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Figure 1: The occlusion masks of DDAD dataset [1].

A Datasets and Implementation Details

Datasets: We conduct experiments on both the Dense Depth for Automated Driving (DDAD) [1]
and nuScenes datasets [2]. The DDAD dataset is a large-scale dataset captured with six synchronized
cameras for autonomous driving. The dataset contains 12,650 training samples, including 75,900
images for six cameras. The validation set has 3,950 samples (15,800 images) and ground truth
depth maps, which are only utilized for evaluation. During the evaluation procedure, we consider
the distance up to 200m and do not crop depth maps. As shown in Figure 1, we can find that each
view in DDAD dataset has self-occlusion areas caused by the current vehicle. Following [3], we
annotate occlusion masks manually and use them to reweight photometric loss. The nuScenes [2]
dataset consists of 1000 sequences of various scenes captured in both Boston and Singapore, where
each sequence is approximately 20 seconds long. The dataset is officially partitioned into training,
validation, and testing subsets with 700, 150, and 150 sequences, respectively. For each sample, we
have access to the six surrounding cameras as well as the camera calibrations. We filter out static
frames in nuScenes dataset.

Implementation Details: We use Adam [4] as our optimizer with β1 = 0.9 and β2 = 0.999.
The initial learning rate is set as 1e-4. For both spatial and temporal photometric loss, we utilize
2 neighboring frames as source frames. Specifically, Iit−1, I

i
t+1 and Ii−1t , Ii+1

t frames are used as
temporal and spatial contexts. Following Monodepth2 [5], we set SSIM weight as 0.85 and depth
smoothness weight as 1e-3.

B Evaluation Metrics

The detailed evaluation metrics of self-supervised depth estimation can be described as follows:

• Abs Rel: 1
|T |

∑
d∈T |d− d∗|/d∗

∗Equal contribution.
†Corresponding author.
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Figure 2: Scale-aware SfM pretraining. Due to the small overlap and large view changes, conven-
tional two-frame Structure-from-Motion will produce many wrong correspondences. By introduc-
ing region masks, we reduce the correspondences searching scope and improve the quality. With
the camera extrinsic matrices, we can further filter outliers leveraging epipolar geometry. Better
viewed when zoomed in.

Method Abs Rel Sq Rel δ < 1.25
pretrain 0.286 4.698 0.550

joint train 0.259 4.177 0.619
finetune 0.208 3.371 0.693

Table 1: The ablation study for training method. ‘pretrain’ indicates the performance of SfM pre-
trained model. ‘joint train’ means that we simultaneously use SfM pseudo depths and temporal-
spatial photometric loss to supervise the networks.

• Sq Rel: 1
|T |

∑
d∈T ||d− d∗||2/d∗

• RMSE:
√

1
|T |

∑
d∈T ||d− d∗||2

• RMSE log:
√

1
|T |

∑
d∈T || log d− log d∗||2

• δ < t: % of d s.t. max( d
d∗ ,

d∗

d ) = δ < t

where d and d∗ indicate predicted and groundtruth depths respectively, and T indicates all pixels
on the depth image D. During evaluation, conventional self-supervised monocular depth estimation
methods use the factor median(D∗)

median(D) to align the scale. However, in scale-aware experiments, we do
not need to perform this scale alignment.

C Scale-aware Structure-from-Motion Pretraining

We provide an example to show the effectiveness of our scale-aware pretraining in Figure 2. As an
alternative way to leverage SfM points, we simultaneously use SfM pseudo depths and temporal-
spatial photometric loss to supervise the model. From Table 1, we find that since SfM points are
sparse and non-uniform and cannot provide strong supervision, this method will get worse results.
Further, the pretrained model is not good enough and we need to finetune them with spatial and
temporal photometric loss.

D Visualization

Qualitative Results Fig. 3 shows qualitative results on DDAD validation set. Our SurroundDepth
can predict visually appealing results on all six views. For the occlusion areas, our method can
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Figure 3: Qualitative results on DDAD [1] dataset. Our method can predict visually appealing depth
maps with texture details.Better viewed when zoomed in.

surprisingly inpaint them and predict correct depths. Moreover, the generated depth maps preserve
the texture details of corresponding RGB images.

Attention Distribution We visualize cross-view attention maps at the smallest scale in Fig. 4. For a
set of query points, the cross-view attention maps can highlight the feature map at the corresponding
locations in other views, demonstrating that our cross-attentions are able to entangle multi-view
features to predict depths jointly.
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Figure 4: The visualization of cross-view attention maps. Given a set of query points, our cross-
view attention maps will highlight those features at the corresponding locations in other views. The
peaks of attention maps tend to appear in the overlapping areas of adjacent images, which proves
that our CVT can accurately entangle the features from multiple views to achieve joint prediction.
The predictions are made on the validation set at the smallest scale. Better viewed when zoomed
in.
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