Appendix of ’Laplace Approximation Based Epistemic
Uncertainty Estimation in 3D Object Detection”

Peng Yun * Ming Liu
Department of Computer Science and Engineering ~ Hong Kong University of Science and Technology
Hong Kong University of Science and Technology (Guangzhou)
pyun@cse.ust.hk eelium@ust.hk

Abstract: This appendix contains the derivation of Laplace approximation, im-
plementation details, and more experiment results of “Laplace Approximation
Based Epistemic Uncertainty Estimation in 3D Object Detection”.

1 Derivation of Laplace approximation

Given a dataset D = {(x;,y;)]i = 1,..., N} = {X, Y}, we have a neural network fp(x) with its
prior weight distribution p(6) ~ N (6;0,%,). We want to derive the posterior weight distribution
p(01X,Y), which explains the dataset D = {X, Y}, so that we can conduct inference and get the
predictive distribution with

(¥ |x", X, Y) = / p(y* ", 0)p(0]X, Y)do), (1

where the p(y*|x*, 0) depicts the predictive model. For classification tasks, it is commonly defined
as a categorical distribution with

o _exp(fs(x) c
p(y¢ = 1|x,0) = —ch exp(fs (X)) softmax“(fo(x)). 2
For regression tasks, it can be defined as
p(ylx,0) = N (y; fo(x),77'T). 3)

The 7 can be either a hyper-parameter or an estimation from data. We can estimate p(y*|x*, X, Y)
with the Monte-Carlo estimator by calculating the population moments as [1]. In our manuscript,
we denote this step as moment estimation. In classification,

1
p(y"¢ =1x",X)Y) = T z softmax®(fo(x)). “4)
9€P(9]X,Y)
The mode can be estimated by ¢* = arg max, p(y*¢ = 1|x*,X,Y), and the uncertainty can thus be
quantified in terms of p(y*¢ = 1|x*, X, Y).

In regression, we first consider the predictive distribution mean Epy«|x- x,v) [y*]:

Eryexn¥] = [07X X V)dy’ 5)
— [[yptrix oo, Yoy ©)
= [[y N0 fax) Dy pOIX, Yas ™
= [folx pt61x, Y)a0 ®)

*Peng Yun is also with Clear Water Bay Institute of Autonomous Driving, Nanshan, Shenzhen.

fMing Liu (corresponding author) is also with Hong Kong University of Science and Technology, Hong
Kong SAR, China and HKUST Shenzhen-HongKong Collaborative Innovation Research Institute, Futian,
Shenzhen.

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

Even though the integration over the posterior weight distribution is complicated to compute, we
can estimate it with a Monte-Carlo estimator and have

* 1 *
Epy-x-x0) Y] = T Z fo(x¥).)
0ep(8]X,Y)

Then before computing the covariance, we derive the second-order moment E P(y*|x* X,Y) [y*Ty*]
Epyix-xv) V7 Y] = / YTy p(y*[x*, X, Y)dy" (10)
= [[¥7¥ sty 001X,)dsay (an
= [+ O HIp6IX. Vo (12)
(13)

To evaluate (12), we can seek help from Monte-Carlo estimator as before and have
1
T % T (o -1
Epgpexny ¥ 1=5 D &) o) +77'1 (14)
0ep(6]X,Y)

By substituting the 1-st and 2-nd moments, we have the covariance of the predictive distribution as
We can get the covariance matrix of the posterior distribution by substituting (9) and (14) into

COV[y*] =]EP(y*|x*7X,Y) [y*Ty*] -]EP(y*|x*7X7Y) [y*]T]EP(yﬂx* X)Y) [y*} (15)
As aresult, if we derive the posterior weight distribution p(6|X,Y), we can conduct Bayesian infer-
ence and get the predictive distribution with Monte-Carlo estimators. In the following paragraphs,
we will detail the Laplace approximation method to evaluate this posterior distribution.

Laplace Approximation in neural networks The posterior weight distribution can be unfolded
with the Bayes formula:
log p(0[X.,Y) = log p(Y[X, 0)) + log p(¢)) — log p(Y[X), (16)
where the last term — log p(Y|X) is independent to §. We assume that the loss is given by the
negative log probability associated with a predictive distribution Py f(x,¢), as well as a regularizer,
ie.
L(0,X,Y) = —logp(Y[f(X,0)) + Al|6]], (17)

where pis P(Y|f(X,6))’s density function, and || - || can be a L1 or L2 norm®. This is the case for
standard least-squared and cross-entropy objective functions, where the predictive distributions are
multivariate normal and multinomial, respectively. Minimizing this loss function L(6,X,Y) can be
seen as maximizing the posterior log(#|X,Y). We denote the optimal weight point as 6*.

Laplace approximation unfolds log p(6|X,Y) with the second- order Taylor expansion at 8%, which
is the optimal weight point maximizing log p(#|X,Y). It satisfies -2 55 log p(0*X,Y) = 0.

G,
log p(0|X,Y) ~ log p(6”|X,Y) + % log p(0”[X,Y)(0 — 0) (18)
]‘ *
+ 5(970)z 20 logp(0*|X,Y)(0 — 0) (19)
1
- 5(9 — 0*) " Hiog po-x.x) (0 — 0%) + const (20)

We denote Hiog 0+ |x,v) = {;9729 log p(6*|X,Y) as the Hessian Matrix of log p(6*|X,Y). By substi-
tuting (16) into this definition, we have
2

0

Hiog po+|x,Y) = 59 [log p(Y|X, 0) 4 log p(#) — log p(Y|X)] 21
82

= 3z log p(Y[X,) +log p(0)] (22)

31f || - || is a L2-norm, the corresponding p(6) is a Normal distribution A/(6; 0, A™*T). It will be a Laplace
distribution, if || - || is a L1-norm.

Recall that the prior weight distribution p(8) ~ N (0;0, %), we have
o? _
Hiog p(o-1x.y) = 535108 P(YIX, 0)] = g ' (23)

= Hiogp(vx,0) — o | (24)
According to the Fisher information matrix definition, the Fisher information matrix of p(X, Y|6) is
given by
F = Epxyo)[Viogp(X,Y[0)" Viog p(X,Y|0)] = —Epx,v|0) Hiog px.¥]6)] (25)
Since the joint distribution p(X, Y|0) = p(Y|X, 8)p(X), where p(X) is the data distribution and does
not dependent on 6, we have
Vieg p(X,Y|0) = Vlog p(Y|X, 0) + Vlog p(X) = Vg p(Y|X, 0). (26)
As aresult, F can be written as the expectation (w.r.t. Px) of the Fisher information matrix of Pyx ¢,
so that
F=Ep[Ep,,,[Viogp(Y|X,0)" Viogp(Y[X,0)]] 27)

= ~En[Eryx o Hiogp(vx.0)]] (28)

Empirical Fisher The empirical fisher was adopted as a low-cost surrogate of the standard Fisher
or Hessian in [2—4]. It is defined as

.1 T

F= -) [Viegp(ylx.0)"Viogp(ylx,0)]. (29)

(x,y)€D

Diagonal Fisher information matrix In neural networks, the number of parameters could be
in the order of a million. It is hard to compute the exact Fisher and its inversion directly. Re-
searchers simplify the Fisher information matrix approximation with structure information to make
the computation feasible. The most commonly used approach is diagonal Fisher information matrix
approximation [5, 6], which considers each single weight parameter as independent:

diagonal standard Fisher: diag(F) = Ep[Ep, ,[diag(V log p(y|x, 0))2]], (30)
~ 1
diagonal empirical Fisher: diag(F) = N Z [diag(V log p(y|x, 6))?] (3D
(x,y)€D

where diag(-) converts a matrix or a vector to its corresponding diagonal matrix.

2 Monte-Carlo based Fisher evaluation

Calculating the standard diagonal Fisher with Monte-Carlo sampling requires sampling from the
predictive distribution. For the post-hoc Laplace approximation method in this paper, the predictive
distribution here might be ill-defined. It is because we only have a deterministic model before
calculating the Fisher. Thus, a prior predictive distribution must be introduced so that we can sample
from it and compute the Fisher. Algorithm A1 # illustrates this process. The result of the Monte-
Carlo-based approach converges to the exact Fisher calculation [7] when the number of samples
increases, as shown in Figure Al.

3 A heuristic approach to sampling from weight distributions

An important step in moment estimation is sampling from the approximate weight distribution
p(01X,Y) = N(6;6%,%), where &> = [F + X', In practice, the corresponding elements of
some parameters in the prior precision matrix X ! must remain large to compensate for the intrin-
sic inaccuracy of Fisher approximation, but it has the side effect of washing out some small but
meaningful values [8].

Through trial and error, we find a relatively simple and effective way to heuristically determine
the priors and get the final covariance matrix for sampling. It contains three steps: (1) remove

cls T cls

“The output y, = {y&"*, y;°?} contains classification predictions y§'* and regression predictions y;°?. The
diag-to-matrix (v) construct a diagonal matrix with the input vector v.

Algorithm A1: Monte-Carlo-based approach to calculating

the standard diagonal Fisher
Input : X: inputs; fyp: deterministic neural network;
T';: number of Monte-Carlo samples; 0.002 1
¥ prior covariance matrix
Output : F: the Fisher
initialize F ; N « len(X) ; 0.001 A
foreach x € X do
Yo + fo(x);
for i < 1to Ty do T y y y y T
s / s 0 10 20 30 40 50
y©¥ < sample from categorical (y§") ; # Monte-Carlo samples
¥ « sample from Ny, $0%) ;
~cls =reg . . .
g Vo i"g?(y ¥ fo(x)); Figure Al: Mean absolute difference between the
F+ = A_diag-to-matrix(g?) ; : :

d NM Fishers, computed with exact and Monte-Carlo
en de“ approaches (Algorithm Al). It is based on a Lin-
return F ; ear model on the MNIST dataset.

10 PP-MC(heuristic) 1 PP-LL(heuristic) 1 PP-full(naive) 10 PP-full(heuristic)

’ — s // —] 7S ’ — Z —]

, M 7

087 = ye P/ 0871 — 081 — ¥ 7% 087 = ye 4
g |7 Z R 7 R N -
Zo6{—w Zo6{— w 7 Zo6{—w Zo6{— w
§ h 8§ h § h 8 h
:g 0.4 > E 0.4 ? :é 0.4 ’ _g 0.4 ’ 7
H H H H 7,

0.2 ,’/ 0.2 02 4 0.2 //

4 7
/, /,
0.0, 0. 0.0,

0.
0.0 0.2 0.4 0.6 0.8 1.0 0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Predicted confidence Predicted confidence Predicted confidence Predicted confidence

Figure A2: Calibration plots of PointPillar. The curves closer to the gray line (upper bound) rep-
resent better results. The curve of ’cls’ denotes the calibration plot of the classification estimation
of the detector. The other curves denote the calibration plots of the regression estimations of the
detector. The parameterization of a 3D bounding box used in this paper is [xc, yc, zc, [, w, h, ry]
representing the coordinate of the box center, size of the box and the rotation along the z-axis.

the effects of inaccurate Fisher elements, (2) set a proper prior, and (3) set a proper scaler. As
illustrated in Algorithm A2, we compute a threshold ¢ for each layer. All the parameters in each
layer, the corresponding values of which in the Fisher diagonal are smaller than ¢, are considered as
the parameters with inaccurate Fisher values and will be given an infinitely large value in ! For
the other parameters, we consider their values in the Fisher are accurate, and give them a prior with
the value of t in the 3 !, In our experiment, we empirically set ¢ as the 30-quantile positive element
in each layer. A parameter « is introduced to scaling the covariance matrix, and we found that
setting o proportional to ¢t works well in practice. We compare the uncertainty estimation quality of
our proposed heuristic approach to the naive method with a homogenous ¥, for all parameters in
our experiments. Superior performance of the heuristic method can be seen by comparing the last
two plots in Figure A2.

4 Implementation details

We adopt well-trained 3D object detectors > as deterministic models and convert them with the
Laplace-approximation-based approaches as in Section 3 in our paper. The adopted 3D detec-
tors contain one-stage detectors PointPillar[9] and Second[10] , as well as a two-stage detector
PointRCNN[11]. In particular, we compute the Fisher on the KITTI training set and inference with
it on the validation set.

4.1 Hyperparameter tuning

The important hyperparameters in this paper include: « of our heuristic sampling approach, prior
of predictive distribution, number of Monte-Carlo samples, and dropout rate (Monte-Carlo Dropout
baseline). We use 10 Monte-Carlo samples to approximate the Bayesian inference and one Monte-

>https://github.com/open-mmlab/OpenPCDet

Algorithm A2: Heuristic method to calculate covariances of posterior weight distribution

Input : F' [=1, ..., L: Fisher matrix of the [-th layer; «: scaler of covariance matrices.
Output : C' 1 =1, ..., L: covariance matrix of the parameters in the [-th layer.

foreach F' do

initialize diag_P'with all zeros ;

diag_F' = diag(F") ;

t + the 30-quantile positive element in diag_F" ;
idx < indices of diag,Fl >t

diag_P'[idx] <t ;

P! < diag-to-matrix(diag_P');

C' «— at(F' + PH~1;

end
return C', 1 =1,..., M ;

Table Al: Hyperparameter tuning space. The * superscript in each line denotes the selected optimal
hyperparameters.

Hypaperameters Tuning space
« (standard Fisher) {0.0003,0.001,0.003*,0.01,0.03}
« (empirical Fisher) {0.0003,0.001, 0.003,0.01*,0.03}
prior of predictive distribution (cls.) {le—6,1e — 5,1le — 4,1e — 3,1le — 2*}
prior of predictive distribution (reg.) {le—6,1e — 5,1e — 4,1e — 3*,1e — 2}
dropout rate (PP) {0.01,0.05*,0.1,0.2,0.3}
dropout rate (SC) {0.01,0.05,0.1,0.2*,0.3}
dropout rate (PR) {0.1,0.2,0.3,0.4*,0.5,0.6,0.7}
number of Monte-Carlo samples in Bayesian inference {2,4,10*,20}

Carlo sample in the Fisher calculation. The hyperparameters are tuned on a hand-hold set with 500
data points. We tune each hyperparameter independently, according to the Ecjags, jevel[MAP(JTOU))
performance. The hyperparameter tuning space is shown in the Table Al. When tuning «,
Eclass, leve [MAP(JToU)] performance is monotonically decreasing with . But if « is too small, it
will degrade to a deterministic model and does not output meaningful uncertainty. Therefore, we
select a relatively big value of a which performs good Ejyss, level [MAPJToU)], as well as outputs
meaningful epistemic uncertainty. We set & = 0.003 for the standard Fisher, and o« = 0.01 for
the empirical Fisher. The prior of the predictive distribution is set as 0.01 x I for classification and
0.001 x I for regression, where I denotes the identity matrix. The dropout rates for the Monte-Carlo
baselines of PointPillar, SECOND, and PointRCNN are 0.05, 0.2, 0.4, respectively.

4.2 Metrics

We evaluate the quality of estimated uncertainty with the expected calibration error (ECE) for clas-
sification [12] and regression [13]. It is noted that the ECE metric, which was proposed for univari-
ate regression in [13], cannot be directly used in multivariate regression, like 3D object detection.
Therefore we treat each dimension independently, following [14].

To evaluate the mAP(JIoU), we generate the ground-truth predictive distribution from the gener-
ative model proposed in [15] with 3D bounding box annotations and LiDAR observations. The
mAP(JIoU) is evaluated between the estimated and ground-truth predictive distributions. We evalu-
ate mAP(JIoU) in both bird’s-eye-view (BEV) and 3D space with the threshold of 0.5 in evaluating
the ”Car” class, 0.25 in evaluating the “Pedestrian” and “Cyclist” classes. For more details on
mAP(JIoU) justification and the generative model, readers can refer to [15].

bev 3d
method class easy mod. hard easy mod. hard

car [80.21 (1.64) 78.90 (1.05) 75.54 (1.45)|43.71 (2.24) 27.95 (1.59) 23.51 (1.19)

PP ped. [19.20 (0.38) 20.80 (0.43) 20.69 (0.34)|29.87 (1.16) 29.75 (1.12) 27.62 (0.94)
cyclist |48.29 (2.02) 42.60 (1.36) 40.34 (1.10)|46.26 (1.96) 32.96 (1.80) 31.25 (1.76)

car |87.00(0.50) 84.83 (0.61) 81.25(0.30)|58.20 (0.44) 37.56 (0.53) 31.30 (0.56)

SC ped. [23.55(0.73) 26.19 (0.80) 25.71 (0.64)|30.86 (1.01) 30.90 (0.92) 28.20 (0.81)
cyclist|50.63 (1.70) 48.33 (1.37) 46.39 (1.32)[45.46 (1.31) 34.72 (1.21) 33.10 (1.09)

car |81.10(1.14) 78.81 (1.33) 75.10 (1.30)|41.40 (0.64) 29.95 (0.70) 26.07 (0.70)

PR ped. [25.99 (0.86) 25.92 (1.09) 23.99 (0.76) |39.43 (1.29) 35.75 (1.21) 31.33 (0.76)
cyclist|62.73 (2.74) 51.95 (1.93) 49.36 (2.14)|61.26 (2.68) 43.06 (1.27) 40.71 (1.23)

Table A2: mAP(JIoU) (standard Fisher, full-net) results on the KITTI val set. The results are mean
and std. (in the brackets) values computed from 5 random seeds.

4.3 Predictive distribution visualization

We visualize predictive distributions by transferring them to spatial distribution, following [15]. It
extended the idea of Probabilistic Detection Quality [16] from 2D axis-aligned bounding boxes to
3D rotated bounding boxes, and defined the spatial distribution for 3D object detection p;(u) as

pc(u) = / DV (vo,y) (W)dvg (32)
voEB(y)

/ py(y[x)dy,
{ylueB(y)}

where the equation (33) is an extension of PDQ [16]. It calculates the probability of a point u € R3
belonging to the object enclosed by a rotated bounding box B(y).

(33)

We sample 3D points vy € [—0.5,0.5] and transform it in terms of y = [c1, ¢2, c3, 1, w, h, ry]T
with

I 0 0 1 cos(ry) —sin(ry) O
vly) =R, |0 w O|vo+ |c2|; R, = |sin(ry) cos(ry) 0. (34)
0 0 h c3 0 0 1

It denotes the V (y, vo) € R3, and we can use it to compute the Pg(u) with (32). Since we assume
the density function of y is N'(y; y,, Xy,), we can get the density function of v with first-order error
propagation [17], and get v ~ N (v; V(yo, Vo), J7 5y, J), where J denotes the Jacobian matrix in
terms of (34).

5 Table of mAP(JIoU) with standard deviation values

In Table A2, we report both mean and standard deviation values of mAP(JIoU) performance.

6 Evaluation on the NuScenes dataset

We conduct experiments on the NuScenes dataset [18] with the same protocol as Section4.1 in our
paper. It is a real-world dataset in an autonomous driving context for object detection and track-
ing. We conduct experiments on the v1.0-mini split, containing ten scenes, each corresponding to
a 20-second snippet. We adopt SECOND [19] as the deterministic detector, and compare the de-
terministic mode, MCDropout [1], and Laplace approximation methods in Table A3. The Laplace
approximation method shows superior uncertainty quality over the deterministic model and the MC-
Dropout baselines.

7 Calibration plots

Figure A3 and A4 shows all calibration plots in our experiments.

‘parrodai axe synsax (-pis/-dure) uonewrxoidde aoejde| paseq-1oysij-piepue)s pue -eoridwe yog ‘(Y 1019919p
a3e1s-om1) NNDWIUIOd pue ‘(DS “1039939p a3e1s-ouo) NODAS ‘(dd 1030910p 93e)s-ouo) ref[idiutod a1e s10309)9p ayJ, ‘() uonewrxoidde ooejde| jou-[[ng pue
‘(1) uonewrxoxdde aoerde| opnpow-ise ‘(77) uonewrxoidde aoedeT 10Ae[-1seT {(QIN)INodoIp ofre)-ajuoN ‘(L) dusmuIuIalap jo syord uoneiqre)) :¢y 2In3Ly

o % T) e w s w I T T TR 1)
vod vf vod
o — Lo § —loo§ o — Lo §
P | P [F
\— P — —
g ey |
< — « = “«—
- [> — Z i
! ! A !
(Ps) Wd-NAVT (P1s) D8-N4-V1 CP1S) dd-Nd-v'T (dw2) ¥d-N4-v1 (dwd) D§-NA-VT (duwd) dd-Na-v1
o s w0 v @ ol s v v @ o
20 0
J \
\\ vod g
= g H
o — Lo o —looE
P | P |
\— —
| |
« =
w_— -
] !
CP1S) Wd-WT-V'T (dw2) ¥d- WV
o JRO— - JUS—
o w T T T W w0 w % T T e v o
o “)
Z vof
/= B
& —|so§ o —loo E
W [E -
[[
= —|lso w—|wo
- w =
- —

AdDW 250N dd-DN dLa os1a dd1a

SC
method classification regression

det. 0.123 -
mcropout 0.123 2.075
LL(emp.) 0.120 1.666
LM(emp.) 0.123 1.336
full(emp.) 0.118 1.278
LL(stand.) 0.121 1.657
LM(stand.) 0.116 1.393
full(stand.) 0.121 1.342

Table A3: Expected calibration error ({) on the NuScenes dataset (v1.0mini split). The “det.”, ”LL”,
”LM”, and “full” are short for ”deterministic”, "last-layer”, ’last-module”, and ”full-net”.

EN-PP EN-SC EN-PR

o8 10 02 08

04 06
Predicted confidence

Figure A4: Calibration plots of DeepEnsembles.

8 Discussion on the number of Monte-Carlo samples

Figure A5 shows the effect of the number of Monte-Carlo samples T = {2, 4,8,10,20} on NLL. It
demonstrates that the NLL converges with an increasing number of Monte-Carlo samples. In various
Monte-Carlo samples, Laplace-approximation-based methods perform better than the MCDropout
method.

9 Discussion on metrics

The metrics mAP(IoU) and mAP(JIoU) can evaluate the mode accuracy and general performance
of predictive distribution so that we can tune hyperparameters and analyze their performance in
different classes. However, they are not good metrics for comparing different types of detectors
because a fair comparison requires aligning the weight perturbation at the same level. It is imprac-
tical to implement if their network structures are different. One possible solution is to compare the
performance of downstream tasks with the estimated epistemic uncertainties as inputs, like active
learning.

10 Time and memory analysis

Table A4 reports the time and memory consumptions of baselines and various Laplace approxima-
tion implementations in our experiments®. It shows that the full-net Laplace approximation requires
about 20X time and 1.5—2x GPU memory than the deterministic counterpart in the inference stage.
In contrast, the subnet Laplace approximation ("LL” and "LM” in Table A4) is a balance between
the uncertainty quality and the computational efficiency, and requires about 4 — 7x time in the infer-

SThe test machine is equipped with a 8-core CPU (Intel Core i7-7700K) and a single NVIDIA GTX 1080Ti
GPU. The number of Monte-Carlo samples is 10.

NLL (PR)

NLL (SC)

; 0 s 0 ; I s 20
—e— mcdropout LL(std.)
LL(emp.) o— LM(std.)
1 LM(emp.) o— full(std.)
\ — full(emp.)
IER
h\C C3 e
| S ——

Figure AS: Relationship between the number of MC samples (x-axis) and NLL.

methods PP SC PR
inference time GPU memory | inference time GPU memory |inference time GPU memory
(ms) (MB) (ms) (MB) (ms) (MB)
det. 21.7 188.4 34.8 188.9 147.8 24.9
dropout 186.8 300.5 159.3 282.2 464.7 56.3
deep-ensem. 203.8 1147.7 141.0 1077.4 556.7 190.5
LL (E.) 156.2 301.6 136.9 282.5 605.9 57.1
LM (E.) - - - - 634.8 56.3
full (E.) 530 300.4 677.5 282.4 1491.0 56.3
LL (S.) 156.1 301.6 134 282.5 617.5 57.1
LM (S.) - - - - 636.5 56.3
full (S.) 526.7 300.4 686.1 282.4 1489.8 56.3

Table A4: Inference time and GPU memory consumptions. It is computed on a 8-core CPU (Intel
Core i7-7700K) and a single NVIDIA GTX 1080Ti GPU.

ence stage. The run-time performance can be improved if it parallels the Monte-Carlo computations
with batched inputs [1].

References
[1] G. Yarin. Uncertainty in deep learning. University of Cambridge, Cambridge, 2016.

[2] J. Martens and I. Sutskever. Training deep and recurrent networks with hessian-free optimiza-
tion. In Neural networks: Tricks of the trade, pages 479-535. Springer, 2012.

[3] N. Roux, P.-A. Manzagol, and Y. Bengio. Topmoumoute online natural gradient algorithm.
Advances in neural information processing systems, 20, 2007.

[4] J. Martens et al. Deep learning via hessian-free optimization. In ICML, volume 27, pages
735-742, 2010.

[5] Y. LeCun, J. Denker, and S. Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

[6] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521-3526, 2017.

[7] J. Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21:1-76, 2020.

[8] J. Martens and R. Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pages 2408-2417. PMLR, 2015.

[9] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom. Pointpillars: Fast en-
coders for object detection from point clouds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2019.

[10] B. Yang, W. Luo, and R. Urtasun. Pixor: Real-time 3d object detection from point clouds.
In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages
7652-7660, 2018.

[11] S. Shi, X. Wang, and H. Li. Pointrcnn: 3d object proposal generation and detection from
point cloud. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 770-779, 2019.

[12] M. P. Naeini, G. Cooper, and M. Hauskrecht. Obtaining well calibrated probabilities using
bayesian binning. In Tiventy-Ninth AAAI Conference on Artificial Intelligence, 2015.

[13] V. Kuleshov, N. Fenner, and S. Ermon. Accurate uncertainties for deep learning using cali-
brated regression. In International conference on machine learning, pages 2796-2804. PMLR,
2018.

[14] D. Feng, L. Rosenbaum, C. Glaeser, F. Timm, and K. Dietmayer. Can we trust you?
on calibration of a probabilistic object detector for autonomous driving. arXiv preprint
arXiv:1909.12358, 2019.

[15] Z. Wang, D. Feng, Y. Zhou, L. Rosenbaum, F. Timm, K. Dietmayer, M. Tomizuka, and
W. Zhan. Inferring spatial uncertainty in object detection. In 2020 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 5792-5799, 2020. doi:
10.1109/IROS45743.2020.9340798.

[16] D. Hall, F. Dayoub, J. Skinner, H. Zhang, D. Miller, P. Corke, G. Carneiro, A. Angelova, and
N. Siinderhauf. Probabilistic object detection: Definition and evaluation. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 1031-1040, 2020.

[17] K. O. Arras. An introduction to error propagation: derivation, meaning and examples of equa-
tion cy= fx cx fxt. Technical report, ETH Zurich, 1998.

[18] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan,
and O. Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 11621-11631,
2020.

10

http://dx.doi.org/10.1109/IROS45743.2020.9340798
http://dx.doi.org/10.1109/IROS45743.2020.9340798

[19] Y. Yan, Y. Mao, and B. Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10), 2018. ISSN 1424-8220. doi:10.3390/s18103337. URL https://www.mdpi.com/
1424-8220/18/10/3337.

11

http://dx.doi.org/10.3390/s18103337
https://www.mdpi.com/1424-8220/18/10/3337
https://www.mdpi.com/1424-8220/18/10/3337

	Derivation of Laplace approximation
	Monte-Carlo based Fisher evaluation
	A heuristic approach to sampling from weight distributions
	Implementation details
	Hyperparameter tuning
	Metrics
	Predictive distribution visualization

	Table of mAP(JIoU) with standard deviation values
	Evaluation on the NuScenes dataset
	Calibration plots
	Discussion on the number of Monte-Carlo samples
	Discussion on metrics
	Time and memory analysis

