
A Appendix

Contents

A.1 Training Details . 12

A.2 Inference Details . 12

A.2.1 Parameters & Hardware . 12

A.2.2 Inference Algorithm Variations . 12

A.3 Experiment Details . 13

A.3.1 Differences in Physical Properties of Spatulas . 13

A.3.2 Coordinate System and Action Distribution . 13

A.3.3 Distribution of Geometry and Wrench State Estimation and Predictions 13

A.3.4 Reaction Wrench Prediction Errors . 14

A.3.5 Details of Contact Detection Errors . 15

A.3.6 Details on Generalization to Novel Objects Dynamics 15

A.4 Generalization to Novel Environments . 15

A.5 Ablation study on design choices . 16

A.5.1 Explicit Geometry Representation . 16

A.5.2 Implicit Geometry Representation with Different Model Architectures 16

A.1 Training Details

Tab. 4 contains training parameters. In addition, we used 2,000 on-surface points and 20,000 off-surfaces for
training VIRDO++ . We used the Adam optimizer with learning rate = 10−4 and epoch = 200.

lc λ λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11

6 5e1 1e1 1e1 1e4 1 1e2 1e5 5e1 3e6 1e1 1e1 1e1
Table. 4: Parameters used for training VIRDO++

A.2 Inference Details

A.2.1 Parameters & Hardware

For the inference, we use number of particles n = 40, resampling parameter γ = 0.7, and epoch e = 10.
This results in inference time = 0.7 [s] with GPU = NVIDIA A6000 and CPU= 32-Core 3.50 GHz AMD. We
note that one can balance the state-estimation accuracy between the inference time by changing the number of
particles and number of epochs. Here, we note that the epochs do not need to be large due to Alg. 1 which
provides a close-to-ground-truth initial guess on the object’s state.

A.2.2 Inference Algorithm Variations

Algorithm 2 Resampling Algorithm

1: function RE-SAMPLING(wt,Ct)
2: Draw {C̄0

t , C̄
1
t , ..., C̄

k−1
t } ∼ N (0, 0.01) . Exploration

3: Draw {C̄k
t , C̄

k+1
t , ..., C̄N−1

t } ∼ {(C0
t , w

0
t), (C1

t , w
1
t)..., (CN−1

t , wN−1
t)} . Exploitation

4: return Ct

5: end function

The input of the resampling function in Alg. 1 is the beliefs over the current states (Ct) and the corresponding
reliability, a.k.a the sampling weight (wt). The resampling function refines Ct to C̄t through Alg. 2. In the

12

CD (x103) β = 0% β = 25% β = 50% β = 75%

Geom. – S.E. 0.936 (0.206) 0.937 (0.209) 0.941 (0.236) 0.943 (0.202)
Geom. – Pred. 1.035 (0.335) 1.046 (0.358) 1.049 (0.370) 1.117 (0.497)
Force – Pred. 1.241 (1.282)) 1.125 (1.068) 1.149 (1.069) 1.326 (1.282)
Torque – Pred. 0.140 (0.109) 0.134 (0.099) 0.134 (0.095) 0.158 (0.111)

Table. 5: β = 0 ∼ 50% does not significantly increase nor decrease the performance of our Inference algo-
rithm. However, when exploration becomes dominant over the exploitation (β = 75%), a distinguishable drop
in performance is observed.

Fig. 8: We maintained the pressing force of 6 [N] for all six spatulas and measured the difference in defor-
mations. The combination of material property and geometry determines stiffness/compliance. The spatulas
with the same tip color consist of the same material; however, they deform very differently depending on their
structures.

exploration step, we compose k particles in C̄t by sampling from ∼ N (0, 0.01). In the exploitation step, we
sample the rest of C̄t by sampling from wt.

Our ablation study (presented in Tab. 5) aims to find an optimal balance between exploration and exploitation.
Here, the “Force-Prediction” is calculated as ‖f̂t[: 3] − ft[: 3]‖ and “Torque-Prediction” is calculated as
‖f̂t[3 :] − ft[3 :]‖. We found that β = 0 and 25% has comparable state estimation results. Geometry
prediction is the most accurate when β = 0%; however, wrench predictions are most accurate when β = 25%.
When compared to β = 0%, β = 25% has a 10% increased geometry prediction error and 9 − 10% reduced
wrench prediction error.

A.3 Experiment Details

A.3.1 Differences in Physical Properties of Spatulas

In this section, we illustrate how the train/test spatulas deform relative to each other when brought into contact
with the table in a similar configurations (affected by the arm impedance controller) and same normal force
(here, 6 [N] along the z axis). Fig. 8 shows a wide distribution of deformations achieved within the same
object category. With the same force, train object 1 barely deforms and is close to it’s nominal shape, whereas
train object 3 bends significantly. This difference in physical properties makes generalization very difficult,
even within the same object class. For example, test object 2 visually resembles train object 4; however, it has
stiffness properties more similar to train object 2. This has lead to VIRDO++ producing higher errors in the
generalization task for test 2 objects.

A.3.2 Coordinate System and Action Distribution

Pointcloud are collected with respect to a reference frame defined at the end of the F/T sensor mounted at the
robot’s wrist. Actions are the Cartesian motion of the end-effector of the robot with respect to the base frame,
Fig. 9. Fig. 10 visualizes action distributions of train and test trajectories of training objects. Both are normally
distributed and share mean and standard deviation because they were generated from the same action policy.

A.3.3 Distribution of Geometry and Wrench State Estimation and Predictions

Fig. 11 shows detailed distribution of errors reported in Tab. 1. The Kernel Density Estimate (KDE) plot shows
that the errors are normally distributed. The training error mean is smaller than the test error for all graphs

13

Fig. 9: Action frame is defined at the robot’s base frame while pointclouds are registered with respect
to the end-effector frame.

Fig. 10: Distributions of training and testing action trajectories. These distributions are intentionally centered
around zero. Top row = Train, Bottom row = Test. δx, δy, δz, δr, δp, δy order. y-axis quantifies the number of
samples.

in both demos. In addition, geometry estimation is more accurate than geometry predictions as it uses sensor
measurements. For example, in the spatula demo, the Chamfer distance error at the peak geometry estimation
from the training set (green dashed line) is smaller than the test set (solid dashed line) and is also smaller than
the prediction estimates (yellow dashed line).

Fig. 11: Kernel Density Estimate (KDE) plots for spatula and bike chain applications show that
VIRDO++ ’s geometry and wrench predictions and state-estimation errors are within small margins.
Force prediction errors = ‖f̂t[: 3]− ft[: 3]‖ [N]. Torque prediction error as 10 ∗ ‖f̂t[3 :]− ft[3 :]‖
[Nm].

A.3.4 Reaction Wrench Prediction Errors

Tab. 6 shows the wrench predictions results of trained objects (Tab. 3’s first column). Because we use L2 norm
for reaction wrench prediction during training, error distributions are centered around 0, and the degree of errors
appears as standard deviation.

The standard deviation in error for the chain task is approximately an order of magnitude smaller than the
spatula. We hypothesize that this because i) the ground truth wrench is an order of magnitude smaller than the
spatula and ii) the action space dimension is half the spatula resulting in a simpler model to learn.

14

l1 Error fx [N] fy [N] fz [N] τx [Nm] τy [Nm] τz [Nm]

Sp. Train 0.01 (0.31) -0.00 (0.36) 0.03 (0.65) -0.00 (0.11) 0.00 (0.09) 0.00 (0.02)
Sp. Test -0.03 (0.35) 0.08 (0.54) -0.28 (1.60) -0.02 (0.16) -0.01 (0.11) -0.00 (0.02)
Ch. Train 0.02 (0.01) 0.01 (0.01) 0.02 (0.01) -0.01 (0.00) 0.00 (0.01) 0.01 (0.00)
Ch. Test 0.02 (0.06) 0.01 (0.03) 0.03 (0.01) -0.00 (0.00) 0.00 (0.01) 0.00 (0.00)

Table. 6: Mean and Std Wrench Prediction Errors: f̂t − ft for the spatula and chain experiments.

Fig. 12: VIRDO++ ’s contact detection outperforms the baselines without ct and rigid body assump-
tion where the detailed quantitative analysis is in Tab. 2

A.3.5 Details of Contact Detection Errors

Fig. 12 contains detailed error distributions of Tab. 2 from the main text. VIRDO++ (green)’s Chamfer dis-
tance has a significantly smaller mean and standard deviation compared to the baseline models without contact
embedding and compliance assumption. One interesting observation is that the geometry prediction (yellow
dashed line) is located left to the geometry estimation (solid yellow line). This is because the model with-
out ct produces deterministic reconstructions as a function of pt and ft, leaving no room for improving state
estimation with the Bayesian filtering algorithm.

A.3.6 Details on Generalization to Novel Objects Dynamics

Fig. 13: Generalizing to unseen object dynamics. Left panel: KDE plot of Chamfer distances (x1e3) [m2]
using normalized geometries. We show both test objects state estimation using partial point clouds and ge-
ometry predictions. Similar to training objects, state estimation has smaller mean and standard deviation of
the error. Right panel: We visualized three representative generalization results and corresponding Chamfer
distances.
Fig. 13 is a detailed Chamfer distance distribution of Tab. 3 from the main text and the visualization of each
Chamfer distance loss. The purpose of reconstructions visualized in Fig. 13 (right) is to further provide an
intuition of each error and how to interpret its magnitude. For example, the Chamfer distance value of 0.002 for
the unseen objects is about double the amount of the training objects’ average state estimation error; however,
in visualization, the reconstructions can reasonably predict the ground truth’s curvature. We observed that the
majority of errors are due to small undesirable artifacts at the edges of objects which do not significantly impact
the general trend of deformations.

A.4 Generalization to Novel Environments
In this section, we show VIRDO++ generalization capability to novel environments. Here, the novel envi-
ronment is a wok scraping task. The wok presents high curvatures producing greater variances in contact
formations with respect to the flat table. Here, we add a training dataset with 2 scraping trajectories on the
wok and perform state estimation and predictions given a test trajectory with 13 transitions. As in Fig. 14,
VIRDO++ provides high-fidelity dense geometry of deformable objects in high occlusion cases without a 3D

15

model or configuration of the environment; however, due to the complex environment, it occasionally produces
undesired artifacts (2 out of 13 trans.).

Observation Prediction State Estimation Prediction State Estimation

 (front) (front) (side) (side)

Fig. 14: VIRDO++ can reconstruct high-fidelty dense geometry of deformable objects under occlusions in new
environments, such as scraping objects off a wok (successes, top row), but can also at times produce undesirable
artifacts (failure modes shown in bottom row).

A.5 Ablation study on design choices

A.5.1 Explicit Geometry Representation

In this section, we compare VIRDO++ with explicit models by replacing the geometry representations (defor-
mation and object module) with GRNet’s pointcloud encoder-decoder structure [48]. Here, we use the same
force module as VIRDO++ because the baseline does not have a multi-modal sensory encoder. The explicit
dynamics model directly takes in a partial pointcloud at time t to generate a dense pointcloud at time t+1. The
inputs to the dynamics model are pointcloud at the current time step Pt, force code zt, contact latent vectorct,
and action at and the output is full pointcloud at the next time step Pt+1. Pt is directly input to [48]’s encoder
and other inputs are concatenated to the bottle-neck features.

Here, we used the same dataset in Sec. 4.1. For the loss function, we replaced Lgeo
t to Chamfer distance as

[48] proposed. The second column of Tab. 7 shows the result of the explicit dynamics model based on [48],
where the learned explicit model showed better result than VIRDO++ for training trajectories. However, the
performance dropped significantly given the pointcloud with occlusions from the test trajectories. We speculate
that because the explicit dynamics model directly consumes the partial pointcloud to roll out the dynamics, it
is more susceptible to visual outliers caused by occlusions. However, VIRDO++ is more robust to occlusions
due to its implicit nature, using partial pointcloud implicitely via solving the optimization problem in Sec. 3.4

Besides dealing with occlusions, VIRDO++’s implicit dynamics model is also advantageous over the explicit
counterparts in multi-object interactions. Specifically, the detection of contact and collision at a query point can
easily be done by evaluating the sign-distances from each object’s signed distance field at a time complexity of
O(number of objects). On the other hand, explicit geometric representations require special contact/collision
detection techniques such as k-d tree [49] or sphere coverings [50]. These methods have higher time complex-
ities dependent on the length of each point cloud [51, 50, 49]. In Sec.4.3, we demonstrate the accurateness of
VIRDO++ for detecting contact location.

A.5.2 Implicit Geometry Representation with Different Model Architectures

In this section, we evaluate variations of VIRDO’s geometry representation using DeepSDF [37], SIREN [36],
and a positional encoder [52]. In this ablation study we first attempted to replace the VIRDO++ ’s entire
geometry representation modules (i.e., both deformation and shape module) with [37], [36], and [52], then
train each model end to end with the VIRDO++ ’s force and action modules. Under this condition, we set the
input as (x, α, zt) and the output as a signed distance function s ∈ R, where x is the query point instead of
the entire pointcloud as Sec. A.5.1. However, training end to end without residual layers resulted in failure of
convergence for all variations.

We observed that fixing the weights of the pre-trained object modules and learning only the residuals (defor-
mations) significantly helped the models converge. We chose to replace only the deformation module with the
proposed variations and compare performance. The inputs are (x, α, zt) and the output is ∆x. We used the

16

CD (×103) VIRDO++ GRNet DeepSDF SIREN Pos. Enc.

Train Est. 0.777 (0.215) – 5.087 (0.737) 5.521 (1.015) 5.569 (2.847)
Train Pred. 0.830 (0.330) 0.759 (0.667) 5.667 (1.306) 5.457 (0.888) 5.886 (2.561)

Test Est. 0.934 (0.210) – 10.016 (3.253) 6.349 (1.388) 8.081 (3.790)
Test Pred. 1.041 (0.348) 1.230 (0.826) 9.552 (2.767) 6.988 (1.280) 7.188 (3.603)

Table. 7: Results are evaluated in the real-world, showing that VIRDO++ outperforms its implicit and explicit
counterparts.

same dataset and loss functions as VIRDO++ except for training DeepSDF, where we removed Lhyper when
training DeepSDF as the architecture does not have a hyper-network.

Template-based DeepSDF: For an apple-to-apple comparison, we set the number of hidden layers = 2 and hid-
den features = 256 for DeepSDF structures to the same size in VIRDO++ ’s deformation module. We observe
that Chamfer distance error becomes 6.54 ∼ 6.82 time greater for the training trajectories and 9.18 ∼ 10.72
times greater for the unseen trajectories when changing the hypernetwork to the DeepSDF architecture. The
hypernetwork structure has higher representation power, resulting in more precise geometry reconstructions.

SIREN: Here, we replaced the geometry representation with SIREN’s hypernetwork and trained it with the
force and action modules. As suggested in the paper, we implemented SIREN with 5 layers and hidden features
of size 256. HyperNetwork (ReLU MLP) was initialized with Kaiming initialization, and the HypoNetwork
was initialized as wi ∼ U(−1/l,+1/l), where wi is the network’s weight and l is the total number of network
parameters. We found that the sine activation function generates bumpy textures resulting in high reconstruction
errors for geometry estimation and predictions.

Positional Encoder: For this experiment, we add a positional encoder from [52] right before VIRDO++ ’s
deformation modules. Similar to what we observed from SIREN, adding sine or cosine non-linearity to the
network can produce undesirable artifacts. We found that the positional encoder generate floating blobs in the
free space, resulting in much higher errors than the original VIRDO++ .

17

	Appendix
	Training Details
	Inference Details
	Parameters & Hardware
	Inference Algorithm Variations

	Experiment Details
	Differences in Physical Properties of Spatulas
	Coordinate System and Action Distribution
	Distribution of Geometry and Wrench State Estimation and Predictions
	Reaction Wrench Prediction Errors
	Details of Contact Detection Errors
	Details on Generalization to Novel Objects Dynamics

	Generalization to Novel Environments
	Ablation study on design choices
	Explicit Geometry Representation
	Implicit Geometry Representation with Different Model Architectures

