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Abstract: In this supplementary material, we will first provide more details about
the camera track of the OPV2V dataset (Sec. 1). Afterward, the model details of
the proposed FAX attention and implementation details of our CoBEVT models
on different datasets will be illustrated in Sec. 2 and Sec. 3. Finally, we show more
qualitative results for all three tasks tested in the main paper in Sec. 4.

1 The Camera Track of OPV2V dataset

Sensor Configuration. In OPV2V, every AV is equipped with 4 cameras toward different directions
to cover 360◦ surroundings as Fig. 1 shows. Each camera has an 800 × 600 spatial resolution and
110◦ FOV, which introduces a 10◦ view overlap between any neighboring pair.

Groundtruth. The BEV semantic segmentation groundtruth mask has a pixel resolution of
256 × 256 and covers a 100 × 100 m area around the ego vehicle, which represents a map sam-
pling resolution of 0.39 m/pixel. The authors also provide corresponding visible masks, where all
dynamic objects that can be seen by any AV’s camera rigs are marked as visible, and vice versa for
the invisible. Similar to previous works [1, 2], we only consider objects that are visible during both
training and testing.

2 Model Details

We give more details about the proposed 3D fused axial attention (FAX) below.

3D Relative Attention. The vanilla attention mechanism defined in [3] is a global mixing opera-
tor based on the weighted sum of all the spatial locations, whereas the weights are calculated by
normalized pairwise similarity. Formally, the attention operator can be defined as

Attention(Q,K,V) = softmax(
QKT

√
dk

)V (1)

where the Q,K,V are the query, key, and value matrices projected from the input tensor. Multi-
head attention is an extension of (1) in which we split the channels into multiple “heads”, in parallel,
and run attention on each head separately. Here for simplicity, we only use a single-head equation,
but we always use multi-head variants in the actual implementations.

The 3D relative attention we adopt in CoBEVT is an improved attention with the relative positional
encoding added in the 3D space. Given a 3D input tensor z ∈ R(N×H×W )×C , the 3D relative
attention can be expressed as:

3D-Rel-Attention(Q,K,V) = softmax(
QKT

√
dk

+B)V, (2)

where B is the relative position bias, whose values are taken from B̂ ∈ R(2N−1)×(2H−1)×(2W−1)

with learnable parameters [4, 5].
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(a) front (b) right (c) left (d) back
Figure 1: An example of the four cameras of different AVs in the same intersection. Each row
represents the full views of an AV. From left to right: (a) front camera, (b) right camera, (c) left
camera, (d) back camera.

3D FAX Attention. We assume that the above defined 3D-Rel-Attention in Eq. (2) follows the con-
vention of 1D input sequence, i.e., always regard the second last dimension of an input as the “spatial
axis”. The proposed FAX attention can be implemented without modifications to the attention op-
erator. We first define the Fused-Block(·) operator with parameter P as partitioning the input 3D
feature x ∈ RN×H×W×C into non-overlapping 3D windows each having window size N ×P ×P .
Note that after window partitioning, we gather all the spatial dimensions in the so-called “spatial
axis”:

Fused-Block : (N,H,W,C)→ (N,
H

P
× P,

W

P
× P,C)→ (

HW

P 2
, N × P 2︸ ︷︷ ︸

“spatial axis”

, C). (3)

We then denote the Fused-Unblock(·) operation as the reverse of the above 3D window partition
procedure. Likewise, for the global attention branch, we define another 3D grid partitioning operator
as Fused-Grid with the grid parameter G, representing dividing the input feature using a uniform 3D
grid of size N ×G×G. Note that unlike Eq. (3), we need to apply an extra Transpose to place the
grid dimension in the assumed “spatial axis”:

Fused-Grid : (N,H,W,C)→(N,G×H

G
,G×W

G
,C)→(N×G2,

HW

G2
, C)→ (

HW

G2
, N×G2,C)︸ ︷︷ ︸

swapaxes(axis1=-2,axis2=-3)
(4)

with its inverse operator Fused-Ungrid that reverses the 3D-gridded input back to the original tensor
shape.
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Now we are ready to present the whole 3D FAX attention module. The 3D local block attention can
be expressed as:

x← x+ Fused-Unblock(3D-Rel-Attention(Fused-Block(LN(x))))

x← x+ MLP(LN(x))
(5)

while the sparse global 3D Attention can be expressed as:

x← x+ Fused-Ungrid(3D-Rel-Attention(Fused-Grid(LN(x))))

x← x+ MLP(LN(x))
(6)

where the QKV matrices in Eq. (2) are linearly projected from input x and are omitted for sim-
plicity. LN denotes the Layer Normalization [6], where MLP is a standard MLP network [7, 4]
consisting of two linear layers applied on the channel: x←W2GELU(W1x).

3 Implementation Details

In the following, we show the detailed architectures for the three experiments, respectively.

3.1 OPV2V Camera Track

We illustrate the architectural specifications of CoBEVT in Table A2. Further illustrations are pre-
sented below.

Table A2: Detailed architectural specifications of CoBEVT for OPV2V camera track. M represents
the number of cameras and N is the number of agents.

Output size CoBEVT framework

ResNet34
Encoder

N ×M × 64× 64× 128
[

ResNet34-layer1
]

N ×M × 32× 32× 256
[

ResNet34-layer2
]

N ×M × 16× 16× 512
[

ResNet34-layer3
]

SinBEVT
Backbone

N × 128× 128× 128


FAX-CA, dim 128, head 4,

bev win. sz.{16× 16}
feat win. sz.{8× 8}

MLP, dim 256
Res-Bottleneck-block ×2

× 1

N × 64× 64× 128


FAX-CA, dim 128, head 4,

bev win. sz.{16× 16}
feat win. sz.{8× 8}

MLP, dim 256
Res-Bottleneck-block ×2

× 1

N × 32× 32× 128


FAX-CA, dim 128, head 4,

bev win. sz.{32× 32}
feat win. sz.{16× 16}

MLP, dim 256
Res-Bottleneck-block ×2

× 1

FuseBEVT
Backbone N × 32× 32× 128

 FAX-SA, dim 128, head 4,
win. sz.{8× 8}
MLP, dim 256

× 3

Decoder

64× 64× 128
[

Bilinear-upsample, Conv3x3, BN
]

128× 128× 64
[

Bilinear-upsample, Conv3x3, BN
]

256× 256× 32
[

Bilinear-upsample, Conv3x3, BN
]

256× 256× k
Dyna. Obj. head:

[
Conv1x1, 2, stride 1

]
Stat. Obj. head:

[
Conv1x1, 3, stride 1

]
Model Separation. Same as [1, 2, 8, 9], we have separate models for dynamic objects and static
layout BEV semantic segmentation. Both models have the same configurations except for the last
layer in the network.

Image Encoder. We first resize the input images to 512× 512 and utilize ResNet34 [10] to extract
image features. We then take the outputs I0 ∈ R4×64×64×128, I1 ∈ R4×32×32×256, and I2 ∈
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R4×16×16×512 from the layer1, layer2, and layer3 to interact with the BEV query, where 4 is the
number of cameras..

SinBEVT. The BEV query Q0 ∈ RH×W×C is a learnable embedding, where H,W,C = 128. Q0

is fed into our FAX-CA block as query whereas I0 is regarded as key and value to project image
features into the BEV space. We set the window/grid size of I0 as (8, 8) and that of the B0 as
(16, 16). Afterwards, Q0 is downsampled and refined by two standard residual blocks to obtain
Q1 ∈ R64×64×128. The BEV query will perform the same operations with I1 and I2 sequentially to
obtain the final BEV feature Q2 in R32×32×128.

FuseBEVT. The BEV features from N agents will be stacked together as h ∈ RN×32×32×128

and fed into three sequential FAX-SA blocks to gain the fused feature H ∈ R32×32×128. The
window/grid size is set as 8 for all FAX-SA blocks.

Decoder. H will be upsampled by 3× [bilinear interpolation, conv3x3, BN] to retrieve the final
segmentation mask M ∈ R256×256×k, where k = 2 for dynamic objects and k = 3 for static layout.

3.2 nuScenes

To make a fair comparison, we strictly follow the same experiment setting as CVT [1] Image En-
coder. We follow CVT [1] and Fiery [2] to use EfficientNet B-4 [11] as image feature extractor. We
compute features at three scales - (56, 120), (28, 60), and (14, 30).

SinBEVT. The BEV query starts with a size of 100×100×32 and ends with a size of 25×25×128.
We set the window/grid size of image features and BEV query for the three FAX-CA blocks as (6,
12), (6, 12), (14, 30) and (10, 10), (10, 10), (25, 25) respectively. Main architecture is the same to
the SinBEVT specifications shown in Table A2.

Decoder The decoder structure is the same as CVT. The decoder consists of three (bilinear upsample
+ conv) layers to upsample the BEV feature to the final output size (200× 200).

Training. We train our models with focal loss and a batch size of 4 per GPU for 30 epochs. We
employ AdamW optimizer with the one-cycle learning rate scheduler. The whole training process is
around 8 hours on 4 RTX3090 gpus.

Evaluation. We evaluate the 100m×100m area around the vehicle with a 50cm sampling resolution.
We use the Intersection-over-Union (IoU) score between the model predictions and the ground-truth
segmentation mask.

3.3 OPV2V LiDAR Track

All the comparison methods have the same configurations except for the fusion component.

Point Cloud Encoder. We select PointPillar [12] as the point cloud feature extractor and set the
voxel resolution as (0.4, 0.4, 4) on x, y, and z axis. The architecture settings are the same as [12].
The extracted feature has a final resolution of 176× 48× 256.

FuseBEVT. The configurations of FuseBEVT is the same as the ones in OPV2V camera track.

Detection Head and Training. We simply apply two 3× 3 convolution layers for classification and
regression respectively. We train the models using Adaw [13] optimizer with multi-step learning
rate scheduler. The learning rate starts with 0.001 and decay 10 times for every 10 epochs.

4 More Qualitative Results

OPV2V camera track. Fig. 2 and Fig. 3 show the visial comparisons between our CoBEVT
and others on OPV2V camera track. Our method significantly outperforms others both on dynamic
objects prediction and road topology segmentation in most of the scenarios.

OPV2V LiDAR track. We demonstrate detection visualization results in OPV2V LiDAR track in
4 different busy intersections in Fig. 4 and Fig. 5. Compare to other state-of-the-art fusion methods
in including AttFuse [14], F-Cooper [15], V2VNet [16], and DiscoNet [17], our CoBEVT achieves
more robust performance in general.We carefully examined the detection visualization comparisons
between our method and the previous SOTA method DiscoNet. As shown in Fig. 4 and Fig. 5, we
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use red circles to highlight the objects that have obviously different detection results among these
two methods. It is obvious that our results have fewer undetected objects and fewer displacements.

nuScenes. Fig. 6 depicts the qualitative results of our SinBEVT on nuScenes under different road
typologies, traffic situations, and light conditions. Our method can recognize most of the objects
and robustly estimate the complicated road layout, demonstrating strong generalization ability of
the proposed FAX attention for various autonomous driving tasks.
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GT AttFuse F-Cooper V2VNet DiscoNet Ours

Figure 2: More qualitative results for OPV2V camera track. We show the four cameras of ego
vehicle in the first row and all comparison methods along with groundtruth in the second row for
each group.
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Figure 3: More qualitative results for OPV2V camera track. We show the four cameras of ego
vehicle in the first row and all comparison methods along with groundtruth in the second row for
each group.
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Ours

DiscoNet

V2VNet

f-cooper

att_fuse

Figure 4: Qualitative results for OPV2V LiDAR track. We compared our predictions against
other state-of-the-art methods on 2 challenging scenes.
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Ours

DiscoNet

V2VNet
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Figure 5: More qualitative results for OPV2V LiDAR track. We compared our predictions
against other state-of-the-art methods on 2 more scenes.
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(a) Multi-view camera images (b) GT (c) Our prediction

Figure 6: Qualitative results on the nuScenes dataset for various occlusions and light condi-
tions. We show the (a) six camera-view images on the left group of pictures, and the (b) ground
truth segmentation reference, (c) our SinBEVT predictions on the most right. The ego-vehicle is
located at the center of the segmentation map.
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