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A Appendix

A.1 Imagined Trajectories

To introspect the policy, we can roll out trajectories in Dreamer latent space, then decode the images
to visualize the models intent. Figures A.1 and A.2 show examples of imagined rollouts for the UR
and XArm. Each row is an imagined trajectory, showing every other frame for clarity.

Figure A.1: UR5 Imagined Rollouts: Latent rollouts on the UR5 environement. Multiple objects
introduce more visual complexity that the network has to model. Note the second trajectory, which
shows a static orange ball becoming a green ball.

Figure A.2: XArm Imagined Rollouts: Latent rollouts on the XArm environement.

A.2 Extended Baselines for Pick and Place
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Figure A.3: UR5 Multi Object Pick and Place: The learning curves of Dreamer and two baselines
(Rainbow DQN, and PPO) are shown here. Both methods are outperformed by Dreamer, with both
baselines making little progress on the task.

In focused RL research settings, often a specific observation and action modality are assumed. In
practical robotics settings however, its advantageous to take advantage of all sensory modalities
available, making it difficult to find an effective baseline for the robot manipulator pick and place
experiments. Again, the UR5 multi-object visual pick and place uses image observations and
proprioceptive observations. The action space is discretized to include delta controls for each
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Cartesian direction and an gripper toggle. In addition, we constrain the z-axis to the table when the
gripper is empty and open the gripper when the robot is above the alternate bin. Most state of the
art RL algorithms make assumptions about the observation space (state only or image only), or the
action space (continuous only or discrete only), making it difficult to directly use such an algorithm
off the shelf. Our modified Raindow DQN, described and shown in Section 3 is one attempt at this.

Another widely used and well performing generic RL algorithm is proximal policy optimization
(PPO) introduced by Schulman et al. (2017). Here we attempt to use a modified categorical PPO for
the robot pick and place experiments and report the results here as an additional baseline. To account
for proprioceptive readings, we concatenate them in the channel dimension. The results for the UR5
are seen in Figure A.3. We see that PPO is comparable to Rainbow DQN and is unable to learn. We
suspect this is due to the difficulty of the task due to sparse rewards.

A.3 Model Adaptation

One challenge faced in the real world robotics experiments is changing environmental conditions,
such as lighting changes, as well as changes to the robot dynamics, such as parts getting worn down
over time. The experiments performed in this work faced similar challenges. Unexpectedly, we found
that that Dreamer is able to adapt the agent effectively to its current environmental conditions, with
no change to the learning algorithm, showing promise for using world models in continual learning
settings (Parisi et al., 2019). We report our observations here of these adaptations here.

A1 Quadruped: Adaptation to external perturbations. Due to the reset free nature of the A1,
after converging to a walking policy the agent never has to flip over from its back again. When put
on its back, the A1 struggles again before resetting its body to a upright position. We manually
perturb the robot with external forces causing the A1 to flip over. As the A1 is initially trained
without these manual perturbations, the agent struggles to recover. However after approximately 10
minuets of training with external perturbations, the A1 is able to learn to adapt, and quickly recover
from perturbations. We refer to the provided videos which illustrate this behavior. This qualitative
behaviour is promising for the rapid adaptation of RL agents.

Figure A.4: The left two images are raw observations consumed by Dreamer. The left most image
is an observation from as seen by the robot at night, when it was trained. The next image shows an
observation during sunrise. Despite the vast difference in pixel space, the agent is able to recover
performance in 5 hours and even reach better performance than before (up to 7 object per minute).

XArm: Adaptation to changing lighting conditions. Our robotics lab, which the experimental
setup for the XArm was located, has direct access to large windows. This meant that the lighting
in the room would change throughout the day. Our XArm experiments were intended to run after
sundown to keeping the lighting conditions constant. Figure A.4 shows the learning curve of the
XArm. As expected the performance of the XArm drops during sunrise. However, we see that the
XArm is able to adapt to the change in lighting conditions and recover the original performance faster
than training from scratch. A careful inspection of the image observations of the robot at these times,
shown in Figure A.4, reveals that the robot received observations with strong light rays covering the
scene in contrast to the original training observations.
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A.4 Hyperparameters

Name Symbol Value

General

Replay capacity (FIFO) — 106

Start learning — 104

Batch size B 32
Batch length T 32
MLP size — 4 × 512
Activation — LayerNorm+ELU

World Model

RSSM size — 512
Number of latents — 32
Classes per latent — 32
KL balancing — 0.8

Actor Critic

Imagination horizon H 15
Discount γ 0.95
Return lambda λ 0.95
Target update interval — 100

All Optimizers

Gradient clipping — 100
Learning rate — 10−4

Adam epsilon ϵ 10−6

Table A.1: Hyperparameters.

A.5 Extended Related Works

Reinforcement learning on real world robot hardware is extremely challenging due to the large
range of possible dynamic behavior and visual complexity. In addition to the complex algorithmic
challenges already present in reinforcement learning algorithms, deploying these algorithms on
real world hardware provides additional systems challenges (Zhu et al., 2020). We provide a brief
overview of some common approaches to robot learning in in the real world.

RL for locomotion Reinforcement learning for locomotion is a well studied problem that requires
training robots to reason about contact sequences and navigate their environment. A common
approach to tackling the locomotion problem is to train RL agents in simulation with large amounts
of simulated data under domain and dynamics randomization (Lee et al., 2020; Siekmann et al.,
2021; Escontrela et al., 2022; Miki et al., 2022; Rudin et al., 2021; Peng et al., 2018), then deploying
the learned policy in the real world. Learning locomotion policies directly in the real world poses
additional challenges due to the sample inefficiency of common RL algorithms and the added risk
of damaging expensive hardware. To overcome this issue Smith et al. (2021) explored pre-training
policies in simulation and fine-tuning them with real world data. An alternative approach proposed
by (Yang et al., 2022) trains locomotion policies in the real world but leverages a recovery controller
trained in simulation to prevent the robot from entering unsafe states. In contrast, we do not utilize
any simulator, and directly train our policies on hardware. (Yang et al., 2019) investigated learning a
dynamics model using a multi-step loss and using model predictive control to accomplish a specified
task.

RL for manipulation Learning promises a scalable avenue to enabling robot manipulators to learn
and solve tasks in open real world environments. One class of methods attempts to scale model free
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RL by collecting experience with a fleet of robots (Kalashnikov et al., 2018; 2021). This can vastly
increase the amount of experience a trained agent can collect in the real world. In our experiments,
we only leverage one robot, but parallelize an agents experience by using the learned world model.
Another common approach is to leverage expert demonstrations (??) or other task priors (Pinto
and Gupta, 2015; Ha and Song, 2021). James and Davison (2021); James et al. (2021) increases
the sample efficiency of Q learning by utilizing a novel attention based mechanism to focus the
learner on important aspects of the scene. This approach however, still relies on having a few human
demonstrations to initialize the learner, which may not always be available. Other approaches, as in
locomotion first utilize a simulator, then transfer to the real world (OpenAI et al., 2018; Tzeng et al.,
2015).

Model-based reinforcement learning Model based RL, due to its higher sample efficiency over
model free methods, is a common class of algorithms applied to learning on real world robots
(Deisenroth et al., 2013). A model based method first learns a dynamics model, which can then be
used to plan actions (Nagabandi et al., 2019; Hafner et al., 2018), or be used as a simulator to learn a
model free policy as in dreamer (Hafner et al., 2019; 2020). One approach to tackle the high visual
complexity of the world learns an action conditioned video prediction model (Finn and Levine, 2017;
Ebert et al., 2018; Finn et al., 2016). One down side of this approach is the need to directly predict
high dimensional observations, which can be computationally inefficient and easily drift. Dreamer
learns a dynamics model in a latent space, allowing more efficient rollouts and avoids relying on high
quality visual reconstructions for the policy.

15


