Appendix for Efficient Tactile Simulation with
Differentiability for Robotic Manipulation

A Penalty-based Tactile Simulation and Derivatives

In this section, we give the details of the forward dynamics and backward gradient derivation of
our differentiable penalty-based tactile simulation. In §A.1, we give the formulation of the equa-
tions of motion for forward dynamics with the BDF1 time stepping scheme. In §A.2, we introduce
our penalty-based tactile model and derive its analytical derivatives, which are necessary for our
implicit forward time integration and backward gradients computation. In §A.3, we show in detail
how we compute the analytical gradients of the whole simulation through reverse-mode backward
differentiation.

A.1 Equations of Motion

We give the formulation of equations of motion ¢g(g:—1, g:—1, us, g¢) here. We follow the reduced-
coordinate rigid-body dynamics formulation of DiffRedMax [1] and use the BDF1 implicit time
integration scheme [2] with step size h to step forward the simulation. Mathematically, at each time
step ¢, we take a state in reduced coordinate representation (g:—1, g:—1) and the joint-space action
uy, and get the state (g;, g;) by solving the following equation with Newton’s Method:
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where M,. is the generalized mass matrix in reduced coordinates, J is the Jacobian, f, is the gener-
alized force vector generated by joint-space effects (e.g., joint damping), f,,, is the maximal wrench
(e.g., gravity, Coriolis forces, contact forces, external forces, etc.), foyv is the quadratic velocity
vector, and wu; is the joint-space action. Whenever we need the velocity, we compute it from the
positions: ¢; = (q: — q:—1)/h. We will not go into details of Eq. 7 since it can be found in many
rigid body dynamics tutorials.

A.2 Penalty-based Tactile Model and the Derivatives

As introduced in §3.2, our penalty-based tactile model contains two parts: first, we compute the
contact forces (i.e., normal force and friction force) at the tactile point’s location with a penalty-
based approach; then, we project the contact force into the local coordinate frame of the tactile point
to acquire the desired shear and normal tactile force magnitudes:
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In order to complete the backward gradient computation, we need to compute the derivatives of the
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tactile forces with respect to the state of the simulation (i.e., =522t and —5z2=21). We drop

the subscript ¢ for brevity. Let q,, be the state of the simulation in maximal coordinates (which can
be converted to reduced coordinates through the Jacobian [3]). We have
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Let B; denote the body the tactile point attaches to, and Bs be the body the tactile point has contact
with. We first derive the gradients of the contact normal force f;,.
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The values d, d, n are only related to the bodies B, Bo. We assume that there is a distance function
of body B (can be either an analytical function if By is a primitive shape or a signed distance field
if By is an arbitrary shape), so their corresponding derivatives can be computed easily from the
distance function.

Next, we derive the gradients for the contact friction force f;. Since the contact friction force is
composed of the static friction force (fs = —k;v;) and dynamic friction force (fy = — Hz—iu wll FrlDs

we derive the derivatives for each of them separately.

For the static friction force, the derivatives are:
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where the derivatives of v; can also be acquired from the distance function.
For the dynamic friction force, the derivatives are:
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A.3 Backward Gradients Computation through Adjoint Method

Since we use an implicit time integration scheme for forward dynamics, the core step of gradient
computation is to differentiate through the nonlinear equations of motion. We re-write the finite-
horizon tactile-based policy optimization problem here for convenience.
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Figure 6: Computation graph of the simulation with BDF1 time stepping around time step ¢. We illustrate
the computation graph for gradient derivations of £/0q: and OL/Ju:. The boxes (e.g., g,mg) represent
functions, and the circles represent data/values. The grey circles are the data unrelated to the gradient derivation
at step ¢. The red circles are the data (-) that we already have the gradient 9L /9(-) for when we arrive at step
t during backward propagation. The blue circles are the data related to the gradient computation at step ¢. The
green arrows are the data flows computed by PyTorch, and the black arrows are the data flows computed by our
simulator. The dashed arrows are the data flows whose gradients computations are not handled by the simulator
or are not related to the derivation at the current step. The orange-shaded part is our simulation layer for step ¢
in the PyTorch computation graph.

Here, H is the task horizon, L; is a step-wise task-dependent reward function, w is the action
(e.g., joint torques), q is the simulation state (i.e., joint angles), and v is the derived auxiliary simula-
tion variables (e.g., fingertip positions) which themselves are a function of q. Eq. 17b describes the
nonlinear equations of motion (§A.1). Eq. 17c represents the inference of the control policy 7y to
obtain the desired action given the partial observation of the simulation state g, partial observation
of the simulation computed variables v, and the tactile force values 7" from Eq. 8.

We embed our simulator as a differentiable layer into the PyTorch computation graph and use re-
verse mode differentiation to backward differentiate through dynamics time integration. To illustrate
the gradient derivation, we draw the computation graph in Fig. 6. The computation steps such as
loss/reward computation and policy inference (i.e., green arrows in the figure) are computed by Py-
Torch, and the dynamics-related computation (i.e., black arrows) are processed by our simulator in
C++. Each step of our simulation can be regarded as a function (shown in the orange shaded box in
Fig. 6) in the computation graph:

(gt,ve, Ty) = Sim(qi—1, Gi—1, ut)- (18)

We compute the gradients dL/df = ", (0L/0u;) (0w, /08) for policy optimization. The first gradi-
ent, 0L /0u;, which includes the simulation dynamics and tactile derivatives, is derived analytically.
The second gradient, du, /99, is computed by PyTorch’s auto-differentiation.

Now we show how to compute 0L /Ju;. We compute 9L /Ou; in reverse order, starting from the last
time step. At time step ¢, we assume that we have the following gradients computed: 0L/0vy 141 ...,
OL/OT; 441, and OL/Dqi+1 1+2,... (red circles in Fig. 6). To compute the gradient backpropaga-
tion at step ¢, we need to compute 0L/0q, and OL/0u:
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The derivatives dv,/0q; can be computed from the functions v(q) easily. The derivatives 0T} /0q;,
0T/ 9q;, and 0T;1/0q;+1 have been shown in §A.2. The derivatives of 9q;/9q; and 9q;+1/0q;
can be computed from the BDF1 equations (Eq. 6).
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To computing the remaining derivatives 9q;11/0q:, 0qi+1/9qt, 0qi1+2/0qs+1, and Oqi/Ou, we
must differentiate through the implicit function g(q:—1, G:—1, ut, q:) = 0. We show the derivation



for 0q;/Ou; and how to compute Eq. 19b efficiently through the adjoint method; the same approach
can be used for computing others and Eq. 19a.

We apply the implicit function theorem on g(q;—1, G:—1, U+, g:) = 0:
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To efficiently calculate Eq. (22), we apply the adjoint method to first solve ¢ from the linear equation
ATc =b" and then compute Eq. (19b) as
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B Detailed Experiment Setups and More Results

In this section, we give the details of the 5 experiments in §4 of the main text. The subsections corre-
spond between this appendix section and the main experiment section, so that §4.1 <» §B.1,84.2 <
§B.2, etc.

B.1 High-Resolution Tactile Ball Rolling Experiment

In §4.1, we use a ball rolling experiment to show the efficacy of the tactile force field generated
by our simulator and to test the simulation speed. The resolution of the tactile marker points is
200 x 200, and the simulation step size h = 5 ms. Here we visualize the lower surface of the pad in
Fig. 7(a). The speed of the simulation varies with the resolution of the tactile marker points and the
frequency of the tactile force field computation. We report in Table 3 the speeds of the simulation
under different tactile marker resolutions and different frequencies of tactile force field acquisition.
All the experiments run on a single core of an Intel Core i7-9700K CPU. The simulation speed can
be further accelerated by simply parallelizing different environments across multiple CPU cores,
and the speed of each individual simulation can be significantly accelerated by computing the tactile
force at each tactile marker point in parallel through GPU programming since all the tactile marker
points are independent of each other.

RESOLOTION FREQUENCY || 4 Hz (5 sTEPS) | 10 HZ (20 STEPS)
10 x 10 3477 FPS 3562 EPS
50 % 50 3167 FPS 3482 FPS
200 % 200 1050 FPS 9360 FPS

Table 3: Simulation speeds at different tactile points resolutions and the frequencies of the tactile force
computation.

B.2 Tactile-Based Stable Grasp Task

In §4.2, we show the usage of shear force information for control and the effectiveness of our tactile
simulator in a parallel-jaw bar-grasping task.

Task Specification The task requires a WSG-50 parallel-jaw gripper to stably grasp a bar with
unknown mass distribution in fewer than 10 attempts. The gripper has two tactile sensors with
a tactile marker resolution of 13 x 10 with 1.5 mm space between adjacent markers (shown in
Fig. 7(b)). The bar is composed of 11 blocks. The total mass of the bar is in the range [51,120] g.
Directly randomizing the density of each block results in the configuration where the center of mass
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(a) Flat Tactile Pad (§4.1) (b) WSG-50 (§4.2, §4.3, §4.5) (© D*Claw (§4.4)

Figure 7: Visualization of the tactile sensor layouts. We visualize the tactile sensor layouts of the three tactile
manipulators we used in the experiments: (a) The flat tactile pad used in the ball rolling experiment (§4.1) (for
better visualization, we only render tactile resolution of 20 x 20); (b) The WSG-50 gripper with GelSlim sensor
used in the stable grasp task (§4.2), box pushing task (§4.3) and tactile RL insertion task (§4.5); (c) The D’Claw
tri-finger hand used in the rotating cap task (§4.4).

of the bar is located near the geometric center in most cases. Therefore, to generate the bar with a
uniform distribution of the center of mass, we randomize the center of mass location first, and then
adjust the density of the blocks to meet the requirement of the center of mass location. We consider
a grasp to be a failure if the bar is not lifted up or tilts more than 0.02 rad after the gripper grasps a
bar.

The initial grasp location is the geometric center of the bar. The policy executes in an episodic
process iterating between open-loop grasp attempts followed by grasp position adjustments. Specif-
ically, the policy observes the tactile sensor readings at the frame the gripper lifts up the bar. Based
on this observation input only, the policy outputs a delta change in the grasping location. A scripted
grasping controller will then be executed to grasp the bar in the predicted grasping location.

Reward Function The reward function is defined as:

R, — { 100 |a] <0.2rad and h > 0.5 cm (success) 24)

—10|«| otherwise,

where « is the tilting angle of the bar and h is the lifted height of the bar.

Policy Learning We treat the tactile force field as a multi-channel “image” (resolution is 13 x 10
and each channel is for the force component in each axis). The policy is modeled as a shallow CNN
(Conv-ReLU-MaxPool-Conv-ReLU-FC-FC) that takes as input the tactile sensor readings from two
tactile pads. We train the policies with PPO [4] using 32 parallel environments with 20K environ-
ment steps in total. The PPO parameters are reported in Table 4.

Parameter names Value

learning rate 3e~* (with linear decay schedule)
number of rollouts per iteration 32

entropy coefficient 0.01

value loss coefficient 0.5

batch size 256

discount factor ~y 0.99

GAE A 0.95

PPO clip range 0.2

Table 4: The hyperparameter setting of PPO on the tactile-based stable grasp task.
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Figure 8: Training Curve of Tactile-based Stable Grasp Task. The curve is averaged from three random
seeds. The shaded area is the standard deviation.

Training Results We train the policies with 3 different random seeds. The training curve is plotted
in Fig. 8. We test the trained policies for 320 times, and the success rate is 98.5 & 1.8% (the success
rate is updated from the one reported in §4.2). The average number of attempts taken to stably grasp
the bars is 2.1. We further test the learned policies on grasping the bar with a different number of
blocks. While the policies are trained with 11 blocks, it achieves 93.3% success rate on 7-block bars
and 99.8% on 13-block bars. The generalizability of the learned policies comes from the tactile-
based observation, since the rotation pattern of the tactile force field remains consistent no matter
how long the bar is.

B.3 Tactile-Based Box Pushing Task

In §4.3, we design a box pushing task similar to [5] to demonstrate how we can leverage the provided
analytical gradients to help learn tactile-based control policies better and faster.

Task Specification The task is to use the same WSG-50 parallel jaw gripper as the one in the stable
grasp task (with only one finger kept) to push the box to a randomly sampled goal location and orien-
tation. The ranges of the goal location coordinates are z, € [0.15m,0.25 m|, y, € [-0.2m, 0.2 m|.
The range of the goal orientation is oy € [yym—7/16, yym+7/16]. The initial position of the box is
randomly disturbed ([—0.02 m, 0.02 m] along the direction of the finger surface). A random external
force fexe (with f2,, f& € [—1,1] N) is applied continually on the box, which changes every 0.25 s.
The control frequency is 40 Hz.

Reward Function The reward function is defined at each control step as

Ry = 7zpos + Rirot + Riouch + Ru (252)
Ripos = —0.01(w)2, Gpos = 0.01 m (25b)
Opos
ad— Qg2 s
Reot = —0.1( - )7, O = % rad (25¢)
Rtouch = *(M)Q, Otouch = 0.02 m (25d)
Otouch
Ry = —0.1]|ul?, (25e)

where p,,, is the position of the box in the x-y plane, « is the rotation angle of the box around the
vertical axis (z axis), panger 1S the position of the center of the gripper finger, pyox is the position of
the center of the box surface closest to the finger, and u is the policy action (normalized to [—1, 1]).

Policy Learning In this task, we explore another tactile observation representation. We flatten the
whole tactile force field into a vector and model the policy as an MLP with 2 fully connected hidden



layers of 64 units. For the PPO policies, we use the PPO parameters reported in Table 5. For the
GD policies, we use Adam as our optimizer with 81 = 0.7, B2 = 0.95. The learning rate of Adam
starts from 0.005 and follows a linear decay schedule over the episodes.

Parameter names Value

learning rate 3e~* (with linear decay schedule)
number of rollouts per iteration 80

entropy coefficient 0

value loss coefficient 0.5

batch size 128

discount factor ~ 0.99

GAE A 0.95

PPO clip range 0.2

Table 5: The hyperparameter setting of PPO on the tactile-based box pushing task.

Experiment Results More visual results comparing different policies are provided in the supple-
mental video.

B.4 D’Claw Rotate Cap

In §4.4, we train a D’Claw tri-finger hand to open a cap on a bottle, to demonstrate that our method
supports tactile sensors on curved surfaces. We put the tactile sensors on the three rounded fingertips
in a hemisphere layout, and we use 302 evenly-spaced tactile markers. A close-up view of the tactile
sensors is provided in Fig. 7(c).

Task Specification The task is to open a cap using the D’Claw hand. The position (randomized
in a 0.04 x 0.04m? region on the horizontal plane) and the radius (randomized in the range of
[0.2,0.8] m) of the cap are unknown. There is also unknown damping (randomized in the range of
[0.01,0.7]) between the cap and the bottle. The task is considered a success if the cap is rotated
by oy = m/4rad. The only observation data that the policy gets are the angles of each joint,
fingertip positions, and tactile sensor readings. This task is similar to how we open caps by just
using proprioception sensory data and tactile feedback on the fingers without knowing the exact size
and location of the cap. The control frequency is 40 Hz.

Reward Function The reward function is defined at each control step as

Rt = Riouch + Rrot + Ru + Rz + Rsuccess (26a)
Riouch = —0.5Nno touch (26b)
Riot = —min(a — ay, 0)? (26¢)
Ry = —0.005]|ul? (26d)
R.= =501, .>c. foric{1,2,3} (26¢)
Risuccess = 50 - Lo>ay, (26f)

where Ny, touch 1S the number of fingers not touching the cap, « is the rotating angle of the cap, and u
is the action of the policy, p; . is the z coordinate of i*" fingertip position, and c, is the z coordinate
of the cap’s top surface. An episode is terminated when the task is successfully completed, the
number of steps exceeds the maximum episode length, or any of the fingertips is above the cap.

Policy Learning The policy takes the hand joint angles, fingertip positions, and the tactile sensor
readings as input, and outputs the delta change on the joint angles. We use PPO to train the policy (a
shallow CNN) using 32 parallel environments. The PPO parameters are shown in Table 6. To show
that the tactile sensors are useful in this task, we also train a baseline policy (a simple MLP policy)
where the policy only takes as input the joint angles and fingertip positions.



Parameter names Value

learning rate 3e~* (with linear decay schedule)
number of rollouts per iteration 32

entropy coefficient 0.01

value loss coefficient 0.5

batch size 256

discount factor ~y 0.99

GAE A\ 0.95

PPO clip range 0.2

Table 6: The hyperparameter setting of PPO on the D’Claw rotating cap task.
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Figure 9: Training Curves of D’Claw Rotating Cap Task. The curves are averaged from three random seeds.
The shaded area is the standard deviation.

Experiment Results We run each policy type three times with different random seeds, and plot
the averaged training curves in Fig. 9. With tactile sensor readings, policies learn significantly faster
and achieve an 87.3% success rate, while policies only achieve a 59.7% success rate when tactile
sensor information is unavailable.

B.5 Zero-Shot Sim-to-Real: Tactile RL Insertion Task

In §4.5, we conduct a sim-to-real experiment on the tactile-RL insertion task.

Task Specification In this task, a gripper (same as the one in the stable grasp task) is controlled
to insert a cuboid object into a rectangle-shaped hole with a random initial pose misalignment (up
to 6 mm for translation error and 10° for rotation error). The insertion process is modeled as an
episodic policy that iterates between open-loop insertion attempts followed by insertion pose ad-
justments. The robot has up to 15 pose correction attempts, and the robot only has access to tactile
feedback from the sensors installed on both gripper fingers.

Real Robot Setup We use a 6-DoF ABB IRB 120 robot arm with a WSG-50 parallel jaw grip-
per. On each side of the gripper finger, we mount the GelSlim 3.0 tactile sensors that capture the
tactile interaction between the fingers and the grasped object as a high-resolution tactile image. The
rectangle-shaped object and hole are 3-D printed. The clearance between the object and hole is 2.25
mm and the initial misalignment between them is randomly sampled within the maximum value of
(6 mm, 6 mm, 10°), which is identical to the previous work [6]. We also vary the grasping force
between 10~15 N and the grasping height between 42~57 mm. To extract the marker tracking



information from the raw image tactile measurement, we use a marker detection algorithm from
[7]. The speed of the gripper moving down during the insertion attempt is 0.5 mm/s and we capture
tactile images every 80 ms.

Reward Function The reward is defined for each insertion attempt as follows:
R = Rpos + Riot (27a)
Rpos = 10% X ||errorposition] | (27b)

Rrot = 20 X error? (27¢)

rotation *
Policy Learning We train the control policies with PPO [4] for three types of misalignments as
mentioned in §4.5. During training, we convert the simulated tactile force field into our normalized
tactile flow map representation, and treat the resulting tactile flow map as a 13 x 10 flow “image”
with 4 channels (2 sensors and 2 shear components of tactile forces). For Rotation and Translation
tasks, we sample five tactile frames during the insertion and stack them to obtain the corresponding
normalized tactile flow maps to form the policy observation. For Rotation & Translation task, we
only use the last frame during the insertion attempt as the observation since we observed that the
policy tends to overfit to the simulation when more frames are provided. Specifically, when we input
more frames of tactile fields, the policy tends to learn to leverage some simulation-only unnoticeable
patterns of the tactile field to complete tasks in a tricky way; however those patterns do not some-
times exist in the real robot, and thus we input fewer tactile information to prevent such overfitting.
For all three tasks, we model the policy by a convolutional RNN to leverage more information from
previous attempts. For better sim-to-real performance, we also apply the domain randomization
technique to increase the robustness of the learned policies. Specifically, we randomly change var-
ious simulation parameters such as contact parameters, tactile sensor parameters, grasp forces, and
grasp height within some ranges, and we also apply random noise to each value in the tactile force
observation. The ranges of the parameter randomization are provided in Table 7.

Parameter names Range
kn, [2€3,1.4e%]
Contact Parameters ky [20, 140]
i [0.5,2.5]
n (50, 450]
. ey 0.2,2.3]
Tactile Parameters ’ [0.5,2.5]
ki [0, 100]
grasp force [2.5,16] N
Other Parameters grasp height [—10,5] mm
tactile force noise  [—1e™5,1e7 9]

)

Table 7: The ranges of the domain randomization parameters.
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