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1 Automatic Semantic Region Labeling

We use a Right-turn sample to illustrate the automatic semantic region labeling process. We derive
a semantic BEV image with the process described in the main paper. As shown in Figure 1, camera
locations overlapping with the first and second crosswalks are annotated as A; and C;, respectively.
The poses locating between A; and C; are annotated as B;. Camera poses locating in areas before
the first and the second crosswalk are S; and T}, respectively. Note that the parameter ¢ is 3 because
this is a Right-turn at a 4-way intersection. The parameter i is set to 1 and 2 for Left-turn and Go
Straight, respectively.

Figure 1: Sample of automatic labeling. We show the results of automatic semantic region labeling
of a Right-turn sample. The semantic regions are visualized in colors. The red circle indicates S.
The circle indicates A3. The blue circle indicates Bs. The circle indicates C'3. The cyan
circle indicates 75. Best Viewed in color.

To evaluate the effectiveness of our automatic semantic region labeling process, we randomly pick
100 video clips and annotate ground truth semantic regions manually. The accuracy of automatic
semantic labeling is 76.4%. We diagnose the results and find the following reasons for failures. First,
some video clips do not start from the semantic region S because the original starting time labeled
in the HDD dataset is inaccurate. Second, lines like lane-changing lines and arrows indicating
directions are wrongly predicted as crosswalks by the segmentation model. To improve the quality
of labeling, we plan to annotate the center of the 4-way intersection (i.e., B;) and train another
semantic segmentator to mitigate the second issue in future work.
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HDD HDD Interactive
Model Feature Macro | Micro | o ap| Macro | Micro | ap
Avg Pre | Avg Pre Avg Pre | Avg Pre
SRP-INT ImageNet 51.3 74.6 53.9 453 59.3 60.1
SRP-INT nuScenes 25.0 57.8 45.5 67.4 69.8 69.1
SRP-INT | COCO Panoptic 52.8 61.8 51.7 46.1 61.1 63.3
SRP-INT | Mapillary Vistas 55.3 73.8 57.9 67.0 70.3 69.5

Table 1: Ablation study for model pretraining in HDD dataset on driver intention prediction.
Base model pretrained on the Mapillary Vistas dataset leads to better performance in general. The
results confirm the importance of the final task of a pretraining model.

nuScenes
Model Feature Macro Micro mAP
Avg Pre | Avg Pre
SRP-INT ImageNet 36.0 59.7 58.1
SRP-INT nuScenes 45.1 37.6 59.5
SRP-INT | COCO Panoptic 37.6 63.8 61.1
SRP-INT | Mapillary Vistas 41.1 68.3 66.7

Table 2: Ablation study for model pretraining in nuScenes dataset on driver intention predic-
tion. Base model pretrained on the Mapillary Vistas dataset leads to better performance in general.
The results confirm the importance of the final task of a pretraining model.

2 Experimental Details

Driver Intention Prediction. After training SRP, we freeze every other layers but the intention
classifier. Similar to training SRP, We use Adam optimizer [1] with default parameters, a learning
rate of 0.0001, and weight decay of 0.0005. The model is trained for 60 epochs. We report the
performances of the last epoch.

Risk Object Identification. We make use of the same weights of SRR as SRP-INT does and the
weights are frozen during the training process. The hidden state of the SRP is connected to a fully
connected(FC) layer before being fussed with the ego representation. We then follow the two-stage
strategy as described in the main paper to obtain the risk object predictions.

3 Ablation Study: Model Pretraining

We evaluate the impact of model pretraining for the base model. We follow the same training
procedure as the main paper and diagnose our SRP-INT on the HDD, HDD interactive and nuScenes.

As shown in Table 1 and Table 2, the backbone model pretrained on the Mapillary Vistas dataset
results in significantly better performance compared with the backbone models trained on other
datasets. Note that these backbones are trained on different tasks. The Mapillary Vistas backbone
is pre-trained on the panoptic segmentation task. The nuScenes backbone is trained on instance
segmentation task using data released in nulmage, an extension of nuScenes that contains additional
images and 2D annotations. Note that they have semantic labels for the drivable surface. The COCO
Panoptic backbone is trained on COCO Panoptic Segmentation. The model performs favorably in
different settings, while COCO Panoptic is not a traffic scene dataset. The tables show that the
in-domain nuScenes backbone cannot perform well in many metrics. We hypothesize that the two
tasks, i.e., intention prediction and risk object identification, require Stuff information (e.g., road,
lane marking, and crosswalk). On the other hand, the nuScenes backbone learns to detect objects,
which could explain the superior performance on HDD interactive cases because these cases involve
interaction with other traffic participants.



4 Generalization to nuScenes

In the task of driver intention prediction, to demonstrate the effectiveness of the learned representa-
tions, we first train our model on the HDD dataset [2] and test on the nuScenes dataset [3] without
finetuning. It is worth noting that the domain gap between the HDD dataset and the nuScenes dataset
is significant and could lead to false predictions in either semantic region predictions or intention
predictions. Some videos in the nuScenes dataset are collected in countries with left-hand traffic,
while data in HDD dataset is in right-hand traffic conditions. Another typical failure occurs when
the ego vehicle approaches an empty 4-way intersection. As shown in Fig. 2b, it is challenging
to make correct predictions without additional cues. One possible future direction is to leverage
drivers’ gazes as in the Brain4Car project [4] or steering signals.
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Figure 2: Failure cases on the nuScenes dataset. We show two typical failure cases of SRP-INT
on the nuScenes dataset. We provide ground truth as well as the driver intention predictions of the
CNN+LSTM baseline and our proposed SRP-INT. The semantic region predictions are shown on
the right side.

5 Interactive Scenarios

It is challenging to predict the driver’s intention in the modality of monocular image sequences due
to complicated driving scenarios such as drivers may have to stop for crossing vehicles or yield to
crossing pedestrians before they reach their intended goals. We call these cases interactive scenarios.
We evaluate our model on interactive scenarios on the HDD testing set because of their importance in
real-world applications. We present quantitative and qualitative evaluations of interactive scenarios
in the main paper as well as the following sections of the supplementary materials.

6 Qualitative Results

We show qualitative results of driver intention prediction on the HDD dataset and nuScenes dataset
of SRP-INT in Fig. 3 and Fig. 4, respectively. For comparison, we also show the intention predic-
tions of the CNN+LSTM baselines as the intention ground truth.

Qualitative results of SRP-ROI on two risk object categories: Crossing Vehicle and Crossing Pedes-
trian are shown in Fig. 5 and Fig. 6, respectively.
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Figure 3: Qualitative results of driver intention prediction on the HDD dataset [2]. The exam-
ples shown in the first four rows indicate normal cases, i.e., the ego-vehicle navigating through the
intersection without interactions with other traffic participants. The examples shown in the last four
rows are interactive scenarios. We provide the ground truth of ego-vehicle intention and the predic-
tion of the final SRP-INT and the CNN+LSTM baseline on the HDD dataset. The predictions of se-
mantic regions of SRP-INT are displayed on the right side of each scenario, where traffic participants
intervene in the movement of the ego-vehicle. The results demonstrate the proposed framework can
predict semantic regions reliably, and that helps the visual system predict ego-vehicle intention.
The qualitative experiments empirically justify the value of the proposed scene-level representation
learning.
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Figure 4: Qualitative results of driver intention prediction on the nuScenes dataset [3]. Similar
to the results on the HDD dataset [2] shown in Figure 3, the ground truth of ego-vehicle intention,
as well as the prediction of the SRP-INT and the CNN+LSTM baseline on the nuScenes dataset, are
presented. The semantic region predictions are provided on the right side of each case.
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Figure 5: Qualitative results of risk object identification — Crossing-Vehicle. We demonstrate the
effectiveness of the proposed scene-level representation for risk object identification. According to
the definition of the risky object proposed in [5], the candidate with the highest risk score is the risk
object. In this figure, we show the risk scores of each object candidate and demonstrate the system
can differentiate risk and non-risk objects in various crossing vehicle scenarios. For each candidate,
the color of the bar matches the color of the bounding box.
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Figure 6: Qualitative results of risk object identification — Crossing-Pedestrian. We demonstrate
the effectiveness of the proposed scene-level representation for risk object identification. According
to the definition of the risky object proposed in [5], the candidate with the highest risk score is the
risk object. In this figure, we show the risk scores of each object candidate and demonstrate the
system can differentiate risk and non-risk objects in various crossing pedestrian scenarios. For each
candidate, the color of the bar matches the color of the bounding box.
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