
Contact
Scheduler

Swing Leg
Controller

Stance Leg
Controller

Yes

No

Step Frequency (SF)

Forward Speed
Swing Foot Height (SH)

Forward Speed
Base Height (BH)

Motor
Torques

From High-Level
Skill Policy

Base Velocity, IMU,
Motor Angles

Base Velocity, IMU,
Motor Angles

From Robot
Proprioception

Turning
Speed

Turning
Speed

From
Teleoperation

Figure 7: Overview of our low-level convex MPC controller. We use separate control strategies for swing and
stance legs, and use a phase-based contact scheduler to determine the contact state of each leg.

A Details of the Convex MPC Controller

Our low-level convex MPC controller is similar to previous works [28, 12], which includes a contact
scheduler to determine the contact state of each foot (swing or stance), and separate controllers for
swing and stance legs. In addition, we implement a slope detector to react to changes in ground level
and an impedance controller to prevent excessive foot slipping.

A.1 Phase-based Contact Scheduler

The contact scheduler determines the contact state of each leg (swing or stance). Similar to previous
work by Yang et al. [12], we adopt a phase-based representation for contact schedule. More specifi-
cally, we introduce four phase variables �FR,FL,RR,RL 2 [0, 2⇡), one for each leg. The subscripts
denote the identity of each leg (Front-Right, Front-Left, Rear-Right, Rear-Left). The phase of each
leg denotes its progress in the current locomotion cycle. As a leg moves, its phase � increases
monotonically from 0 to 2⇡, and wraps back to 0 as the next locomotion cycle starts.

At each control step, we determine the leg phases using the following procedure. First, we progress
the phase of the front-right leg based on the stepping frequency (SF), f , which is obtained from the
gait selector (Section 5):

�FL �FL + 2⇡f�t (1)

where �t is the control timestep (0.0025s). We then determine the remaining leg phases according
to the trotting pattern, where diagonal legs move together, and 180� out-of-phase with the other
diagonal:

�FL = �FR + ⇡ (2)
�RR = �FR + ⇡

�RL = �FR

Depending on the phase of each leg, its motor command is computed by either the swing controller
(� < ⇡) or the stance controller (� � ⇡).

A.2 Swing and Stance Controller

We use separate control strategies for swing and stance legs, where the swing controller uses a PD
control to track a desired swing foot trajectory, and the stance controller solves a model predictive
control (MPC) problem to optimize for foot forces. Our controller design is based on the work by
Di Carlo et al. [28] with modifications. We briefly summarize them here. Please refer to the original
work [28] for further details.

11

Swing Controller The goal of the swing controller is for the swing legs to track the desired swing
trajectory. At each control step, the swing controller computes the swing trajectory by interpolating
between three key positions, namely, the lift-off position plift-off, the highest position in the air pair,
and the landing position pland. plift-off is the recorded lift-off position at the beginning of the swing
phase. pair is the foot’s highest position in the swing phase, where the height is determined by
the swing height (SH) from the gait selector (Section 5). pland is the estimated landing position
computed by the Raibert Heuristic. Once the desired swing trajectory is computed, the controller
computes the leg’s desired position based on its progress in the current swing state. The controller
then converts this desired position into joint angles using inverse kinematics, and uses a joint PD
controller to track the desired position.

Stance Controller To find desired foot forces, the stance controller solves an MPC problem,
where the objective is for the base to track the desired trajectory. The trajectory is generated by
numerically integrating the desired forward speed and steering speed, where the forward speed is
provided by the speed policy (Section 4) and the steering speed is provided by an external teleop-
erator. In addition, the height of the robot in this trajectory is determined by the base height (BH),
which is provided by the gait selector (Section 5). To solve this MPC problem efficiently, we cast it
as a quadratic program (QP), where the objective is a quadratic trajectory tracking loss, and the con-
straints include the linearized robot dynamics, actuator limits and approximated friction cones. Once
the foot force is solved, we convert it into joint torque commands using jacobian transpose. Note
that the final joint torque command is the sum of this torque computed by MPC and an additional
torque from position feedback. Please see Appendix A.4 for details.

A.3 Uneven Terrain Detection and Adaptation

To operate in complex offroad terrains, it is crucial for the robot to adapt its base pose and foot swing
range based on terrain shape. Therefore, we implement an uneven terrain detector that estimates
terrain orientation from foot contact information and use it to adjust the robot’s pose on steep slopes.

Ground Orientation Estimation The orientation of the ground plane is estimated based on foot
contact position and imu readings, similar to previous work by Gehring et al. [31]. To find the
ground orientation, we first find the ground normal vector in the robot frame, nrobot, from foot
contact positions. More specifically, we keep track of the last contact position of each leg, p1,...,4,
which is represented in robot frame. Assuming that the contact positions lie in the same ground
plane, the relationship between the contact positions p1,...,4 and the ground normal vector nrobot can
be represented by:

nT
robotp1 = nT

robotp2 = nT
robotp3 = nT

robotp4 (3)

We find nrobot using the following least-squares formulation:

min
nrobot

������

" | | | |
p1 p2 p3 p4

| | | |

#T

nrobot � 1

������

2

2

(4)

Finally, we convert the ground normal vector to the world frame based on the robot’s orientation,
which is provided by the onboard IMU.

Adaptation for Stance Legs To walk on uneven terrains, the robot needs to maintain its body to
be ground-level, instead of water-level, so that each leg has an equal amount of swing space (Fig. 8).
To achieve that, we express the base pose in the ground frame in the stance-leg MPC controller
(Appendix A.2) and adapt the direction of gravity based on the estimated ground orientation.

Adaptation for Swing Legs For swing legs, we adapt the neutral swing position to be aligned
with the direction of gravity. This configuration allows the base to be controlled more easily even
on slippery surfaces, as shown in previous work by Gehring et al. [31].

A.4 Impedance Controller to Counter Foot Slipping

Since the MPC-based stance leg controller assumes static foot contacts, an additional slip-handling
technique is usually required for the robot to walk on slippery surfaces. For example, to prevent foot

12

Direction
of

Gravity

(a) Water Level

Direction
of

Gravity

(b) Ground Level

Figure 8: Comparison of stance leg strategies on an upward slope. Left: If the robot remains water-level, its
front legs are overly retracted, and its rear legs are overly extended, which makes it control both legs. Right: If
the robot remains ground-level, both front and rear legs have an equal amount of extension. We keep the robot
ground-level and convert the direction of gravity to the ground frame based on estimated ground orientation.

Trail 1 Trail 2 Trail 3 Trail 4
Trail Length (km) 0.45 0.41 0.2 0.51

Terrain Type Dirt Mixed Asphalt Mud
Average Speed (m/s) 0.59 0.74 0.94 0.59

Table 2: Summary of test trails. Our framework selects different locomotion skills (speed and gait) based on
terrain type.

slipping, Jenelten et al. [32] implemented a probabilistic slip detector and used impedance control
with different gains for slip and non-slip legs. Similar to this work, we also implement an impedance
controller to handle foot slips. However, our approach adopts a unified gain for both slip and non-slip
legs and does not require a slip detector.

In our impedance controller design, the desired torque for each actuated DoF is the sum of the torque
computed by MPC and additional position feedback:

⌧ = ⌧MPC + kp(qref � q) (5)
where ⌧MPC is the desired torque computed by the MPC solver (Appendix A.2), q is the joint po-
sition, and kp is the position gain. We set the reference, qref to be the expected joint position as if
the foot is in static contact with the ground. Intuitively, when the foot is not slipping (q ⇡ qref),
the additional torque from the position feedback is small, and our controller falls back to the stan-
dard MPC controller. When the foot is slipping, the additional torque from position feedback will
bring the leg to the non-slipping position. To determine qref, we first compute the desired position
of the corresponding leg in Cartesian coordinates, pref. Assuming that the base is moving at the
commanded velocity v̄ with no foot slip, the foot velocity in the robot frame is just the negated base
velocity, and the foot position can be computed by numerical integration:

pref pref � v̄�t (6)
where �t is the control timestep. We then convert from foot position pref to joint position qref using
inverse kinematics.

B Additional Experiment Results

B.1 Generalization to Unseen Terrain Instances

We test the performance of our framework in a number of trails not seen during training. Please see
Table 2 for some examples. These trails include a number of terrain types that are not seen during
training, such as mud, moss, mulch, and dirt (Fig. 9). Our framework generalizes well to these
terrains and enables the robot to traverse through them quickly and safely.

B.2 Details about Robot Failures

For each policy tested in the ablation study, we plot its GPS tracking and failure locations in Fig. 10.
We find that the incorrect selection of speed and gait can both lead to robot failures. For exam-
ple, a faster forward speed makes the robot more susceptible to small unevenness on the ground.

13

Figure 9: Our framework generalizes to unseen terrain types, such as mud, moss, mulch and dirt.

Finetuned on Hidden Layers Finetuned on Class Label Trained from Scratch
Validation Loss 0.061± 0.002 0.075± 0.003 0.088± 0.013

Table 3: Comparison of performance on different ways of training the speed policy.

Therefore, non-adaptive policies with higher speeds fail more frequently, especially in areas such as
grass or gravel. Moreover, gait parameters such as swing frequency and swing height also affect the
controller’s stability. For example, a low swing height (SH) can get the legs trapped in deep grass,
and a low swing frequency (SF) can result in a large number of foot swings at each step, which can
go beyond the robot’s capability.

B.3 Ablation Study on Perception Module

Model Architecture and Training We use the FCHarDNet-70 architecture [29], which is ob-
tained from the paper’s open-sourced code base. For pre-training on RUGD dataset [30], we train
the model for 100 epochs with a batch size of 10 using the Adam optimizer and a learning rate of
0.001. For more robust training, we augment the images from RUGD with random crops and color
adjustments. For fine-tuning on demonstration data, we train the model for 60 epochs with a batch
size of 32, using the Adam optimizer with the same learning rate of 0.001. Both the pre-training and
fine-tuning are conducted on a desktop computer with an Nvidia 2080Ti GPU, where pre-training
takes around 6 hours and fine-tuning takes around 20 minutes.

Baselines As discussed in Section. 4.1, we train the speed policy by finetuning on the pixel-wise
semantic embedding, which is extracted from the output of the last hidden layer. To justify this
design choice, we compare our way of training the speed policy with two baselines. For the model
finetuned on class labels, we extract the embedding of each pixel from the one-hot encoding of the
model’s predicted semantic class. For the model trained from scratch, we train the FCHarDNet from
scratch on the demonstration data without pre-training.

Results We train our method and the baselines on the demonstration data and test the model’s
performance on a small validation set, where the data is collected on a different trail. For each
model, we repeat the experiment 5 times with different random seeds and report the mean and
standard deviation of the loss function (mean-squared loss). The result is summarized in Table. 3.

Figure 10: GPS logs (yellow) and failure locations (red cross) for the policies tested in Table. 1

14

Speed
(m/s)

Camera Image Trained from Scratch Fine-tuned on Hidden Layer

Figure 11: Comparison of different ways to predict the speed map. Left: the camera image contains multiple
semantic classes, including mulch, grass, and trees. Middle: the speed model trained from scratch has a low
resolution and cannot identify different semantic classes. Right: the speed model fine-tuned from semantic
embedding accurately identifies different terrain types and computes the desired speed for each terrain.

Our method, which is finetuned on the output from the hidden layer, achieves the lowest error on
the validation set. The model fine-tuned on class label achieves a big loss on both datasets. This
is likely due to noisy label prediction, which results from the distribution shift between the model’s
training data (RUGD) and testing data (robot images). Since the model trained from scratch tunes
the entire FCHarDNet on the small set of demonstration data, it overfits to the training data and does
not generalize well to the validation set. Moreover, a closer look at the models’ predictions shows
that the model trained from scratch predicts a blurry speed map with incorrect speed predictions
for several regions, compared to our fine-tuned model (Fig. 11). This is likely due to the lack of
granularity in demonstration data, which only labels the desired average speed over a fixed region.

15

	Introduction
	Related Works
	Overview
	Learning Speed Policies
	Pre-trained Semantic Embedding
	Learning Speed Commands from Human Demonstration

	Speed-based Gait Selector
	Low-level Convex MPC Controller
	Experiment and Result
	Experiment Setup
	Fast and Failure-free Walking on Multiple Terrains
	Generalization to Unseen Terrain Instances
	Analysis on Speed and Safety
	Ablation Study on Perception Module

	Limitations and Future Work
	Details of the Convex MPC Controller
	Phase-based Contact Scheduler
	Swing and Stance Controller
	Uneven Terrain Detection and Adaptation
	Impedance Controller to Counter Foot Slipping

	Additional Experiment Results
	Generalization to Unseen Terrain Instances
	Details about Robot Failures
	Ablation Study on Perception Module

