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1 Latent Vector Fusion

In this section we provide additional details to complement the Latent Vector Fusion experiments
presented in the main paper, with results summarized in Table 2 in the main paper.

Recall the latent subdivision function, φ : RD → R8D, defined as φ(zm) = {zm+1
i }8i=1 (cf.

Equation 1 in the main paper). Thus, φ directly regresses the next level latents.

Addition. We define φadd : RD → R8D as: φadd(zm) = {zm + zm+1
i }8i=1. φadd maintains

the dimensionality of the latent space during traversal, as does the original formulation of φ, i.e.
zm ∈ RD and zm+1

i ∈ RD.

Concatenation. In this case, the signature of the octree traversal function in latent space changes
from one LoD to the next. This introduces significant modifications to the underlying neural network
architecture, requiring specialized networks at each LoD. Specifically, at LoDm, we define φconcat :
Rm×D → R(m+1)×8D as: φconcat(zm) = {concatenate(zm, zm+1

i )}8i=1, i.e. zm ∈ Rm×D and
zm+1
i ∈ RD.

2 Evaluation Details

Following NGLOD’s implementation [1], we uniformly sample 217 = 131072 points within the
unit cube for gIoU computation. To get occupancy estimates, we recover an object mesh using
Poisson surface reconstruction [2] as implemented in Open3D [3]. Similarly, we sample 217 points
on the ground truth mesh for Chamfer distance computation. We use Pytorch3D [4] Chamfer dis-
tance implementation. We also use the original NGLOD implementation as well as NGLOD’s re-
implementations of presented baselines: DeepSDF, FFN, SIREN, and Neural Implicits.

3 Extended Generalization Experiment

We extend the generalization experiment to include multiple grades of sparsity and noise. We use a
network trained on 512 dense objects of the Google Scanned Objects dataset [5]. We then optimize
latent vectors to fit unseen objects from the generalization experiment. Given a ground truth dense
unseen object point cloud we apply sparse supervision computed from the dense GT point cloud
to estimate the surface geometry. We optimize the pre-trained ROAD to a lower LoD, i.e. provide
a coarser supervisory signal than the network was trained to. We then extract the surface to the
highest LoD. LoDs 3 through 7 represent approximately 0.1%, 0.3%, 0.15%, 6%, and 25% of the
supervision at LoD8. We observe that even in the case of optimizing only to LoD3, our method is
still able to converge to reasonable shapes (see Fig. 1a).

We additionally demonstrate how noise affects the generalization performance. Similarly to the
sparsity experiments above, we optimize the pre-trained ROAD network to a lower LoD and ad-
ditionally we randomly perturb SDF annotations at the final LoD of interest with a uniform noise
distribution scaled by the voxel size. This procedure corresponds to adding different levels of metric
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(a) Sparsity ablation (b) Noise ablation

Figure 1: Extended Generalization Experiment

noise at LoD 7 (small), 6 (medium), 5 (large), and 4 (severe). We then use a network trained on
unperturbed data (from the same set of 512 Google Scanned Objects as in the experiment above)
to fit to the occupancy and noisy surface annotations at a particular LoD; for all LoDs below the
query LoD we supervise only on occupancy. Finally, we visualize the fully extracted object (i.e. at
LoD 8). Once again, we observe that our method is robust to introduced perturbations and is able to
faithfully reconstruct objects even when noise is introduced (see Fig. 1b).

4 Ground Truth Labels

In our experiments, we extract ground truth labels from meshes and pointclouds, and generally
require dense surface points to obtain accurate labels. In practice, the occupancy label of a voxel
at a particular LoD is determined by querying whether a point exists within the voxel of interest,
and the SDF value and normal are extracted from the nearest neighbor to the voxel center. We
observe that these same quantities could also be extracted from an object represented by an SDF.
Additionally, we pre-compute and store these annotations once per dataset over all LoDs.

5 Additional Qualitative Results

Below, we plot additional qualitative reconstruction results for Google Scanned Objects [5] and
Thingi32 [6] datasets. Please refer to the supplementary video for further qualitative results, latent
space visualizations, and our method’s architecture review.
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Figure 2: Example reconstruction results on the Thingi32 dataset.
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Figure 3: Example reconstruction results on the Google Scanned Objects dataset.
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