A Extended background

A.1 Riemannian manifolds

A key definition in the development of
our approach is the notion of a chart.
Formally speaking, a chart on a smooth
manifold M is a diffeomorphic mapping
¢ : U — U from an open set U C M
to an open set U C R4, see Fig. 6 for an
illustration.

As briefly introduced in § 2, to operate
with Riemannian manifolds, it is com-
mon practice to exploit the Euclidean tan-

M R4

Figure 6: Coordinate chart ¢ applied on a smooth manifold
M from an open set U to U.

gent spaces. We resort to mappings back

and forth between T,M and M using the exponential and logarithmic maps, namely, Exp_,(u) :
TeM — M and Log(y) : M — T,M. Another relevant operation is the parallel transport
Tey (u) : ToeM — TyM, which moves manifold elements lying on different tangent spaces
along geodesics on M. Finally, as described in § C, we used the projection operator to project Eu-
clidean vectors to the tangent space of the manifold. Formally, this orthogonal projection is defined
as proju,,(v) : R™ — T,M, which is used to compute the Riemannian gradient as the orthogonal
projection of the “Euclidean” gradient to the manifold tangent space. The specific operations for the
unit hypersphere, used in this work, as provided in Table 1.

Operator | Formula

dm(z,y) | arccos(z'y)

Exp,,(u) @ cos(||u||) + wsin(||ul||) withw = m

Log,(y) | dm(z,y) oot

Toosy(u) | (—xsin(|jv])v" +vcos(|[v])p") + (I, —v0")) u, v = LV = Log,(y)
proju,(v) | (I, — zx")v

Table 1: Principal operations on S 2 For details, see [42]

A.2 Neural MODE:s for Diffeomorphism Learning

A diffeomorphism can be constructed by solving an initial value problem (or integral) for Neural
ODEs [30]. Futhermore, we can extend this idea to the manifold setting following [24, 25]. To do
s0, we start from the following theorem from Mathieu and Nickel [25]:

Theorem 2 (Vector flows). Let N be a smooth complete manifold and fg be a C*-bounded time-
dependent vector field. Then there exists a global flow g : N x R — N such that for each t € R,
the map g (-, t) : N = N is a C-diffeomorphism (i.e. C bijection with C! inverse).

Accordingly, we can compute the diffeomorphism on the manifold A/ by solving an IVP of Neural
MODEs (2), where the integration is done over a manifold instead of an Euclidean space. During
computation of the IVP, we can select the time interval [ts, t.] as [0, 1] without loss of generality. As

a result, the diffeomorphism vy and inverse diffeomorphism 4 ! can be computed by integration
forwards and backwards, respectively, as follows,

1 0
Y = vo(z) :$+/0 folz(r),m)dr, @ =145 (y) :y+/1 fo(z(7),7)dr, 9

where * = z(t,;) and y = z(t.) are two points on the manifold A. Note that in this section we
view the diffeomorphism 19 as a function on the Riemannian manifold (A,). However, under

this diffeomorphic mapping, we actually create a new Riemannian manifold (M, iz) with £ being a
pullback metric iz (w, v) = hyy () (Dze w, Dzipe v). From this perspective, the diffeomorphism

12

1 can be regarded as a mapping from a Riemannian manifold (M, h) to (A, k), that is ¢ : M —
N, with (M, h) and (N, h) being isometric Riemannian manifolds.

A.3 Integrators on manifolds

Finding a numerical solution for integrators on Riemannian manifolds is not straightforward and
needs some additional considerations. The majority of existing ODE solvers are designed and care-
fully optimized for Euclidean spaces (e.g. Euler, Runge-Kutta, and adaptive solvers), which can
be modified to compute the integral on Riemannian manifolds. In the following, we discuss two
approaches for integration on Riemannian manifolds: projection methods and integrators based on
local coordinates [36].

Projection methods: Assume we have a
Neural MODE given by (2) on a M, where
fo(-,t) € ToyM for all z(t) € M. The stan-

dard projection methods compute a one-step
integral with an arbitrary numerical integrator Z,
in Euclidean space and then projects the value

onto the manifold M, as depicted in Fig. 7. For
example, an Euler solver is selected with step Figure 7: Standard projection method

size dt which computes a single step from the

initial point zo. The next state Z; is then computed as Z; = 29+ fo (20, 0)dt. Finally, Z; is projected
back onto the manifold by leveraging the exponential map.

Integrators on local coordinates: These methods consider a local representation of the manifold
M, which defines a coordinate map ¢ : MIDOU — U C RY, as described in § 2, with coordinates
w(t) = p(z(t)). Since this coordinate map is a diffeomorphism, we can compute its inverse ¢~ .
The differential equation for local coordinates w(t) is then given by (3) in Euclidean space. This
equation states that the differential of the coordinate map D, -1 (4 (1)) must be computed to project

the vector fields on the manifold onto its coordinate codomain U. In this way, we can solve the
equivalent ODE in (3) with classical ODE solvers in Euclidean space, as follows,
t(‘.

w(te) = w(ts) + t D1 (w(ry® © fole™ (w(r)), T)dr. (10)

As a result, the solution of the manifold ODE (2) and the equivalent ODE in (3) are connected
via coordinate maps ¢, so that any approximation w(t,) provides an approximation for z(¢,).
Theoretically there are infinite possible choices of local coordinates which can be selected before or
during the integration process. However, for complex Riemmanian manifolds that are not globally
diffeomorphic to the Euclidean space, it is impossible to find a single coordinate chart to cover
the whole manifold. Therefore, different coordinate charts must be selected during the integration
process. Combining the equivalent ODE and multiple choices of coordinates charts leads to the
so-called approach Dynamic Chart Method [24]. We take advantage of this method to efficiently
perform integration on manifolds.

A4 Adjoint Method

To incorporate Neural MODEs into deep learning frameworks, it is crucial to compute their gra-
dients efficiently. According to Chen et al. [30], the adjoint sensitivity method allows us to treat
the ODE solvers as a black box and compute the corresponding gradients by solving a second ad-
joint ODE backwards in time, instead of directly differentiating through ODE solvers (which is the
naive solution). This approach is significantly more memory efficient, especially for adaptive ODE
solvers, which adjust the step size on the fly. Furthermore, the adjoint method can be generalized
for ODEs on arbitrary manifolds Lou et al. [24].

Formally, let us consider a loss function £ : M? — R. To compute gradients of £ with respect
to any value of the state variable z(t) of the manifold ODE, we can define an adjoint variable
at)" = D) L, subject to,

a®)" = —a(t)" D,y fo(2(t),). (11)

13

N S R W N =

If the loss £ merely depends on the end value z(t.), to get the gradient of £ w.r.t. the starting
value z(t), we solve the end value problem (EVP) of the adjoint ODE (11). Since this adjoint ODE
contains two variables: z(t) and a(t)", solving the EVP of it requires knowledge about z(t) over
the entire time span, which leads to solving a combination of the adjoint ODE (11) and the Neural
MODE (2) backwards. Furthermore, the end values are needed for both variables z and a to solve
ODEs backwards from end time ¢, to starting time ¢5;. The end value z(t.) needs to be computed
first through the forward integration of the Neural MODE, while a(t.)" = D ,)L can be obtained
via classical backpropagation, since the loss £ is only a function of z(¢.).

Finally, to compute the differential of the diffeomorphism 19 with respect to the starting value
z(ts) (which will help us compute the pullback operator in § 3.3), we consider a special loss £; =
¢i(2(t.)), where g; is the i-th component of a function ¢ : N'* — R?. We introduce the function ¢
to help us construct a valid loss £; = g; o g, which maps from M to R. Furthermore, we define
l=(Ly,....,Lq)" = q(z(te)) = (qog)(z(ts)). Given the previous definition, we can define
A(t) = D)l as an adjoint variable as follows,

A(t) = Dyl = Do(y(q0ve) = Do(1.yq © Dotytbe = Dar.1q 0 A(t), (12)

where A(t) is the derivative of the diffeomorphism with respect to z(t). Consequently, we build the
corresponding adjoint ODE,

A(t) = —A(t) o Doy fo(=(0). 1),
D,.yq0 A(t) = —=D,(.yq0 A(t) o Dy fo(2(t), t), (13)
A(t) = —A(t) o Dy fo(2(t),1).

Moreover, we have initial and final conditions defined as A(t;) = D,)e and A(t.) =
D,,)z(te) = I. As aresult, to compute A(t,), we can construct an “augmented” ODE com-
posed of the Neural MODE (2) and the adjoint ODE A(t) = —A(t)D,) fo(z(t),t). After com-
puting the IVP of the Neural MODE to obtain z(t.), we can then compute the differential of the
diffeomorphism D, 1)g by solving the EVP of the augmented ODE, as shown in Algorithm 1.

Algorithm 1: Differential of diffeomorphism constructed by a Neural MODE

Input: start time ¢, start end ¢, final states z(¢.) and A(t.) = I

so = [2(te), I]

% augmented ODE using (2) and adjoint ODE with variable A

def augmented_dynamics([z(t), A(t)], t):

return [f@ (Z(t), t)v _A(t)Dz(t) f@ (Z(t), t)]

end

[z(ts), Dz(ts)l] = ManifoldODESolve(s, augmented_dynamics, t., t)
return z(t5), D ()l

To emphasize once more, solving this augmented ODE system backwards requires knowing the end
value z(t.), which can only be obtained by solving the first ODE (Neural MODE) forwards. In
other words, this process is essentially similar to the classical neural network backpropagation in
the sense that we must first perform forward pass through the network and then back-propagate the
error to obtain the gradients.

B Stability Analysis of RSDS

B.1 Lyapunov stability on Riemannian Manifolds

Before we prove the Lyapunov stability of RSDS (4), we first introduce the following theorem

Theorem 3 (Stability of geodesic vector fields). Let N be a Riemannian manifold with logarithmic
map Log,, : N — TyN aty € N. A dynamical system on this manifold can be formulated as,

y = k(y) Log, (y"), (14)

14

where k(y) > 0Vy # y* and y* is the origin (equilibrium) point on N'. The velocity § of such
a dynamical system points along the geodesic curves converging to y*. Moreover, let a Lyapunov
function on such a manifold be formulated as V (y) := (F, F)y-, where F' = Log,.(y) defines a
vector field composed of the initial velocities of all geodesics departing from the origin y*. This
Lyapunov function V' satisfies,

Vy*)=0, V(y)=0, V(y)>0,Vy#y*, V(y) <0, Vy#y"

As a result, the above dynamical system is globally asymptotically stable on the Riemannian mani-
fold N with a single equilibrium point y*.

The full proof of Theorem 3 can be found in [23]. Note that the dynamical system defined by

Y = gv(y) = ky(y)gn(y) asin § 3.1, corresponds to the one defined in Theorem 3 by substituting

k(y) with %. Therefore, it is easy to observe that our canonical vector field on N is also
Yy

globally asymptotically stable at the attractor point y*. To analyze the stability properties of the

dynamical system (4) on the manifold M, we can construct a new Lyapunov function V(x) :=
V(g (x)) by applying the diffeomorphism 1. Since this diffeomorphism 1) is a one-to-one and
onto mapping, there exists also a single equilibrium point on M, i.e £* = g ! (y*). Then, we can
prove that * € M is globally asymptotically stable.

To verify this condition, we first prove that the dynamics under the coordinate change with diffeo-
morphism g indeed corresponds to (4). Given y = ¢g(x) and y = g (y), it follows that,

Y = Datpo(x) o, then, &= (Dyvp(x)) 'y = ((Date(x))™" gy 0 ve) ().

Note that the pullback operator D,7)* indeed corresponds to Dy (e (x)) " as discussed in § 3.3.
Then, we compute the time derivative of the Lyapunov function V' (x(t)) as follows,

dV (z(t) _ d(V o (155" o o) om)(t) _ d(V otb5") o (g 0 x)(1)
_dVoy)t) _ dV(y(t))
N dt S dt

where we first introduced the identity mapping I = 14 ! 0 4)g and then applied some regrouping.
This implies that the new Lyapunov function V' satisfies all Lyapunov conditions defined as,

Via) = V(vel@) = V(y") =0, V(') = V(o()) = V(y) =0,
V(@) = V(vo@) = V(y) >0, Yo £a', Vie)= V(o) =V(y) <0 Yotz

We have therefore proved that our RSDS provides globally asymptotically stable vector fields on
Riemannian manifolds. From the above derivation, we also showed that a diffeomorphism can be
used to describe a change of coordinates for Riemannian manifolds, as briefly mentioned in § 2.
Thus, we can regard x and y as two coordinate representations for the same underlying dynamical
system on M. Hence, the original dynamical system with coordinates © € M is characterized by
the same stability properties as the canonical dynamical system with coordinates y on .

B.2 Quasi-global Asymptotic Stability

For Riemannian manifolds of particular topologies, it is not possible to guarantee global stability.
To begin with, the Poincaré-Hopf theorem establishes that for any vector field v on M, the sum of
the Poincaré indices over all the isolated zeroes is equal to the Euler characteristic x(M). Global
convergence to a single equilibrium point means a single zero with index 1. However, for compact
manifold such as the 2-sphere, which has Euler characteristic 2, there must exist at least another
zero. This means that global asymptotically stability is not achievable for such a manifold.

To address this problem, we assume the following: Let us consider again the case of the Sphere
manifold. For a geodesic vector field defined on the Sphere, the remaining isolated zero corre-
sponds to the cut locus of the attractor point Cut(ax*), where the vector field converges to. Our
assumption is that a geodesic vector field converges to a single attractor =* for all points on M
except the attractor’s cut locus Cut(«*). Such an assumption implies that theoretically we may only

15

guarantee “quasi-global asymptotic stability”. Although our assumption might be restrictive when
designing geodesic vector fields on compact Riemannian manifolds (e.g., the Sphere), there exist
several non-compact manifolds without cut locus (e.g., the manifold of symmetric positive definite
matrices) [43], for which the aforementioned assumption may not be necessary.

C Final RSDS framework

We here prove the final RSDS equation (5) is equivalent to the original diffeormorphism-based
learning framework (4) and give more details about network structures for each component. First,
let us summarize our framework as discussed in § 3. Given a manifold M, we can evaluate the
velocity & € T, M at location € M using (4) and the canonical dynamics defined in § 3.1. As a
result, we obtain the whole RSDS framework formulated as

Log, (y")
[. : k (y)ﬁ, Yy #y*
@ = (Dytby 0 gy 0 te) () = Dyf(y) with gy (y) =4 IF fy(y I 7
0, y=vy
where

* g : M — N,z — y is a learnable diffeomorphism parameterized by the Neural MODE,
* g : N — TyN is a parameterized geodesic vector field with the equilibrium point y*,

» Dytph : TYyN — TaM is the pullback operator,

* k,(y) is a positive scaling factor V y € N.

This learning framework is mainly parametrized by @ (corresp. the diffeomorphism) and - (corresp.
the scaling factor of the canonical dynamics). These two parameters sets provide large capacity
to learn very complex vector fields. However, the smoothness of the learned vector fields can not
be easily guaranteed since it is affected by the aforementioned parameters, which are separately
constructed with two independent neural networks. Additionally, since the diffeomorphism is re-
sponsible for both the direction and magnitude of the vector field, the diffeomorphism network g
needs to find a compromise, which potentially weakens the capacity to learn the direction of the vec-
tor field. To address these two issues, we introduce the following improvements. We reparameterize
the direction and magnitude of the learned vector fields separately, as follows

& = (Dytpg 0 kygn 0 he)(x) = Dytbg k~(y) 9n(y),
= ky(y) Dyvp gn(y) = k() (Dytj © gn © the)(T),
\jvhere gn : N — TyN denotes the normalized geodesics vector field as described in § 3.1, and
ky(x) = ky(¥y ' (y)) is an intermediate variable only for the purpose of the derivation. We then
redefine a new scaling factor k~ (z) := k~ (2| (Dyt} © gn © 16)(x)||2, which leads to
(Dyvg © gn © Vo) ()
[(Dy © gn 0 Vo) ()2’

which is the proposed RSDS (5), as defined in § 3. Since there are no fundamental changes on the
learning framework with the above modifications, the stability properties remains unchanged as long

as the newly defined scaling factor l%.,(m) is strictly positive.

(16)

& = oy (@) (Dyth © gn © o) () = kiry ()

a7)

To ensure the smoothness of the magnitude part and provide good extrapolation in regions beyond
the demonstrations, we leverage RBF networks to parametrize k- (x). Specifically, we define the

scaling factor /%,Y as IAC., (x) = e (®)te with Kk~ : R™ D M — R, and € being a very small constant
to ensure positive definiteness numerically. Note that the RBF network needs to be adapted to the
Riemannian setting as * € M,. To do so, we replace the usual Ly-norm by the Riemannian distance,

d:B (xv ci)
() = D w6 (U> : (18)
where w; are linear weights, ¢; are the RBF centers (obtained via k-means on manifolds), o; is

similar to the standard deviation for Gaussian distributions, ¢ represents the RBFs, e.g. ¢(r) = e_T2,
and d is the Riemannian distance induced by Riemannian metrics as defined in § 2 and Table 1.

16

Regarding the parameterization of the diffeomorphism /g, we use a simple fully connected neural
network (FCNN). While a classical FCNN can be considered as a general function approximator
in Euclidean space, dynamics model fg represented as a neural MODE requires to account for
constraint that the output of network must lie on the tangent space at the input. Due to this, we add
an additional projection operator proju to the last layer of the network to project its output onto the
tangent space at the input location. More formally, let us assume that states z(t) lie on the manifold
M® which is embedded in an ambient space R”. Given a C! network 7g : R" x R — R", the vector
field on the manifold fg : R™ x R — 7T M can be obtained as,

fo(z(t),t) = proju,) one(z(1),1). (19)

Note that the state variable z lies on a Riemannian manifold, but we do not explicitly consider this
in the input layer of the network, as we are instead accounting for the ambient space in which the
corresponding manifold is embedded.

In summary, the final RSDS learning framework provides several advantages. On the one hand, a

separate magnitude parameterization l%v(m) allows us to design the network such as the Riemannian
RBF network (18) performs better extrapolation in regions where no training data are available and

guarantees smoothness. Since 12:., must be positive definite on the entire manifold, the Riemannian

RBF network can provide a constant magnitude value 1%7 = 1 with K, = 0 when =z is far away from
demonstrations. Note that we tried to use FCNN for this parameterization but it outputs very small

values k, — 0 for datapoints beyond the demonstrations region, despite we use an exponential
function to guarantee positive definiteness. The reason for this is that FCNN can not provide pre-
dictable values for inputs which are too dissimilar from the training data, and it turns out to output
K~ — —oo for unseen inputs. On the other hand, the parameterization of the diffeomorphism)¢
can completely focus on learning the vector field directions, improving the reproduction accuracy.

C.1 A short discussion on Riemannian approaches for robot motion generation

Note that Riemannian geometry has been also leveraged to design robot motion policies that build on
the geometry of classical mechanical systems, as proposed in recent works on Riemannian Motion
Policies [44], and more recently in a generalization called Geometric Fabrics [45]. In this context,
RSDS may be seen as learning a control policy represented by a first-order dynamical system, which
may be used as a motion policy into the RMPs framework, as RMPs provide a geometric robot
motion structure that combines several motion polices with associated Riemannian metrics. In other
words, we may fuse RSDS skills with additional motion policies, like obstacle avoidance behaviors,
under the RMPs framework [44]. Note that RSDS represents a learned first-order dynamic motion
policy that does not explicitly consider a specific type of underlying mechanical system. In contrast,
RMPs build on Riemannian geometric control to design robot motion policies whose geometry is
characterized by, e.g., the associated inertia matrix of the robot dynamics.

It is worth highlighting the difference on the geometric aspects regarding RMPs and RSDS. Broadly
speaking, the Riemannian structure of RMPs arises from the Riemannian metric associated to the
kinetic energy of the robot dynamics [44], while the Riemannian structure of RSDS comes from
the fact that the state variable x of the robot in operational space lies on a Riemannian manifold
(due to the orientation representation). Notice that these two different ways in which Riemannian
geometry is leveraged in robotics are complementary to each other. On a related note, Riemannian
geometry has been recently leveraged to formulate robot motion generation mechanisms that build
on geodesics on learned Riemannian manifolds [46, 47]. This approach differs from the aforemen-
tioned methods as the Riemannian geometry is not intrinsically given by the system dynamics or
geometric constraints of the system state. Instead, the geometric aspect arises from the assumption
that trajectories of a robot motion skill define a nonlinear smooth surface that can be interpreted as
a data-driven Riemannian manifold.

D Computation of the Pullback Operator

D.1 Pullback operator via constrained optimization

Here we provide more insights about the loss of rank of the differential D19 and derive a pullback
operator via constrained optimization using the S% manifold as a study case. We consider a 2-

17

N QA N R W N -

Sphere manifold embedded in R, whose tangent space has the same dimensionality as the manifold,
namely, dim(7,.M) = 2. This implies that the operator D1g(x) should be a mapping between 2-
dimensional spaces. However, since we embed the 2-Sphere and its tangent spaces in R3, the matrix
representation for D 1g(x) is a 3 x 3 matrix. This matrix is a sort of overparameterization for a
mapping between 2-dimensional spaces, and therefore it is rank-deficient and can not be directly
inverted. The rank deficiency arises from the geometric constraints of the Riemannian manifold,
which impose linear dependencies in the vector space spanned by the matrix columns of Dztg ().

Given the relationship between & and y with Dy1g(x)& = vy and the geometric constraints as-
sociated to S manifolds, as discussed in § 3.3, we can compute a solution for & via constrained
optimization. For our study case on S, we augment the matrix Dy1)g to include the associated ge-
ometric constraint, and then we compute the pseudo-inverse to obtain the final solution, as follows

x' 0 x' x xz' 0
[Datpe(z) " Datpe(x) + za'] & = Dytbe(z) "y, (20)
& = [Dyto(x) Dytbo(x) + x2"]” Date(x) "y,
Dyy = [Datbo () Datpo(a) + x| ' Dato(x).

[Ptate] 5 [i] [Dm(x)T [Petale] 5 - [mee@r il

This pullback operator D, 13 is only specific to & 4, since the geometric constraint considered here
is only valid for this type of manifold. This means that if we need to learn stable vector fields on dif-
ferent Riemannian manifolds, we will need to manually define the corresponding constraints. These
constraints can be highly non-linear for other Riemannian manifolds (e.g., matrix manifolds such
as the space of symmetric positive-definite matrices), which may not accept a close-form solution
as our previous study case. Therefore, although this approach is a potential solution, it is neither
general nor scalable for computing the pullback operator.

D.2 Pullback operator via modified adjoint method

Since we can solve an EVP of the Neural MODE (2) from %, to ¢, to obtain 1), ! we can con-
sider the same adjoint method in App. A.4 to compute the pullback operator Dy = Dy (g b,
We design a new loss function £; = ¢;(z(¢s)), where g; is the i-th component of an arbitrary
function ¢ : M? — R? Then, we define a new adjoint variable A*(t) = D (1 "), simi-
larly to computation of differential D g in App. A.4. As a result, we obtain an adjoint ODE
A*(t) = —A*(t)D 1) fo(2(t),t) with starting value A(t;) = D,)z(ts) = I and end value
A*(te) = Dyt (g ") = Dy(1g"). Then, solving the IVP of augmented ODEs composed of the
Neural MODE (2) and adjoint ODE with adjoint variable A*(¢) allows us to compute the pullback
operator Dy, (1, "), as described in Algorithm 2.

Algorithm 2: Diffeomorphism and differential of inverse diffeomorphism

Input: start time ¢, start end ¢, initial states z(ts) = @ and A*(t5) = 1

S = [wv I]

% augmented ODE using (2) and adjoint ODE with variable A*

def augmented_dynamics([z(t), A*(t)],t):

return [fe (Z(t), t)7 —A* (t)Dz(t) f0 (Z(t), t)}

end

[z (te), Dz(te)i/fﬂ = ManifoldODESolve(s, augmented_dynamics, ¢, t.)
return z(t.), D,)"p

In the following we provide the proof for computing the differential of the inverse diffeomor-
phism (8). In § 3.2, we “discretize” the diffeomorphism using (6), which overcomes the need for
integrators on Riemannian manifolds. Analogously, we can formulate the inverse diffeomorphism

18

I

3dims 32units 32units 32units 3dims 3dims 32units 32units 32units 3dims
S\
e

x ky X g % £ IE},
/\
=
[I11
3 dims 100 units 100 units 1 dim 3 dims 100 units 100 units 1 dim

Figure 8: Neural network architectures for RSDS and EuclideanFlow. Left: In the RSDS setting, FCNN uses
an extra projection operator in the output layer, and the RBF network uses the Riemannian distance d (. Right:
In the EuclideanFlow setting, the RBF network uses the Euclidean distance computed by the L2-norm.

we_lzy:zkHzO:a:as,

g =Logz, oggoExpyo...oLog, ! oty o Expyl on
= Exsz oq}bg,é o LngO o...0 Eszk,l 07#5}“,1 o Logz,%1 .

4 -1
Now, we focus on a single component z; = (Exp,, of; o Log,,)z;y1 from (21), and analyze its

derivatives, i.e. Dz, ,2; = Du, (1, ,) EXp,, ODwi(ti,E)Zze_; oD, Log, . Since {g; : w;(t; ;) v

Zi+1
w;(t;,.) and 1/35 1 s w;(tie) — w;(t;s) respectively correspond to solving the equivalent ODE (3)
forwards and backwards in time in a tangent space (i.e. a Euclidean space), the differential of these
mappings corresponds to classical partial derivatives. This allows us to leverage Algorithm 2 with
the classical ODE solver in Euclidean space to compute 1/35 1 and its partial derivatives.

E Network Architecture

In the illustrative examples on S 2. under the EuclideanFlow setting, we used a fully-connected neu-
ral network with an input vector on R* (i.e., the 3-dimensional state « and time), and 3 hidden layers
each, with 32 hidden units. We used tanh as activation function to guarantee a C'-bounded mapping
for modeling the Neural MODE. The RSDS architecture has an additional projection operator proju
on the network head to project the output on the tangent space of manifolds (see App. A.1). The
scaling factor lAf., is generated using a network composed of an RBF layer and a linear layer without
bias. In the real robot experiments, we trained our model on R? x S (i.e. position and orientation
of the end-effector) with the same architecture as our illustrative experiments, except that we use 16
hidden units for faster computations. The network architectures are shown in Fig. 8.

F Extended results

F.1 LASA dataset on S>

In this section, we provide an extended set of experiments to further support the results presented
in § 4. The extended results include a complete set of experiments on datasets: P, G, W, and
MultiModels, as displayed in Fig. 9. Moreover, we carried out three additional experiments on new
letters from the LASA dataset, specifically: SharpC, Spoon and S, whose trajectories significantly
differ from the datasets used in the main paper, as shown in Fig. 11. In addition, an extra set of results
using Projected Euclideanflow is added to the comparison between RSDS and EuclideanFlow. As
mentioned in § 4, this alternative method projects trajectories onto the manifold after computing

19

Figure 9: Experiments on LASA dataset on S 2 for datasets: P, G, W, and MultiModels. The learned vector
field is depicted by arrows (color-coded based on the magnitude), and the demonstrations are shown as white
curves. The blue and black trajectories are reproductions starting at the same initial points as the demonstrations
and randomly-sampled points around them, respectively. The first row shows the results for the RSDS approach,
and the next two rows show the Projected EuclideanFlow and EuclideanFlow results.

the integration in the Euclidean space. Figure 10 shows the comparison for learning efficiency
between the two methods, RSDS and EuclideanFlow. Here, the RSDS method generally requires
fewer training epochs than EuclideanFlow. Note that the results regarding Projected Euclideanflow
and Euclideanflows share the same models, therefore, Projected EuclideanFlow is omitted from this
comparison.

Figure 9 shows the demonstrations as white
curves for all datasets, the corresponding

learned vector fields and the reproduced tra- _Ei)atas_et W
jectories. The latter, depicted as blue and 9 G —— MM
black trajectories, are rollouts starting from the A Model

same initial position as the demonstrations and S —— RSDS
randomly-sampled points around them, respec- 1 —~~JuclideanFlow
tively. From top to bottom, the rows corre- R

spond to trajectories computed using RSDS, 0 _———
Projected EuclideanFlow, and EuclideanFlow. 0 500 1000 1500 2000

In Fig. 9, the datasets are ordered from left to
right (i.e. from P to W) based on their dif-
ficulty. For example, the W dataset contains Figure 10: Loss values over 2000 epochs for datasets:
multlple Sharp turns, demanding a more expres- P, G, W, and MultiModels. Several models were
sive learning model in comparison to P dataset. trained for each dataset, with the lines and the shaded
Note that the more complex the vector field is, regions representing the mean and standard deviation.

the more prominent the shortcomings of Euclidean approaches are.

Epochs

To quantitatively demonstrate the differences between RSDS and Euclidean approaches (i.e., Eu-
clideanFlow and Projected EuclideanFlow), Fig. 12-bottom-left, and -top-right show the dynamic

20

Figure 11: Additional experiments on LASA dataset on S? for datasets: SharpC, Spoon, and S. The learned
vector field is depicted by arrows (color-coded based on the magnitude), and the demonstrations are shown
as white curves. The blue and black trajectories are reproductions starting at the same initial points as the
demonstrations and randomly-sampled points around them, respectively. The first row shows the results for the
RSDS approach, and the next two rows show the Projected EuclideanFlow and EuclideanFlow results.

time warping distance (DTWD) as a measure of reproduced position trajectory accuracy, and the
mean squared error (MSE) of the velocities reproduction. Additionally, the success rate (i.e., con-
vergence to the attractor) of our approach and the baseline can be seen in Fig. 12-top-left, where
RSDS always reproduces stable trajectories. As mentioned in § 4, for a fair comparison in sta-
bility analysis, we used the Projected EuclideanFlow instead of EuclideanFlow. To clearly show
the intention behind this, Fig. 13 and Fig. 14 provide the results computed by EuclideanFlow in
the last row. Figures 13 and 14 show the stability evaluation of the reproduced trajectories on the
learned vector field. Here, 1000 trajectories were generated using initial states uniformly sampled
on S2. The successful and failed trajectories are colored as green and red, respectively. From top to
bottom, the rows correspond to trajectories computed using RSDS, Projected EuclideanFlow, and
EuclideanFlow, respectively. It is evident that all the RSDS trajectories succeeded, while some the
EuclideanFlow trajectories failed to converge despite the projection.

In order to further show how unstable trajectories arise, we provide additional plots displaying a
different view of some examples of Projected EuclideanFlow in Fig 15. We can see that additional
spurious attractor points can appear on S? if we do not explicitly consider the geometric constraints
of the data. Then, instead of converging to the true attractor, unstable trajectories diverge to these
undesired points. This phenomenon might not occur when learning vector fields displaying simple
dynamics, but in general, geometry-unaware methods may be prone to it. Therefore, when using
EuclideanFlow, we cannot provide stability guarantees on Riemannian manifolds and this may lead
to catastrophic results for real-world applications. However, this issue can be theoretically and
practically overcome by RSDS. Additionally, when compared against projected EuclideanFlow,
RSDS usually generates more consistent and smoother trajectories around the demonstrations, which
can be clearly observed, for example, for the S shape.

21

1.0 rovorgggee =og=, “">vover —— O 3.5
;

Success rate

1.0
0.2 e RSDS
0.5
Projected EuclideanFlow o
[. 1R | h

) .
Spoon C S P G W MM Spoon C S P G W MM

—— Spoon

3.0 =G

—s

12 s RSDS
EuclideanFlow

—

e Projected EuclideanFlow

— G

— WV
MM

— RSDS

=== BuclideanFlow

DTWD
Loss

00— 500 1000 1500 2000

Epoch

Figure 12: Top-left: Average success rate of RSDS and EuclideanFlow over randomly-sampled initial points
on S? using 7 different trained models indicated as points. Top-right: Average mean square error (MSE)
between observed and predicted velocity over data points in the test trajectories indicated as points. Bottom-
left: Dynamic time warping distance (DTWD) between demonstrations and reproductions. Bottom-right: Loss
values over 2000epochs for all tested LASA datasets. Several models were trained for each dataset, with the
lines and the shaded regions representing the mean and standard deviation.

F.2 Real robot experiments on R3 x S3

F.2.1 Data Pre-processing:

Before using the demonstrations collected through kinesthetic teaching, a low-pass filter was applied
to smooth out the trajectories. In addition, the trajectories are slightly shifted to guarantee that all
demonstrations converge to common target. Although, this alteration in position trajectories can be
achieved using classical parallel shifting, for quaternion trajectories the parallel transport operator
on a 3-Sphere is required to accomplish the shifting operation. For sake of completeness, Fig. 16
shows the replay of one of the demonstrations (left picture), as well as the normal and perturbed
reproductions shown in Fig. 5.

F.3 Stability on Robotic Tasks

To provide further evidence for the practical use of RSDS, we design new experiments on simulated
robotic tasks, where we only require the end-effector to follow demonstrated quaternion trajectories
while keeping its position fixed. The quaternion demonstrations are synthetically generated on S3.
We apply the same experimental settings as the ones described for the illustrative LASA dataset
experiments on S 2, detailed in § 4.1, for both RSDS and EuclideanFlow, except that an additional
hidden layer is added to improve models’ expressiveness. We reproduce several quaternion tra-
jectories, using the learned vector fields, starting from randomly-sampled initial points around the
demonstrations for both RSDS and Projected EuclideanFlow. For the latter, we project the learned
vector fields onto S, similarly to the experiments reported in § 4.1 of the main paper. Note that this
projection is necessary to guarantee that the resulting integral curves lead to proper unit quaternion
references. Additionally, we use a Cartesian impedance controller to track the reference signals.
Figure 17 shows the reconstructed trajectories on S° using Projected EuclideanFlow corresponding
to the G dataset.

In Fig. 17a, we can observe that some trajectories (depicted in red) generated by Projected Eu-
clideanFlow do not to reach the target if the initial point moderately differs from the demonstra-
tions, which often happens in real-world settings. In contrast, RSDS succeeds in reproducing stable

22

Figure 13: Evaluation of the reproduction stability on the learned vector fields. 1000 trajectories were generated
using initial states uniformly sampled on S?. The path integral for each initial state was computed on the vector
field during a fixed time. The successful and failed trajectories are indicated in green and red, respectively.
From top to bottom, the rows corresponds to trajectories computed using RSDS, Projected EuclideanFlow, and
EuclideanFlow. From left to right, each column corresponds to P, G, W, and MultiModels demonstrations.

trajectories despite the initial conditions being different to the training data, as shown in Fig. 17b.
To visualize the effects that this may have in real-world applications, we show the final robot end-
effector pose reached by our RSDS method and Projected EuclideanFlow for two different simulated
experiments in Fig. 18, where Figs. 18a and 18b correspond to the experiments reported in Figs. 17a
and 17b, respectively. As pointed out previously, Projected EuclideanFlow diverges and therefore
reaches an undesired final end-effector pose. However, the final end-effector poses reached by RSDS
are in sharp contrast to the Projected EuclideanFlow results, as our method successfully converges
to the desired target (represented by the green robot arm in Fig. 18).

F.4 Runtime of RSDS

We measured the runtime for RSDS and EuclideanFlows on a PC with Intel Xeon W-1250P CPU and
31 Gigabytes of memory. Table 2 provides reference values of runtime and shows that RSDS runs
around 2 times slower than EuclideanFlow, as the RSDS model requires solving IVPs on Riemannian
manifolds. However, there is still a lot of room for improvement in terms of speeding up the RSDS
implementation, which is worthwhile for future research.

1 2 3 Mean

RSDS 198 200 197 198
EF 90 89 91 90

Table 2: The average runtime (in milliseconds) of RSDS and EuclideanFlow over 100 iterations in three separate
experiments.

23

Figure 14: Additional evaluation of the reproduction stability on the learned vector fields. Here, 1000 tra-
jectories were generated using initial states uniformly sampled on S?. The path integral for each initial state
was computed on the vector field during a fixed time. The successful and failed trajectories are indicated in
green and red, respectively. From top to bottom, the rows corresponds to trajectories computed using RSDS,
Projected EuclideanFlow, and EuclideanFlow. From left to right, each column corresponds to SharpC, Spoon,
and S demonstrations.

Figure 15: Spurious attractors on vector fields learned with geometry-unaware Projected EuclideanFlow. Plots
show a different view angle of the reproduction stability on the learned vector fields using Projected Euclidean-
Flow. From left to right, each plot corresponds to Spoon, P, G, and W datasets.

24

V-Shape V-Shape (Normal V-Shape (Perturbed
(Demonstration)) Reproduction) Reproduction)

Grasping \ ‘Grasping (Normal == Grasping (Perturbed
(Demonstration) 8l / Reproduction) Reproduction)

Figure 16: Left: The demonstrated trajectories depicted by superimposing images from different time frames.
The transparent robot arms depict the trace of the motion trajectory. Here, the robot performs V-shape
DrawingTask (top row) and GraspingTask with 90 degrees rotation (bottom row). Middle: The motion re-
produced using learned vector field on the product manifold R® x S®. Right: The motion reproduced using
learned vector field on the product manifold R® x S2 when applying perturbation.

25

& == Demonstrations

= Successful Reproductions
= Failed Reproductions

0 1 2 3 1 5 60 1 2 3 1 5 6
Time (Sec) Time (Sec)

(a) Reproduction of quaternion trajectories with Projected EuclideanFlow.

=——Demonstrations
= Successful Reproductions
= Failed Reproductions

0 I 2 3 1 5 60 I 2 3 1 5 6
Time (Sec) Time (Sec)

(b) Reproduction of quaternion trajectories with RSDS.

Figure 17: Time-series plot of quaternion trajectories obtained from the first-order dynamical systems learned
by Projected EuclideanFlow and RSDS, corresponding to Experiment 1 (see Fig. 18a). The quaternion trajec-
tories reproduced by Projected EuclideanFlow reveal several integral curves that diverge, therefore winding up
distant from the target. These results show the inability to reconstruct stable quaternion trajectories when dis-
regarding the geometric constraints arising from S®. In contrast, the RSDS integral curves succeed to converge
and reach the target, demonstrate its ability to reconstruct stable quaternion trajectories on S>.

(a) Experiment 1 (b) Experiment 2

Figure 18: Stability experiments on a simulated Franka-Emika robot. The green robotic arm represents the
end-effector pose target extracted from demonstrations, and the red robot displays the final end-effector pose
achieved during reproduction. For each experiment, the left snapshot displays the RSDS reproduction, and the
right picture shows the EuclideanFlow result.

26

