2
0.4

Timesteps

a

HumanoidStandup-v2

0 100 200

−1

0

1

Timesteps

door-v0

0 100 200

−1

0

1

Timesteps

hammer-v0

Figure 29: MPPI MPC, using smooth exploration noise, action sequence using 1024 rollouts.

28

Setting Return Smoothness Lengthscale
door-v0 (expert) [3301, 4001, 4028] [139 145 150] 1× 10−5

door-v0 (LBPS MPC) [4326, 4370, 4388] [50, 55, 58] 0.05
hammer-v0 (expert) [14042, 17054, 21272] [142, 147, 151] 1× 10−5

hammer-v0 (LBPS MPC) [23810, 23828, 23904] [51, 53, 62] 0.025
HumanoidStandup-v2 (GAC) [92429, 92972, 93300] –† 1× 10−5

HumanoidStandup-v2 (LBPS MPC) [99902 100147 101337] [20 22 23] 0.05

Table 3: Comparing expert demonstrations to PPI MPC performance w.r.t. return, smoothness and
lengthscale. LBPS MPC performance is reported for 1024 rollouts. Uncertainty shows quartiles over
dataset demonstrations or experiment seeds. See the discussion text for the omitted result †.

D.3.3 Learning priors from data

A benefit of the Gaussian process view of policy priors is the ability to perform model selection
from data, rather the hyperparameter tuning. This data could be expert demonstrations or a partial
solution, such as the ‘warm start’ in MPC.

We investigate data driven priors by taking expert demonstrations from human and RL agents, an-
alyzing them using the matrix normal distribution. The covariances of the matrix normal allow us
to assess the stationarity of the temporal correlations, as well as the correlations between actions.
For example, in Figures 30–31 we can see non-stationarity of door-v0 and hammer-v0, due to the
motions before and after completing the task, whereas HumanoidStandUp-v2 appears surprisingly
stationary due to the task having ‘stand up’ and ‘stabilize’ components. However, we found the
smoothness that benefited MPC agents in Section 6.3 was not present in the demonstrations. For
door-v0 and hammer-v0, the action space is desired joint positions and the demonstrations were
collected using motion capture technology [82]. With this in mind, the non-smoothness may be
the result of motion capture artefacts or the inverse kinematics used. While the video results of the
demonstrations do not suggest rough motion, the action sequences in the dataset do appear rough
(Figures 30–31). Moroever, there may be unknown components of the control stack that smooth out
the desired joint setpoints. However, the issue may lie in the matrix normal factorization, which as-
sumes each action share the same temporal correlations. This coupling may result in missing smooth
sequences if many dimensions have a rough actions.

For HumanoidStandUp-v2, we train and use demonstrations from a gac (generative actor critic)
agent [92]. To our knowledge, this is the only model-free deep RL algorithm that solves
HumanoidStandUp-v2. However, the policy learned by GAC is a bang-bang controller that op-
erates at the action limits. As a result, the smoothness measure introduced in Section 6.3 ‘breaks’,
as the norm of this action sequence is constant, suggesting a smoothness of 0. Looking per action in-
dependently, the smoothness metric varies around 100 to 300. This result suggests that the IID noise
used in deep RL exploration may influence its optimal policy estimate towards rough behaviors such
as bang-bang control, which limits their usefulness as expert demonstrators.

The second quantity of interest is the action covariance Σ. The demonstrations of door-v0 and
hammer-v0 suggest that the independence assumption of Σ is a reasonable one. The action covari-
ance of HumanoidStandUp-v2 depicts much stronger correlations between actions, which could be
used to improve exploration through coordination.

29

0 100 200

0

100

200

t

t

K

0 10 20

0

10

20

a

a

Σ

0 100 200

−1

−0.5

0

0.5

1

Timesteps

a

door-v0

Figure 30: door-v0 expert demonstrations, showing matrix normal covariance fit and action se-
quence. The viridis colourmap is used to express correlations.

0 100 200

0

100

200

t

t

K

0 10 20

0

10

20

a

a
Σ

0 100 200

−1

−0.5

0

0.5

1

Timesteps

a

hammer-v0

Figure 31: hammer-v0 expert demonstrations, showing matrix normal covariance fit and action
sequence. The viridis colourmap is used to express correlations.

0 100 200

0

100

200

t

t

K

0 10 20

0

10

20

a

a

Σ

0 100 200

−1

−0.5

0

0.5

1

Timesteps

a

hammer-v0

Figure 32: hammer-v0 expert demonstrations from a MPC solvers (MPPI, LBPS, ESSPS) using the SE
kernel, showing matrix normal covariance fit and action sequence. The viridis colourmap is used
to express correlations.

30

0 100 200

0

100

200

t

t

K

0 5 10 15

0

5

10

15

a

a

Σ

0 100 200

−1

−0.5

0

0.5

1

Timesteps

a

HumanoidStandup-v2

Figure 33: HumanoidStandup-v2 expert demonstrations from a GAC agent, showing matrix normal
covariance fit and action sequence. The viridis colourmap is used to express correlations.

0 100 200

0

100

200

t

t

K

0 5 10 15

0

5

10

15

a

a

Σ

0 100 200

−0.4

−0.2

0

0.2

0.4

Timesteps

a

HumanoidStandup-v2

Figure 34: HumanoidStandup-v2 expert demonstrations from a MPC solvers (MPPI, LBPS, ES-
SPS) using the SE kernel, showing matrix normal covariance fit and action sequence. The viridis
colourmap is used to express correlations.

31

D.3.4 Model predictive control ablation studies

The MPC methods compared in Section 6.3 have subtle variations in their implementation. MPPI
has a constant covariance during optimization, while CEM MPC resets the covariance each timestep.
To understand the implications of these details, we provide ablations over these design decisions, in
comparison to the results in Section 6.3.

LBPS and ESSPS with constant covariances

On the whole the performance drops compared to the updated covariance results (Figure 4), which
suggets that a fixed variance requires greedier optimization (i.e. MPPI) or more iterations per
timestep for good performance.

16 32 64 128 256 512 1024

0

0.5

1

·105

R
et
u
rn
↑

HumanoidStandup-v2

16 32 64 128 256 512 1024

0

2,000

4,000

door-v0

16 32 64 128 256 512 1024

0

1

2

3 ·104
hammer-v0

16 32 64 128 256 512 1024

0
20
40
60
80

100

Rollout samples

S
m
o
ot
h
n
es
s↓

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

Figure 35: Monte Carlo MPC with LBPS and ESSPS with fixed covariance, like MPPI, as opposed to
updated each timestep. Displaying quartiles over 20 seeds.

MPPI with covariance updates

Conversely to the result above, MPPI’s greedier optimization does not work effectively with covari-
ance updates, as entropy is quickly lost during the control.

16 32 64 128 256 512 1024

0

0.5

1

·105

R
et
u
rn
↑

HumanoidStandup-v2

16 32 64 128 256 512 1024

0

2,000

4,000

door-v0

16 32 64 128 256 512 1024

0

1

2

3 ·104
hammer-v0

16 32 64 128 256 512 1024

0
20
40
60
80

100

Rollout samples

S
m
o
ot
h
n
es
s↓

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

Figure 36: Monte Carlo MPC using MPPI with covariance updates. Displaying quartiles over 20
seeds.

32

CEM with a SE kernel prior

Compared to the white noise prior in Figure 3, the SE kernel provides an improvement boost for
HumanoidStandup-v2 and hammer-v0. There is a smoothness improvement, but slightly smaller
than compared to Figure 4. Based on the results of Figure 35, we can attribute this to CEM MPC
resetting the policy covariance each timestep.

16 32 64 128 256 512 1024

0

0.5

1

·105

R
et
u
rn
↑

HumanoidStandup-v2

16 32 64 128 256 512 1024

0

2,000

4,000

door-v0

16 32 64 128 256 512 1024

0

1

2

3 ·104
hammer-v0

16 32 64 128 256 512 1024

0
20
40
60
80

100

Rollout samples

S
m
o
o
th
n
es
s↓

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

16 32 64 128 256 512 1024

0

100

200

300

400

Rollout samples

Figure 37: Monte Carlo MPC using CEM with the SE. Displaying quartiles over 20 seeds. Results
closely match ESSPS with the SE kernel and fixed covariance (Figure 35).

33

E Experimental Details

E.1 Hyperparameter Selection

Parameters were swept with there respective solver for best average performance with 256 sample
rollouts, averaged over 5 seeds. Parameters were not swept if prior work had identified effective
values.

Table 4: Hyperparameter selection for model predictive control methods

α (MPPI) ᾱ (PI2) [64] δ (LBPS) k, N∗ (CEM, iCEM, ESSPS) [4]

Considered [0.1, 1, 10] - [0.1, 0.5, 0.9] -
HumanoidStandup-v2 10 10 0.9 10
door-v0 10 10 0.5 10
hammer-v0 10 10 0.5 10

Table 5: Hyperparameter selection for model predictive control policies

β (smooth noise) β (smooth action) β (coloured noise) [4] l (SE kernel)

Considered [0.5, 0.7, 0.9] [0.5, 0.7, 0.9] - [0.01, 0.025, 0.05, 0.1]
HumanoidStandup-v2 0.5 0.7 2.0 0.05
door-v0 0.9 0.9 2.5 0.05
hammer-v0 0.7 0.7 2.5 0.025

E.2 Experiment Hyperparameters

Black-box Optimization. We evaluated the solvers on the 20-dimensional version of the test func-
tions. The initial search distribution wasN (1, 0.5I) for all methods. 32 samples were used over 20
iterations.

Policy Search. The experimental setting of prior work [14] was reproduced, with the same MuJoCo
simulation and episodic reward function.

Table 6: Hyperparameters for policy search tasks.

T da n iter n samples RBF features RFF order lengthscale, l

BallInACup 1000 4 40 128 20 10
√

0.03

Model Predictive Control. For the MPC tasks, the action mean and variance for each dimension i
was set using

µi =
amax,i + amin,i

2
, σ2

i =
(amax,i − amin,i)

2

4
.

This specification means that µi ± σi reaches the actuator limits, ensuring coverage across the actu-
ation range when sampling. µi defines a ‘mean function’ applied as a bias to the policy, which had
nominally zero mean. σ2

i defines the diagonal of the matrix normal action covariance Σ. To match
the covariance size of the kernel, 30 features were used for the RBF and RFF approximations, i.e.
order ν = 15.

Table 7: Hyperparameters for model predictive control tasks.

T H da n iters n warmstart iters

HumanoidStandup-v2 250 30 17 2 50
door-v0 250 30 25 1 50
hammer-v0 250 30 25 1 50

34

F Characterizing the Lower-bound Objective

The temperature objective of REPS is the dual function, which is convex (Definition 3). For the lower
bound introduced Section 3, we characterize its nature to understand its suitability for optimization.

First, we express objective in terms of functions f , g and h of α,

max
α
L(α) =

∑
n exp(αrn)rn∑
n exp(αrn)

− λ
√

1

N̂(α)
, N̂(α) =

(
∑
n exp(αrn))2∑
n exp(2αrn)

=

∑
n exp(αrn)rn − λ

√∑
n exp(2αrn)∑

n exp(αrn)
=
f(α)− λg(α)

h(α)
.

The gradient is available in closed form

d
dα
L(α) =

(
∑
n wn)(

∑
n wnr

2
n)− λ(

∑
n wn)

∑
n rnw

2
n/
√∑

n w
2
n − (

∑
n wnrn)2 + (

∑
n rnwn)(λ

√∑
n w

2
n)

(
∑
n wn)2

.

This objective is not concave in α, but is quasi-concave. With α ∈ R+, we enforce rn ≤ 0 and
exp(αrn) is convex in α for rn ∈ R. We rewrite the objective using in dot product form

min
α
L(α) =

∑
n exp(αrn)rn + λ

√∑
n exp(2αrn)∑

n exp(αrn)
=
w>α r − λ

√
w>αwα

w>α 1
,

where wα = [exp(αr1), . . . , exp(αrN)]>. The term w>α r is concave as it is a negative weighted
sum of convex functions. The term w>α 1 is convex as it is a positive sum of weighted convex
functions. The remaining term g(α) can be shown to be convex in α (Lemma 3) using standard
technques [93].
Lemma 3. The function g(α) =

√∑
n exp(2αrn) is convex in α for rn ≤ 0 ∀n .

Proof. For convexity, where θ ∈ [0, 1], α ∈ R+, β ∈ R+,√∑
n exp(2(θα+ (1− θ)β)rn) ≤ θ

√∑
n exp(2αrn) + (1− θ)

√∑
n exp(2βrn)

Starting with the right-hand term, we take interpolation term θ inside

θ
√∑

n exp(2αrn) + (1− θ)
√∑

n exp(2βrn) =
√∑

n(θ exp(αrn))2 +
√∑

n((1− θ) exp(βrn))2

Apply Jensen’s inequality to both exponential terms, where exp(xy) ≤ x exp(y), as they are inside
Euclidean norms so we can use

√∑
i p

2
i ≤

√∑
i q

2
i if pi < qi,√∑

n exp(θαrn)2 +
√∑

n exp((1− θ)βrn)2 ≤
√∑

n(θ exp(αrn))2 +
√∑

n((1− θ) exp(βrn))2.

Apply Minkowski’s inequality to the LHS, where (
∑
i |xi + yi|p)1/p ≤ (

∑
i |xi|p)1/p +

(
∑
i |yi|p)1/p√∑

n(exp(θαrn) + exp((1− θ)βrn))2 ≤
√∑

n exp(θαrn)2 +
√∑

n exp((1− θ)βrn)2

Expand the terms of the LHS and remove the (non-negative) squared terms√∑
n 2 exp((θα+ (1−θ)β)rn) ≤

√∑
n exp(2θαrn) + exp(2(1−θ)βrn) + 2 exp((θα+ (1−θ)β)rn)

Apply Jensen’s inequality again to recover the initial left hand term√∑
n exp(2(θα+ (1− θ)β)rn) ≤

√∑
n 2 exp((θα+ (1− θ)β)rn).

With the lemma, the negative penalty term is concave as λ ≥ 0.

For quasi-convexity, we require the t-level sets to be convex {α ∈ R+ | L(α) ≤ t}, t ∈ R. Due to
the structure of the objective, we require f(α) − λg(α) ≤ t h(α). As f(α) ≤ 0, −λg(α) ≤ 0 and
h(α) ≥ 0, for t > 0 we have the empty set, which is convex. For t ≤ 0, we have the sum of two
concave function which are both less or equal to zero, so the set is also convex.

35

G Stochastic processes, Gaussian processes and coloured noise

This section summarizes the connections between stochastic processes, smoothed noise, coloured
noise and Gaussian processes to motivate the use of kernels in action priors. For further details, we
refer to Section 12.3 of Särkkä et al. [94] and Chapters 4 and Appendix B of Rasmussen et al. [33].

Section 4 introduced smooth Gaussian noise processes of the form

n
(n)
t =

∑p
i=1 ai n

(n)
t−i + b0 v

(n), v(n) ∼ N (0, 1).

to sample action sequences. This is known as a discrete-time autoregressive AR(p) process. The
ARMA(p, q) process introduces a noise history, such that ARMA(p, 0) is a AR(p) process

n
(n)
t =

∑p
i=1 ai n

(n)
t−i +

∑q
j=1 bj v

(n)
t−j , v

(n)
t ∼ N (0, 1).

In continuous-time, the AR(1) is analogous to the Ornstein–Uhlenbeck (OU) process

dn(t) = a0 n(t) dt+ v(t) dt.

The OU covariance function is Cov(t, t′) = σ2 exp(−a0|t− t′|), which is also known as the expo-
nential kernel. For additional smoothness we can consider higher-order derivatives, which results in
the Matérn family of kernels. In stochastic differential equation form, they are written as

n(t) = Hf(t), df(t) = Af(t) dt+L v(t) dt,

where f contains n(t) and its derivatives, describing the state. The order ν of the Matérn de-
fines the size of the state space and A. A first-order kernel reduces to the exponential kernel.
These Matérn kernels are Markovian in their state space, following a linear Gaussian dynamical
system (LGDS). Therefore, they can be compared to the Gaussian processes used in STOMP [8] and
GPMP [30], which are also LGDSs but with different state space models that perform Euler inte-
gration, producing priors with Gaussian noise on the velocity, acceleration or jerk. Extending the
derivatives for the Matérn kernel, as the order ν → ∞, we arrive at the squared exponential kernel
Cov(t, t′) =σ2 exp

(
−|t− t′|2/2l2

)
. Comparing to the exponential kernel earlier, we observe the

a0 in the OU process defines the lengthscale of the covariance function.

Considering stationary covariance functions, where Cov(t, t+τ) = Cov(τ), the power spectral den-
sity is defined as the Fourier transform of the covariance function

S(ω) =

∫
Cov(τ) exp(iωτ) dτ.

From the linear systems perspective, the parameters a and b of an ARMA process describe a linear
filter F (ω) where N(ω) = F (ω)V (ω). In the frequency domain, such is realized as a filter

F (ω) =
|B(exp iω)|2
|A(exp iω)|2 , where A(ω) =

∑p
k=1 ai exp(kiω).

Conversely, coloured noise with parameter β applies a filter ∝ 1/ωβ to Gaussian noise. The power
spectrum of the ν-order Matérn kernel is S(ω) ∝ (l2 + ω2)ν/2+1 and the squared exponential is
S(ω) ∝ exp(−l2ω2/2). While there is no explicit connection between coloured noise and Gaussian
processes, by reasoning about their power spectrums it can be seen that they can produce similar
sampled paths.

36

