
APPENDICES

A Pullback and Combination of policies defined in subtask spaces

The priority metric and acceleration policy pair, [Mk, πk], defined in subtask space x = φk(q),
can be pulled back to the root coordinates (configuration space for a robot) as follows. First,
pre-multiplying the geometric policy through by the priority metric produces, Mk(x, ẋ)ẍ +
Mk(x, ẋ)πk(x, ẋ) = 0, or written as

Mk(x, ẋ)ẍ + fk(x, ẋ) = 0, (1)

where we additionally drop function variables for notational simplicity. Moreover, we have ẋ = Jkq̇
and ẍ = Jkq̈ + J̇kq̇, where Jk = ∂qφk. Substituting the acceleration equality, pre-multiplying
through by JTk , and rearranging yields,(

JTkMkJk

)
q̈ + JTk

(
fk + MkJ̇kq̇

)
= 0. (2)

where we can further define M̃k =
(
JTkMkJk

)
and f̃k = JTk

(
fk + MkJ̇kq̇

)
, resulting in M̃kq̈ +

f̃k = 0. Multiple priority metric and geometry pairs in different spaces can then be combined
together once they are pulled back as ∑

k

M̃kq̈ +
∑
k

f̃k = 0 (3)

with a resulting system acceleration of q̈ = −(
∑
k M̃k)−1

∑
k f̃k. This acceleration can then be

forward integrated to obtain evolving the desired position and velocity states.

B Network Parameterization for Neural Geometric Fabrics

We parameterize all learnable components as multi-layer neural networks. For each geometry and
priority metric pair, we separately parameterize the geometry {πk}k=1,2 and the priority metric
{Mk}k=1,2 as a function of states and features. The geometries can be constructed with functions
hk(xk|p) scaled by ‖ẋk‖2 to ensure the HD2 property, namely πk(xk, ẋk|p) = hk(xk|p)‖ẋk‖2 for
k = 1, 2, where (xk, ẋk) is the state represented in the space defined with mapping φk and p is the
feature (e.g. the object pose). To ensure that the output of the priority metric network Mk(xk, ẋk|p)
is positive definite, we follow the architecture described in [28]: a fully-connected neural network
with output dimension d(d + 1)/2 is used to predict the entries of a lower-triangular matrix Lk,
which serves as the Cholesky decomposition of the priority metric Mk. Further, a small positive
offset of 10−5 is added to the diagonal entries of Lk to ensure that the diagonal elements are strictly
positive. Both hk and Mk are represented by fully-connected neural networks with ReLU activation
and two hidden layers with hidden units listed in Table 2.

For parameterization simplicity, the acceleration-based potential policy shares the same networks
of the stacked space geometry, where Mf = M1 and πf = ∂x1

‖h1(x1|p)‖. The damping scalar
b = b(q, q̇‖p) is represented by fully-connected neural networks with ReLU activation and two
hidden layers with hidden units listed in Table 2, and can only produce non-negative values.

14

C Motion Generation with Neural Geometric Fabrics

Algorithm 1 and Algorithm 2 show how to generate motion with the learned NGF policy. These de-
sired states are then tracked by a torque-level PD controller that is additionally gravity compensated.

Algorithm 1: NGF
input : state (q, q̇) and feature p.
output: an desired acceleration q̈d

1 for k ← 0 to K do
2 xk = φk(q), ẋk = Jk(q)q̇ (push-forward);
3 πk = hk(xk|p)‖ẋ‖2 (geometry);
4 Mk = Mk(xk, ẋk|p) (priority metric);
5 q̈k = M̃−1k f̃k where M̃k = JTkMkJk, f̃k = JTkMk

(
πk + J̇kq̇

)
(pull-back);

6 end
7 M̃f = M̃K , f̃f = JTKMK

(
∂xK
‖hK(xK |p)‖+ J̇K q̇

)
(potential policy);

8 q̈d = −Pe
[
M̃−1f̃

]
− M̃−1f̃f − bq̇ where Pe = (I− ˆ̇qˆ̇qT), M̃ =

∑
k M̃k + M̃f and

b = b(q, q̇|p) ∈ R+ (complete form);

Algorithm 2: Motion Generation with NGF
input : initial state (q0, q̇0), feature p, time step δt and task horizon T .
output: a desired state trajectory {(q0, q̇0), (q1, q̇1), ..., (qT , q̇T)} (we drop subscript d for

notation simplicity.)

1 for i← 0 to T do
2 q̈i = NGF (qi, q̇i,p);
3 qi+1 = qi + q̇iδt;
4 q̇i+1 = q̇i + q̈iδt;
5 end

15

D Policy Optimization

Figure 5: The architecture for policy training. πθ is the policy network, which takes the current state
st as input, and outputs the action at. f is the system transition model, which takes the state st and
the action at as inputs, and outputs the next states st+1. ŝt is the state in the demonstration, and
s0 = ŝ0.

To mitigate the distribution shift issue involved in behavior cloning, we formulate the policy learning
problem as a multi-step prediction error optimization problem as shown in Fig. 5, in which we learn
a policy that can reproduce the demonstrated behavior through directly optimizing for the deviation
from the trajectory demonstration ŝ and the rollout trajectory s of the learned policy under the system
transition function f :

min
θ,{s(i)t }

1

2
∑N
i=1 Ti

N∑
i=1

Ti∑
t=0

`
(
ŝ
(i)
t , s

(i)
t

)
(4)

s.t. s
(i)
t+1 = f

(
s
(i)
t , πθ

(
s
(i)
t

))
, ∀i ∈ {1, . . . , N}, t ∈ {0, . . . , Ti − 1}, (5)

s
(i)
0 = ŝ

(i)
0 , ∀i ∈ {1, . . . , N}. (6)

where `(ŝ, s) = ‖ŝ − s‖22 measures state deviation. The constraints (5)–(6) ensure that {s(i)t } is
the rollout trajectory of policy πθ under the transition function f initialized at ŝ(i)0 . Since we use
Geometric Fabrics as an acceleration-based policy, we consider a discrete-time acceleration-driven
system, and the transition function f is defined as:

st+1 =

[
qt+1

q̇t+1

]
=

[
qt + q̇tδt

q̇t + πθ(qt, q̇t)δt

]
:= f(st, πθ(st)) (7)

where the state st is a tuple of position qt ∈ Rd and velocity q̇t ∈ Rd, the policy πθ(qt, q̇t) outputs
the acceleration action, and δt is the sampling time. We then solve problem (4)–(6) using back-
propagation-through-time [51, 52] with the Adam optimizer [53], where the learning rate is 10−2

and weight decay rate is 10−6.

Note, for policies that generate velocity (or position offset) actions, we can simply replace the system
transition function f with

st+1 = st + ṡtδt := f(st, πθ(st)) (8)
where the state st is the position and the policy πθ(st) produces the velocity action, and δt is the
sampling time.

The specific loss function for all policies is defined as:

`
(
ŝ
(i)
t , s

(i)
t

)
= λ‖q̂(i)

t − q
(i)
t ‖22 + ‖fk(q̂

(i)
t)− fk(q

(i)
t)‖22 (9)

with q
(i)
0 = q̂

(i)
0 , ∀i ∈ {1, . . . , N} (10)

where fk is the forward kinematics mapping that maps the joint positions q to a vector that consists
of the palm position and fingertips positions. N is the number demonstrations, Ti is the task horizon
(number of steps) of the ith demonstration, and λ = 0.1 is a hyper-parameter that trades-off the
losses of joint positions and the palm and fingertips positions. Hyper-parameters for training are
listed in Table 3.

16

E Baseline Policies

We establish a variety of baseline policies with a spectrum of structure and action space. The intent
is to systematically understand the effects of structure and action space on resulting performance and
how the resulting performance compares to the proposed NGF. Some of the baselines follow state-
of-the-art constructions or architectures while others serve as edifying reference points. All baseline
policies were trained with the same loss and optimization settings as outlined in Appendix D. Neural
network parameterization for each baseline is listed in Table 2.

E.1 Neural Network Acceleration Policy (NN)

The first baseline is a feedforward network that ingests 23-D joint positions and velocities, initial
pose of the object, and target pose of the end-effector, and produces a 23 dimensional acceleration
action. This action can then be time integrated to produce desired position and velocity signals. The
significance of this baseline is to create a reference point of performance for a policy that produces
a high-dimensional acceleration action without any additional structure. Acceleration actions are
known to have a significant inductive bias in policy learning and dynamics modeling [31].

E.2 Riemannian Motion Policy (RMP)

The second baseline is an RMP which also takes as input state positions and velocities, initial pose
of the object, and target pose of the end-effector, and produces a 23 dimensional acceleration action.
The input states are calculated based on the leveraged maps as discussed in Section 4.1 and the 23-D
joint position and velocity vectors. RMPs are a natural baseline for Geometric Fabrics because they
are also second order systems and encapsulate Geometric Fabrics. We construct the RMP similar to
the NGF policy, which is composed of policies defined in configuration space, and a stacked space
of palm and hand Eigenspace. Policies in different spaces are created, pulled-back, and combined in
the same way as Geometric Fabrics. However, the significance of this policy is to study the effect of
including different task spaces in the policy structure without enforcing geometric policy structures
or stability induced by potential and damping. The main difference here is that the priority metrics
and acceleration policies in these spaces are directly generated by feedforward networks without
imposing that the acceleration policy is a geometry. Leveraging the same spaces, pullback, and
combination operations, the resulting RMP policy is then

q̈ = −
(
M̃1 + M̃2

)−1
(f̃1 + f̃2). (11)

E.3 Long Short-Term Memory Velocity Policy (LSTM)

We created an LSTM-based policy that takes as input 23 joint positions and the initial object pose
and outputs a 23-dimensional configuration space position offset. Given an initial configuration,
these prediction offsets are continuously summed, resulting in the full configuration space position
trajectory. LSTMs are known to be beneficial to imitation learning [2] and can be useful for sequen-
tial processing and prediction architectures [56] (in this case, trajectory generation). This baseline
does not leverage the task-relevant structures as with the NGF and RMP policies, but rather, its native
recurrent structure is more directly studied to highlight how existing neural architectures perform in
this problem space.

E.4 End-effector Neural Network Policy (EEF-GF)

The EEF-GF policy takes as input the previous and current end-effector pose, the previous and
current finger joint positions, the initial object pose, and the target end-effector pose and produces
actions in two different spaces: 1) palm pose offsets, and 2) hand joint position offsets. Given
the initial conditions on palm pose and hand joints, these offsets are summed up over subsequent
predictions, generating palm pose and hand joint angle trajectories. The palm pose trajectory is
then given to an underlying hand-derived Geometric Fabric policy. This Geometric Fabric policy
generates smooth joint space motion while converging to the target palm pose targets. Moreover,
this policy resolves manipulator redundancy, postures the arm, avoids joint limits and joint speed
limits, and avoids self-collision. In fact, this Geometric Fabric policy is exactly the same in design

17

and tuning as the one used in [29]. This EEF-GF policy serves to follow prior work in training
policies with higher-level action spaces enabled by underlying hand-derived controllers [2, 57, 58],
which have shown to be much more effective in imitation learning settings.

F Experimental Setup

We use DexPilot [50] to collectN demonstrations of a human operator teleoperating a robot consist-
ing of a KUKA LBR iiwa 7 R800 robot arm and a Wonik Robotics Allegro robotic hand to perform
all three tasks with objects placed in a variety of different poses. N = 80 for the first two tasks, and
N = 6 for the third task. In total, the robot possesses 23 actuators. DexPilot functions by observing
human hand motion and generating joint position commands for the entire robot. These commands
are consumed by an underlying gravity-compensated PD controller that generates a desired drive
torque for each of the actuators. During demonstration, the robot’s commanded and measured joint
position trajectories along with RGB-D camera data were recorded. After data collection, the com-
manded position trajectories were extracted. For the first two tasks, CosyPose [54] was used to
label the initial camera image with the 6D pose of the object, and for third task, the orientation
of the object was controlled via its placement on a printed template indicating orientation angles.
The commanded trajectories along with this initial object pose reading were used in training the
subsequent policies via imitation learning. Importantly, the policies are trained to reproduce these
commanded joint position trajectories because following these trajectories with an underlying PD
controller not only induces robot motion in freespace, but also generates contact forces when these
commanded positions are kinematically infeasible and induce object-robot collision.

In general, it takes about 4 hours to collect 80 demonstrations for each task, and it takes about 3
hours to train the NGF policy on a single thread of a 4.0GHz Intel Core i7 CPU. This allows us to
imbue complex robots with new manipulation skills within a day.

G Extended Experiment Discussion

The imitation error ∆ is defined as:

∆ =

√√√√ 1∑N
i=1 Ti

N∑
i=1

Ti∑
t=0

‖fk(q̂
(i)
t)− fk(q

(i)
t)‖22 with q

(i)
0 = q̂

(i)
0 , ∀i ∈ {1, . . . , N} (12)

where fk is the forward kinematics mapping that maps the joint positions q to a vector that consists
of the palm position and fingertips positions. N is the number demonstrations and Ti is the task
horizon (number of steps) of the ith demonstration. The imitation error ∆ is an indicator of policy
performance and generalizability.

G.1 Analysis on Sample Efficiency

There are a number of conclusions that can be drawn when studying the imitation error and task per-
formance across all policies and number of demonstrations (see Fig. 4). First, as one would expect,
all policies benefit from increasing amounts of training demonstrations as both the imitation error
and real-world performance inversely correlate to the number of demonstrations. Second, imitation
error correlates with the real-world performance, although this is not a perfect one-to-one corre-
spondence (see all three plots in Fig. 4). More specifically, the NN policy which only possesses an
inductive bias via its acceleration action consistently has the highest imitation error which translated
to the lowest combination of task success rates and safe deploy rates. The NGF has the lowest mean
imitation error (and smallest variance) across all quantities of training demonstrations which trans-
lated to the best combination of task success rates and safe deploy rates. The RMP had the second
largest imitation error, which translated to poor task success rates, but better safety deploy rates
relative to the NN policy. This indicates that the additional task structure of the RMP was indeed
beneficial. Third, the small difference in imitation error between the LSTM and EEF-GF policies
did not quite translate in the same way to the real world performance. Although, these two policies
were the second and third highest performing, matching their imitation error positioning relative to
the other policies. The EEF-GF policy has the second highest level of performance, which matches
observations in the literature that policies trained in the end-effector space can improve performance.

18

Overall, the NGF’s impressive performance must be attributed to its additional structure imposed by
Geometric Fabrics: 1) encoding policies primarily as geometries, which are speed-invariant, and 2)
being a stable dynamical system with convergence offered by the potential policy and damping. This
rich structure is well studied in both [30] and [29], and allows us to learn provably stable second
order policies that extend beyond classical mechanics.

G.2 Sugar box task

Here we present the full result on the task performance of each policy trained on demonstration
trajectories of sizes [10, 30, 60, 80], deployed on the real robot and evaluated on 20 arbitrary object
poses with two attempts. If the first deployment did not succeed, a second attempt is initiated
without moving the object, offering the policy a second chance to grasp the object. Task success
rates and safe deployment rate were calculated for each policy and training dataset size as shown
in Section G.2, where the solid color bars indicate rates after the first attempt and faded color bars
indicate rates after the second attempt.

(a)

10 30 60 80

Number of Demonstrations

0

20

40

60

80

100

Sa
fe

D
ep

lo
y

R
at

e
%

(b)

Figure 6: Policy performance based on (a) percentage of deployments that resulted in successfully
lifting the object (darker bars indicate success rate of first attempt, faded bars indicate success rate
after second attempt), and (b) percentage of deployments that were safe to deploy on the real robot.

Remark: In general, the grasp success rate does not fully capture failure modes for policy perfor-
mance. Although grasp performance for either EEF-GF and LSTM do not scale as well beyond 30
training demonstrations, we empirically observed improved grasping behaviors for policies trained
with larger amounts of data. For instance, policies typically yielded better object approach and
caging behaviors than ones trained with fewer demonstrations. However, policies often still fail
the grasping exercise due to lack of fine finger placement and appropriate squeezing motions. For
instance, if fingers miss the edge of a box by only a few millimeters, then the grasp will likely fail
(see Fig. 7 for illustration). Indeed, successful grasping requires sufficiently precise and coordinated
motion among all fingers.

An example result of the learned NGF is presented in Fig. 8.

G.3 Coffee can task

From Fig. 3, we observed that our approach resulted in a 100% deployment rate and significantly
outperformed the baselines in terms of success rate, as it is 70% for the NGF and no more than 50%
for all the baselines. An example result of the learned NGF is presented in Fig. 9.

G.4 Toolbox task

In this task, we test policy generalization to unseen toolbox orientations, including both in distri-
bution and out of distribution cases. Testing results are presented in Table 1, where “S”, “F”, and

19

Figure 7: Typical EEF-GF policy grasp acquisition failures when trained on (a) 30 demonstrations,
and (b) 80 demonstrations.

Figure 8: Learned NGF policy that intrinsically generates smooth motion across all 23 actuators of
the robot to approach, grasp, and lift an object.

Figure 9: Learned NGF that intrinsically generates smooth motion across all 23 actuators of the
robot to touch the target point while avoiding collision with the object and then push the object over
to the target location.

“U” represent “Success”, “Failure” and “unsafe to deploy”, respectively. An example result of the
learned NGF is presented in Fig. 10.

Table 1: Testing Results for Toolbox Task.

Results Orientation (degree)
-10 0 20 40 60 80 100 120 130

Policy

NN U S S S S F S U U
RMP U S F S S S S S F

LSTM U S S S S S S U U
EEF-GF S S S S F F S S F

NGF F S S S S S S S S

20

Figure 10: Learned NGF that intrinsically generates smooth motion across all 23 actuators of the
robot to grasp the top tray of a toolbox and place it on the table.

H Reactivity of the Learned NGF Policy

To illustrate that NGFs are fundamentally reactive policies, we deployed the learned NGF policy
on the coffee can pushing task as illustrated in Fig. 11. While the robot was traveling to grasp the
coffee can, a person pushed the coffee can into a different pose. The NGF, which now ingests the
real-time pose measurement of the coffee can, immediately and smoothly redirects the robot hand
to the change in coffee can position and pushes it to the target destination to complete the task.
We tried this in a few different places and observed that: 1) object pose detection can fail causing
deployment issues (as we pointed out earlier), and 2) if the coffee can is pushed too far away from
the starting position while the hand is too close to the can, then the robot can get confused and not
complete the task. During the latter case, we never observed destructive motion induced by the NGF
policy, which was reassuring. However, to obtain truly good performance in closed-loop control,
we believe the NGF policy will need to be trained on a much larger dataset and allow the policy
to observe shifting object pose during training at various time points in the trajectory, not just the
beginning.

Figure 11: The learned NGF policy reacts to changes of the object location during execution in the
coffee can task. First row shows behavior without moving the object. Second row shows behavior
when the position of the object is changed while the robot is en route to grasping the object.

21

I Hyper-parameters for networks and training

Table 2 lists the network hyper-parameters used for each policy that we studied in this paper and
they are selected through a set of ablation experiments as outlined in Appendix J. Table 3 lists the
hyper-parameters used for the training.

Table 2: Hyper-parameters of Policy Networks
Policy names Network Hidden units for Task 1&2 Hidden units for Task 3 Activation

NGF MLP (128, 64) (64, 32) ReLU
RMP MLP (128, 64) (64, 32) ReLU
NN MLP (512, 256) (256, 128) ReLU

EEF-GF MLP (512, 256) (256, 128) ReLU

LSTM LSTM 256 128 Tanh
MLP (128, 64) None ReLU

Table 3: Hyper-parameters for training
Hyperparamter names Values

Training epochs 2000
Learning rate 0.001

Optimizer ADAM
Decay 1e-6

Clip norm 1.

J Ablation study on hyper-parameters for network sizes

The hyper-parameters listed in Table 2 are selected through a set of ablation experiments on the
imitation error as discussed in Section 6.3, where we studied the imitation error for each policy on
the first task over three sets of network sizes, including small size, median size and large size as
listed in Table 4. The imitation error for each policy is shown in Fig. 12. Based on these results, we
decided to use the network size that gives the best performance on imitation error for each policy,
namely large network for NN and EEF-GF, median network for LSTM, and to keep RMP and NGF
similar to each other, we use the median network for them. Since there are only 6 demonstrations for
task 3, we decide to use a smaller network size for each policy to prevent overfitting to the training
data, namely median network for NN and EEF-GF, small network for LSTM, and small network for
RMP and NGF.

Table 4: Hyper-parameters on Network Sizes
Policy names Network Small Size Median Size Large Size

NGF MLP (64, 32) (128, 64) (256, 128)
RMP MLP (64, 32) (128, 64) (256, 128)
NN MLP (128, 64) (256, 128) (512, 256)

EEF-GF MLP (128, 64) (256, 128) (512, 256)

LSTM LSTM 128 256 512
MLP None (128, 64) (256, 128)

22

10 20 30 40 50 60
Number of Demonstrations

0.06

0.08

0.10

0.12

0.14

0.16

Im
ita

tio
n

E
rr

or
m

NN: Imitation Error vs Dataset Size
SMALL
MEDIAN
LARGE

(a)

10 20 30 40 50 60
Number of Demonstrations

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Im
ita

tio
n

E
rr

or
m

RMP: Imitation Error vs Dataset Size
SMALL
MEDIAN
LARGE

(b)

10 20 30 40 50 60
Number of Demonstrations

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

Im
ita

tio
n

E
rr

or
m

LSTM: Imitation Error vs Dataset Size
SMALL
MEDIAN
LARGE

(c)

10 20 30 40 50 60
Number of Demonstrations

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080
Im

ita
tio

n
E

rr
or

m
EEF-GF: Imitation Error vs Dataset Size

SMALL
MEDIAN
LARGE

(d)

10 20 30 40 50 60
Number of Demonstrations

0.040

0.045

0.050

0.055

0.060

0.065

0.070

Im
ita

tio
n

E
rr

or
m

NGF: Imitation Error vs Dataset Size
SMALL
MEDIAN
LARGE

(e)

Figure 12: Imitation error for each policy on the first task over small, median and large network
sizes for each policy: (a) NN, (b) RMP, (c) LSTM, (d) EEF-GF, (e) NGF.

23

K An additional baseline - Neural Dynamic Policy (NDP)

An NDP [59] parameterizes the second order Dynamics Motion Primitives (DMP) with neural net-
works, and can be utilized to learn behaviors from demonstrations. We train an NDP following the
imitation learning formulation described in [59] with our loss function. The NDP evaluates its neural
network components at the beginning of each task given the initial object pose and the target posi-
tion to produce variables in the DMP, which is then forward integrated to produce the commanded
trajectory given the initial joint positions and velocities.

This structure is good for avoiding distribution shift issues that other methods suffer from and alle-
viating the overfitting issue when there are only a few demonstrations. However, it diminishes its
capacity in encoding the fine details of the behavior, which are very critical in dexterous manipu-
lation with high dimensional systems. As shown in Fig. 13a, thanks to the strong inductive bias,
NDP outperforms NN when trained with less than 30 demonstrations. However, due to the lack of
expressivity, NDP is outperformed by NN when trained with 60 demonstrations. Overall, the NDP
has the worst imitation error of all policies in the higher data regime and significantly worse imi-
tation error than the LSTM, EEF-GF, and NGF policies in general. Given these results, we expect
the NDP to have real world performance somewhere between the NN and RMP policies, neither of
which can compete with the NGF policy in the real world experiments. We also ran ablation stud-
ies across different neural network sizes just like all our policies (see Fig. 13b) and decided on the
median network size [256, 128] with 10 radial basis functions (RBFs) given its best performance in
imitation error.

10 20 30 40 50 60
Number of Demonstrations

0.06

0.08

0.10

0.12

0.14

Im
ita

tio
n

E
rr

or
m

Imitation Error vs Dataset Size
NN
NDP
RMP
LSTM
EEF-GF (OURS)
NGF (OURS)

(a)

10 20 30 40 50 60
Number of Demonstrations

0.07

0.08

0.09

0.10

0.11

0.12

Im
ita

tio
n

E
rr

or
m

NDP: Imitation Error vs Dataset Size
SMALL
MEDIAN
LARGE

(b)

Figure 13: (a) Imitation error of each policy, and (b) Imitation error for NDP on the first task over
small network size [128, 64] with 5 RBFs, median network size [256, 128] with 10 RBFs and large
network size [512, 256] with 20 RBFs. Solid lines indicate the mean and the shaded area show mean
± standard deviation, over the 5 random seeds.

24

L Comparison between NGFs and RMPs

Here we provide a more detailed comparison between NGF and RMP. The key similarities are 1)
both NGFs and RMPs are dynamical-systems-based structured policies which can be learned from
demonstrations; and 2) both NGFs and RMPs leverage exactly the same tree structure of subtask
spaces. It is important to note that RMP does not necessarily represent a competing approach to
NGF. In fact, Geometric Fabrics can be viewed as specialized versions of RMPs with more effective
structural inductive biases. Indeed, our key contributions are to enable learning Geometric fabrics
directly from demonstrations and to demonstrate that the inductive bias in our approach is con-
siderably more data efficient than that introduced by RMP within the context of high-dimensional
dexterous manipulation skills. To this end, we solve a number of challenges and our approach results
in the following benefits over RMPs:

1. Geometric fabrics provide a unique and beneficial inductive bias. The combined works
of [29] and [30] set the theoretical foundations culminating in second order systems that
can be classified as a Geometric Fabric. A Geometric Fabric requires four main com-
ponents: 1) a system geometry, 2) a Finsler energy that we will force the geometry to
conserve, 3) a potential function, and 4) a strictly positive scalar acceleration damper. This
combined machinery was only recently introduced in [29] and [30] and no prior work has
demonstrated that this structured class of policies can be learned from demonstrations. Our
experiments show that the coordinated high-dof dexterous manipulation demonstrations
are well-modeled as geometries, which separate the motion (paths) from speed of traversal
(an inductive bias that allows the policy to learn similar motions from trajectories that may
have the same shape but different speed profiles).

2. Leveraging the theory of geometric fabrics in a learning context requires nontrivial
design not addressed in [29] and [30]. We introduce how to parameterize the NGF with
neural networks while ensuring that the theoretical guarantees of Geometric Fabrics are
maintained. Specifically, we construct two HD2 geometric policies, one potential policy,
their associated priority metrics, and a damper via neural networks. We also choose to ener-
gize these geometries via a specific energy established in configuration space and establish
a novel tree of spaces that these components reside within (more discussion below).

3. Our training technique and design of loss functions represent steps beyond prior
work. These decisions were not investigated or considered in existing RMP training papers,
and required significant iteration before we converged on the proposed learning algorithm.
These choices greatly impacted performance.

4. Our choice of action spaces (the configuration space and concatenated PCA space for
the hand and 3D Euclidean space at the palm point) is nontrivial and is unique to our
work. We spent significant design cycles iterating on which task spaces performed best
for both RMP and NGF policies. We believe that these insights will be highly relevant
to future efforts aimed at learning dexterous manipulation policies, even if a completely
different policy parametrization is utilized.

5. The novelty of our work (or that of RMP) does not reside on task space trees. In fact,
trees of task spaces have a long history in the robotics literature dating from much earlier
than RMPs or geometric fabrics. RMPs and especially RMPflow introduce a data structure
that’s helpful for leveraging pullback in solving structure task space least squares problems,
and that’s used in geometric fabrics and our work here (geometric fabrics actually add non-
trivial machinery based on the theory in [29] and [30]). But the use of transform trees
here is not our focus. Our work demonstrates that the inductive bias of geometric fabrics
is pivotal to achieving data efficiencies low enough to make learning high-dof dexterous
manipulation from human demonstrations on physical hardware possible.

25

