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1 Method

1.1 Polyhedral Approximation of the Friction Cone

The friction cone can be modeled as in Equation (1).

0 ≤ −fi · n̂i and ‖fi − (fi · n̂i)n̂i‖2 ≤ −µfi · n̂i. (1)

The friction force direction may be approximated with a polyhedral cone spanned by a set of unit
vectors perpendicular to n̂i:

{
t̂i,j | t̂i,j ⊥ n̂i, j ∈ {1, 2, . . . }

}
([1]). In this work, we chose an

arbitrary orthogonal basis on the tangent plane of the contact point (t̂i,1, t̂i,2), which yields the
following approximated friction cone constraints

0 ≤ −fi · n̂i and |fi · t̂i,j | ≤ −µfi · n̂i,∀j ∈ {1, 2}. (2)

1.2 Enforcing the Finger-Object Distance Constraint

The finger-object distance constraint Ki(q
′) ∈ ∂O is implemented as a constraint on the signed

distance dmin ≤ D(Ki(q
′),O) ≤ dmax, where D is defined as

D(p,O) ,

{
minpo∈∂O ‖po − p‖2, if p /∈ O

−minpo∈∂O ‖po − p‖2, otherwise.
(3)

As the fingertips of the allegro hand are compliant, we chose dmin = −0.68cm and dmax =
−0.32cm based on the thickness of the compliant material.

1.3 Creating a Physically Feasible Dexterous Grasping Dataset

We generate physically feasible grasps of six YCB objects [2] in simulation. The chosen objects are
“cracker box,” “sugar box,” “tomato soup can,” “mustard bottle,” “gelatin box,” and “potted meat
can.” We consider a realistic scenario where the object is placed on a flat surface instead of free
floating. As such, we need to consider the variations due to different rest poses of on the surface in
addition to finger placements. The following summarizes the steps for data generation:

1. Simulate dropping the object on a flat surface from different initial poses to find “rest
poses”.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.



2. For each rest pose, produce 256 candidate contact points distributed across the object with
Poisson disk sampling.

3. Remove any point in contact with the surface E and store the remaining as a point cloud
Ô.

4. Evaluate Equation (4) for each of the C256
3 3-point finger placements. Discard if it is not

dynamically feasible.

min
f1,f2,f3

‖
3∑

i=1

fi‖22 + ‖
3∑

i=1

pi × fi‖22

subject to 0 < fmin ≤ −fi · n̂i, |fi · t̂i,j | ≤ −µfi · n̂i, ∀i ∈ {1, 2, 3},∀j ∈ {1, 2}.
(4)

5. For each dynamically feasible finger placement, permute the 3! = 6 possible assignments
for the thumb, index finger, and middle finger. Check each assignment for kinematic feasi-
bility. If a feasible grasping pose q can be found for a finger placement P̄ , add (Ô, q, P̄)
to the dataset P.

6. At training time, augment the dataset by randomly translating and varying the yaw angle
for each grasp in the dataset.

2 Software

2.1 Implementation Details

The CVAE is implemented using PyTorch [3] and trained on a Google Cloud virtual machine in-
stance with 16 NVIDIA Tesla A100 GPUs. The selected model took approximately 76 hours to
train.

The bilevel optimization pipeline is implemented using a mixture of automatic differentiation tools
from Drake [4], OptNet [5], and Pytorch [3].

Our source code is available at github.com/Stanford-TML/dex_grasp.

2.2 CVAE Training Process

Figure 1 shows the training curve. Based on the test losses, we chose the model after 1550 epochs
of training for all subsequent experiments.

(a) CVAE Training Loss. (b) CVAE Testing Loss.

Figure 1: Training and testing loss of the CVAE. The model was able to achieve sub-centimeter
reconstruction accuracy of the fingertip placement. Based on the testing results, the model weights
at 1550 training epochs were selected for all subsequent experiments.
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3 Hardware

3.1 Robot Control

The Franka arm was controlled using Polymetis [6]. The Allegro hand was commanded with an
open source driver [7].

3.2 Scene observation

We collect depth images from the four calibrated cameras to obtain a point cloud of the tabletop
scene in the robot base frame. To obtain a segmented object point cloud, we remove tabletop points
(via plane fitting), crop points within a predefined axis-aligned bounding box (roughly correspond-
ing to a small region near the center of the table), and filter the point cloud to remove outliers [8].
Finally, we extract a mesh from the object point cloud by computing its convex hull.

3.3 CVAE-based methods

For CVAE-based methods, which require sampling latent variables, we utilize unique random seeds
across trials. Within each trial, we sample latent variables until we encounter the first successful
grasp in simulation (kinematic and dynamic constraints satisfied). This is the grasp that we execute
and evaluate on hardware. Each sampled latent variable attempts six IK initializations (orientations)
before the next latent variable is sampled.

3.4 Challenges Stemming from Selected Object Shapes

The sandwich box is challenging to parallel jaw grippers as it is triangular. The (rigid) massage ball
is challenging to suction-based grippers as the surface is highly irregular. The castle object requires
a side grasp due to its cone-shaped top. Slender objects such as lego and hairspray bottle also benefit
from a side grasp as there is more room for finger placement along the vertical axis compared to a
horizontal cross section. The tetrahedron is difficult for any finger-based gripper to achieve force
closure due to its shape, and a large squeezing force is necessary.

3.5 Hardcoded Baseline Design

The grasp finger joint angles are manually specified. The wrist translation is defined as x =
1
N

∑N
i=1 xi + xoffset, y = 1

N

∑N
i=1 yi + yoffset, and z = maxi zi + zoffset, where (xoffset, yoffset, zoffset)

are hand-tuned offsets and (xi, yi, zi) is the ith point in the point cloud containing N points. The
orientation of the wrist is aligned with the short axis obtained from performing principal component
analysis on the x-y projection of the observed point cloud.

4 Results

4.1 Grasp Trial Statistics

Tables 1, 2, 3 summarize the detailed success rates on each of the 20 test objects.

Table 1: Seen objects grasp statistics.
Sugar box Soup Can Mustard Bottle Overall Success %

Ours 6/6 6/6 5/6 17/18 94.4
CVAE only 3/6 3/6 1/6 7/18 38.9

CVAE+kinematics 6/6 6/6 4/6 16/18 88.9
Hardcoded 3/3 2/3 3/3 8/9 88.9

Table 2: Familiar objects grasp statistics.
Webcam Mask Chips Soda Overall Success %

Ours 6/6 6/6 5/6 6/6 23/24 95.8
Hardcoded 3/3 3/3 2/3 1/3 9/12 75.0
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Table 3: Novel objects grasp statistics.
Glasses case Ramen Pill bottle Sandwich (upright) Massage ball

Ours 4/6 6/6 5/6 6/6 4/6
Hardcoded 3/3 3/3 1/3 3/3 3/3

Castle Tetrahedron Hairspray bottle Pear Alcohol bottle
Ours 6/6 1/6 6/6 5/6 6/6

Hardcoded 0/3 0/3 0/3 0/3 1/3
Condiment bottle Sandwich (side) Lego Overall Success %

Ours 4/6 6/6 5/6 64/78 82.1
Hardcoded 1/3 0/3 0/3 15/39 38.5

4.2 Quantitative Evaluation of Physical Constraints

We provide quantitative physical constraint evaluations on grasps planned by our method. The
evaluations are reported for each of the object categories. Table 4 summarizes the signed dis-
tance (Equation (3)) between the fingertips to the fitted object meshes. The distances should satisfy
D(p,O) ∈ [dmin, dmax] = [−0.68,−0.32]. Table 5 summarizes the force and torque ratios, which
should both be zero under wrench closure.

Table 4: Evaluation of finger-object distance constraint on grasps planned by our method.
Median Min. Max. Max violation

Seen -0.32 -0.68 -0.24 0.08
Familiar -0.32 -0.68 -0.32 0.00
Novel -0.32 -0.68 -0.24 0.08

Overall -0.32 -0.68 -0.24 0.08

Table 5: Force and torque ratios of the grasps generated by our method. All values are reported as
median, (25th percentile, 75th percentile).

Force ratio Torque ratio
Seen 0.00 (0.00, 0.01) 0.01 (0.00, 0.27)

Familiar 0.00 (0.00, 0.00) 0.00 (0.00, 0.00)
Novel 0.00 (0.00, 0.03) 0.01 (0.00, 8.48)

Overall 0.00 (0.00, 0.02) 0.01 (0.00, 2.68)

4.3 Timing Statistics

In Table 6, we report the runtime and repeats of each stage in our pipeline during grasp planning.

Table 6: Timing statistics of our method, shown as median, (25th percentile, 75th percentile).
CVAE time (s) CVAE repeats IK time (s) IK repeats BO time (s) BO repeats Total Time (s)

Seen 0.95 (0.94, 0.97) 2 (1, 3.75) 13.02 (6.64, 18.88) 2 (1, 4) 1.99 (0.85, 2.90) 1.5 (1, 2.75) 14.99 (9.04, 23.60)
Familiar 0.95 (0.93, 0.97) 2 (1, 4) 10.91 (3.91, 21.52) 2 (1, 4) 0.78 (0.50, 2.25) 1.5 (1, 2.25) 13.73 (5.49, 31.68)
Novel 0.95 (0.93, 0.97) 2 (1, 4) 8.07 (1.47, 20.55) 2 (1,4) 2.61 (1.05, 5.35) 2 (1, 3) 14.40 (5.59, 34.85)

Overall 0.95 (0.93, 0.97) 2 (1, 4) 9.81 (2.16, 20.07) 2 (1,4) 2.22 (0.82, 4.03) 2 (1,3) 14.40 (5.67, 34.71)
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