Appendix

A Derivation Details of DMIL and D2MIL

In this section, we provide the complete theoretical derivation of DMIL and D2MIL in Section A.1 and
A.2. As D2MIL is a direct extension of DMIL with the addition of a second optimality discriminator,
hence we will only discuss the detail model design philosophy of DMIL.

A.1 Derivation Details of DMIL

A Naive Model-Based Offline IL Framework. We begin the derivation of DMIL by first inspect-
ing the following naive model-based offline IL framework, which simply incorporates a learned
probabilistic dynamics model f(s’|s, a) to generate rollout data D,. for policy learning:

BC policy learning objective: rr;in Ly = Eq)~p, [~ logm(als)] an
Dynamics model learning objective: mfin Ly = E(s,q,s)~p. [~ log f(s']s,a)] (12)
Policy learning with D and D, : mgn fine-tune . E(s,0)~D.up, [~ log m(als)] (13)

Specifically, when we only use Eq.(12) and (13), it corresponds to the BC+d baseline in Section 3; if
we first use Eq.(11) and (12) to pretrain the rollout policy and dynamics model to generate rollouts D,.,
then use Eq.(13) to fine-tune the policy, this corresponds to the 2-phase-BC+d baseline. Obviously,
these two methods all bear some drawbacks. Both methods fully trust the model rollout data, which
can be problematic when the dynamics model has high prediction errors or the policy is suboptimal.
Although 2-phase-BC-d uses the higher quality pretrained dynamics model and policy to generate
rollouts, it may still suffer from performance degeneration when the expert dataset is small.

A remedy for this is to selectively trust and train on good rollout data, but penalize the learning on
problematic rollouts. A seemingly valid approach is to jointly learn a discriminator d(s, a) together
with policy 7 and dynamics model f to judge the dynamics correctness and optimality of rollouts
in a GAN-like framework [30]. In this paradigm, 7 and f are jointly treated as the generator and
optimized implicitly through solving a min-max optimization problem on the discriminator loss L,
which is the cross-entropy loss between D, and D,.. Although looks reasonable, this approach faces
several technical problems. First, solving the GAN-style min-max optimization problem is costly and
known to suffer from training instability and issues like mode collapse [48]. Second, as data in D,
are generated from a special multi-step rollout process using both 7 and f, rather than single-step
outputs directly from a generator model in typical GAN framework, obtaining the correct gradients
of 7w and f for back propagation through the discriminator loss £, can be highly complex. Lastly,
although we have explicit loss functions for policy 7 (Eq.(11) or (Eq.(13)) and f (Eq.(12)), they
are not used to learn 7 and f in such a GAN-style framework. This could cause potential loss of
information and performance degeneration when the expert data D, contain noisy or suboptimal data.
Since under the GAN framework, the only objectives of 7 and f are to fool the discriminator, rather
than maximizing the likelihood on expert data.

Problem Reformulation Under the Cooperative-yet-Adversarial Learning Scheme. To address
above issues, we introduce an adversarial-yet-cooperative learning scheme to jointly learn the policy
7, dynamics model f and discriminator d. In particular, we first include the element-wise loss
information from policy and dynamics model (log 7 and log f) into the inputs of the discriminator d
(i.e., d(s,a,logm(als),log f(s'|s,a))) to establish cooperative information sharing, and then use the
following adversarial learning objective to learn the discriminator d:

minmax L4 := E  [~logd(s,a,logm(als),log f(s']s, a))]+
ot e (14)
B - log(L— dls,alogn(als), log ('l o))

Although this design looks not very intuitive, we can show that it offers a series of benefits. First,
the information sharing couples the learning process of 7, f and d, and also provides valuable
information for d to make better judgment, as discussed in the main article in Section 2.2. Second,
making 7 and f challenge the discriminator d by injecting adversarial information through log 7(a|s)
and log f(s'|s, a) will force the discriminator d to minimize the worst-case error of £, which has
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been shown in adversarial learning studies to greatly improve model robustness [31, 32]. Last and
most importantly, we can show that this design enables reformulating the original complex coupled
optimization problems (LHS of Eq.(15)) into three simple minimization problems as follows, which
can be easily solved in a fully supervised learning manner to achieve high computation efficiency.

m%nﬂ L min, LML= . L, 4 LT
ming Ly ’ = min; LMY= ap - Ly + L9 (15)
MR ming Lqg

where L, and L are defined on D, as shown in Eq.(11) and (12); £°™" and E(J"f’” are corrective
loss terms capturing the adversarial behavior of 7 and f on d, which are computed based on output
values of the discriminator d on samples from both D, and D,; o, oy > 1 are weight factors of 7
and f to balance their original learning objectives and the additional adversarial behavior.

The corrective loss terms £2°"" and L3°"" are derived by finding equivalent relaxed conditions
of the inner maximization problem for 7 and f in mdin mafx L. This avoids solving the original
™,

complex functional min-max problem for the discriminator, and also enables learning 7 and f on
both expert data D, and model rollouts D,.. Utilizing calculus of variation [33] and the analysis
method introduced in Xu et al. [20], we provide the detailed derivation of the exact forms of L™
and E‘}"” as follows.

Derivation of the Corrective Loss Terms. Under the proposed cooperative-yet-adversarial learning
scheme, both the discriminator d and its loss £ become functionals of 7w and f (i.e., function of
a function), which can be expressed as d(s, a,logm(als),log f(s'|s,a)) and L4(d,logm,log f).
Denote = = (s, a, s'). Note that £4(d, log 7, log f) can be rewritten as following integral form of a
new [unctional F(z,d,logm,log f):

Lq(d,log m,log f) :( IEJ) - [—logd(s,a,logm(als),log f(s]s,a))]
sy p, [Tl —d(s.a,logm(als),log f(s']s.a)))]

- / [Pp, (@) - [~ log (s, a,log =(als), log £ (s'|s, a))]

sas

+ Pp, (2) - [-(1 —log d(s,a,log m(als),log f(s']s,a)))]]da

é/ F(z,d,logm,log f)dz (16)
Qcas’

where Pp_ and Pp, are probability distributions of x in D, and D,; and 4, is the domain of z
under D, U D,..

To avoid solving the complex functional min-max problem mdin ma}x Lq(d,log m,log f), we will
| ™,

focus on its inner maximization problem, which essentially requires to find the maxima of functional
L4(d,logm,log f) with respect to 7 and f, given an unknown functional d decided by the outer
minimization problem. From functional analysis and calculus of variation[33], the extrema (maxima
or minima) of £, can be obtained by solving the following associate Euler-Lagrangian equations:

Fr— & Fope =Fr =0 7
Fy— g:Fo = F; =0 4

where F), stands for %—F. As %, and % do not appear in the our form of F(z,d,logm,log f), hence

For = Fg s = 0. Let 0 and 67 denote model parameters of  and f, above equations also indicate:

Ox

L Om _9F  _od  Ologm 9w _ OF  _dd _
i OF _or U557 owwr or _oF CbET Voo 1057 =0 (18)
— og of _ 9F _0od . o
F‘f 0 — od dlogf ~— f 90y  od Odlogf nglogffo
In our problem, d, F', m and f are real-value functions, hence the same with the derivatives %—g,

ad ad
Ologm and Olog f*

If the continuity of previous functions and derivatives are satisfied, then according
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to Hewitt [49], the set of real-valued continuous functions is a commutative ring, we can salely swap

oF ad F ad__ . .
the order of Bd and logr 38 well as B and log7 I above equations.

As d is determined by the outer minimization problem of Eq.(14), thus the exact forms of 5 l‘é d — and
#‘if are not obtainable by only inspecting the inner maximization problem. We can instead consider

a alternative solution by making % -V logm = 0and % -V, log f = 0 for state-action pairs in
Qs x Q. For practical IL tasks, D, and D, are finite, and the domains €25 and (2, are closed and
bounded, hence the integration on %—5 -V, log 7 and %—5 -V, log f will still be zero. Interestingly,
although it is intractable to directly solve %—5 -V, logm = 0and %—Z -V, log f = 0, the integration
on these equations leads to two new relaxed and tractable necessary conditions for £ to reach its
extrema. Using the condition on 7 as an example, we have:

B OF (x,d,m(als), f(5|s,a))
0= /sz 9d(s, a,m(als), f(s's,a))

- Vo, logm(als)dz

1
:/Q {_ Pr. (@) G5 Tog n(@ls) 1og F(#5.0))
1
T d(s,a, log w(a[s), 108 [(+'5,0))

+ Pp, (z) - } -V, logm(als)dx

1
= E {—(—i -V, log 77} —

(s;a,8")~De

1
E —— Vg logm 19
(s,a,s")~D, |: 1-d 0= 108 :| ( )
where in the last equation, we slightly abuse the notations and write the output value of
d(s,a,logm(als),log f(s's,a)) as d. Note that the above condition can be equivalently perceived
as the first-order optimality condition of minimizing a new loss term L£°"" with respect to T, i.e.,
derivative equal to zero, given as

corr __
LT = —

1 -10g7r(a|s)} 4

1
(s, [ J —— -logw<a|s>] 0)

E

(s,a,s")~D,. l: 1—-d

where we introduce a negative sign on the last equation in Eq.(19) to ensure minimizing £5°™" leads
to update 7 in the gradient ascent direction of L4, so as to find the maxima of £, rather than minima.

Similarly to the derivation of £7°"", we can get the corrective loss for the dynamics model L3 as:

£ = -3l s + g lefWlsa)| D

E
(s,a,8")~D, |: 1-d

(s;a,8")~De

Add these corrective loss terms to their original losses according to Eq.(15), we can get the final
objectives for 7 and f in DMIL:

1 1
LPML — B [—1 - E | E _ 1
" “ (s,a)~De [~ logn(als)] (s,a,s")~De d ogm(als)] + (s,a,5")~Dy 1—d ogm(als)
1 1
= E — === ]-1 E - 2
(s,,8")~De [ <a d) OgW(CL'S)] T (sasinD, { 1-d Ogﬂ(ab)] @
Mo, E [Flgf(dlsa))— B [—=-logf(slsa)|+ E |- logf(sls,a)
J (s,a,s")~D, ’ (s,a,5")~D, d ) (5,08 D, 14 ,

| , | ,
= — — ). R, 3
B | (0 g) e+ B e rlsa)] e

Note that we use d(s, a,logm(als),log f(s'|s,a)) as values in L™ and L£°"", thus there is no
gradient passing from the discriminator d to m and f when minimizing £2M™ and LML This
greatly simplifies the learning processes of 7, f and d, as all of them can be trained in a decoupled

manner with their own optimization objectives (Eq.(15)), while also enabling capturing the coupled
relationship with d using £2°7" and L4

Interpretations of DMIL. The final learning objectives of 7 and f in Eq.(22) and (23) are actually
intuitively reasonable. It can be perceived as assigning credibility weights on different samples
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based on the judgment of the discriminator d, with weight ar — 1/d and ay — 1/d assigned to
expert demonstrations and 1/(1 — d) assigned to model rollout data. Suppose the discriminator
is well-learned, then it will output small values for problematic model rollouts, resulting in lower
weights (1/(1 —d) — 1) on these samples; whereas for credible rollout samples (d — 1), the weights
will be boosted and encourage the policy 7 to learn more on these samples. Moreover, the learned
discriminator can also serve as a denoiser to alleviate noisy or suboptimal data in the expert datasct
D,. For such samples, the output values of d will be small, and the weights o — 1/d and oy — 1/d
will be reduced for policy 7 and dynamics model f.

It should be noted that during our derivation, the continuity assumption of 2£ needs to be satisfied.

We thus clip the output range of d to [0.1,0.9] to avoid 1/d and 1/(1 — d) taking infinite values. We
further set ar = ay = 10 in our implementation to ensure expert demonstrations in D, always get
positive weights.

A.2 Derivation Details of D2MIL

Problem Formulation of D2MIL. As for offline IL scenarios with a small expert dataset D, and a
large unknown, potentially suboptimal dataset D,, we can extend the proposed DMIL framework
by adding a second optimality discriminator d, (s, a,log7) to distinguish expert and non-expert
samples, following a similar treatment as in DWBC [20]. Moreover, we also introduce a second
pair of adversarial relationship between the policy 7 and d,, to carry over the similar reformulation
design as in DMIL. For clarity, we will refer the original rollout discriminator in DMIL as d,. in the
following discussion. Under this scenario, the set of problems we need to jointly solve are:

ming L = E(; q)~p, [~ logm(als)]

minf ‘C/f = E(s,a,s’)NDRUDU [_ IOg f(5,|33 CL)]
minmax Lg, 24)

d, m,

minmax L,

lo T

where we use the same policy learning objective £, to make it only learn from the expert demon-
strations, but use an updated objective L'f for the dynamics model f, as it can learn from both the
real expert and suboptimal datasets D. U D, regardless of the optimality of data. For the rollout
discriminator d,, now it needs to distinguish both the real expert and suboptimal data D, U D,, from
model generated rollouts D,., hence we update its learning objective as follows:

Ly = [—log d(s,a,logm(als),log f(s']s,a))]+
(s,a,s")~D.UD, 25)
( IE:) D [7 log(l - d(s,a,logﬂ'(a|5),log f(5/|5~a)))]

For the additional optimality discriminator d,, we follow the treatment in previous works [13, 20]
to adopt a positive-unlabeled (PU) learning [35] objective, as the the unknown suboptimal dataset
D, may also contain some expert-like data. Utilizing PU learning allows us to learn from positive
(expert data D.) and unlabeled data (D, U D, in our case). The learning objective of d, is given as:

Lq, =n E [-logd,(s,a,logm(als))] + E D‘[— log(1 — dy(s, a,logm(als)))]

(s,a)~D. (s,a)~DoUD,
-1 E [_ log(l - dO(S,(L,IOgﬂ'((LL"’)))] (26)
(s,a)~D.

where 7) is a hyperparameter, corresponds to the proportion of positive samples to unlabeled samples.
We set it as 0.5 in all our experiments.

Following a similar reformulation scheme as in DMIL, we can avoid solving the two complex
functional min-max optimization problems in Eq.(24) by considering the following reformulation:

min, LML .= q . E/ﬂ + LT = L A B LT 4 By - LT
min E?zMIL =y L+ LY

ming, Lg,

mindo Cda

@7

Due to the existence of two pairs of adversarial relationships involving policy , the corrective loss
term on 7 will become the sum of two terms, i.e., L7 = B, - LT + B, - LE7Te. B, and 3,
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are the weight factors to balance the impact from both the original rollout discriminator d,- and the
optimality discriminator d,, on policy 7. To reduce the number of hyperparameters in the model,
we set B, = 1 — 3. The derivation of the exact forms of L7, LZ°"" and L under D2MIL are
described below.

Corrective Loss Terms under D2MIL. Following the same derivation procedure of DMIL in
Appendix A.1, the updated corrective loss terms £5°"" and L2 for dynamics model f and policy
7 under D2MIL can be easily obtained as follows:

1
ﬁCO’I"T‘ — . 1 / E _ . 1 / 28
f (s,0,8")~D.UD, { a8 f(s |s,a)] + ak . { T d og f(s s,a)} (28)
1 1
ﬁfrorr,. B 7(5 a,s’")~D.UD |:d_ ’ 1Ogﬂ-(a5):| + (s,a RND |: 1—d : logﬂ-(a|5):| (29)

While for the learning objective of discriminator d,, in Eq.(26), let z = (s, a) and ), as its domain,
then it can be rewritten as the integral of a new functional F,(z, d,, log w(al|s)):

La, :/Q [PDS(Z) -n[=log do(z,logm(als))] + (Pp,(2) + Pp,(2)) - [~ log(1 — do(2,log m(als)))]

sa

— Pp,(2) - n[—1log(1 — do(z, log 7(als)))]| dz

é/ Fy(z,d,,logm(als))dz (30)
where Pp_(z), Pp,(z) and Pp, (z) are the probability distributions of z in D, D, and D,., respec-
tively. Following the derivation in previous section, we can get the similar relaxed necessary condition
for L4, to reach its extrema with respect to 7 as:

/ OF,(z,do,logm(als))
Q 0dy(z,log w(als))

-V, logm(a|s)dz

Y Ui Z N 1
_/Qsa [ Fp.(2) do(z,log m(als)) + (P, (=) + P, (2)) 1 —do(z,logm(als))

n
1—d,(z,logm(als))

Vo, log 7T(a|s)} -

— Pp_(2) ] - Vo, log w(als)dz

n
= ]E —_——
(s¢a)~De|: do

E — . 1
(s,a)~D,UD, |: 1-— do VGT, Ogﬂ(alS)

+ - aI)E~D [—1 —nd - Vo, log7r(a|s)} =0 31)

Again, we slightly abuse the notations and write the output values of d, (s, a,log(a|s)) as d, in the
last equation. Similar to the derivation of DMIL, above condition can be perceived as the first-order
optimality condition of the corrective loss term L5°7" with the following form:

n
- E — A
(s,a)~D, |: do(l — do)

Plug these corrective loss terms back to the reformulated problem in Eq.(27), we obtain the final
learning objectives of 7 and f in D2MIL:

DMMIL _ [ _ __Bn B 1 E o Bo B 1
EW (s,a,8")~De o do (1 - do) dy Ogﬂ-(a|8) * (s,a,5')~D, 1—d, dy 0g7r(a|8)

Bo Br
+ (s,a,}’z)ND,- [_ <1 vy + . dr) -log 7T(a|s)] (33)

peorre — togn(als)| + g eerlals)| @)

E
(s,a)~D,UD, l: 1-— do

1 1
LM — - 5’)IED > {— (af — d_> ~10gf(s'|s,a)} * QI/E)ND [—1 —log f(5/|87a)]
(34)
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Again, to ensure the continuity assumption is satisfied during derivation, we clip the output range of
both d,, and d, to [0.1,0.9].

In the final objective of L2?MIL 3 and 3, (3, + B, = 1) actually reflect the trade-off between the
reliability and optimality of samples in D, and D,.. When 3, = (3,, D2MIL tends to learn policy
with high d,, and d,. samples with similar preference. However, if the suboptimal dataset D,, is known
to have high quality, one can use a larger 3, to pay more attention to the quality of rollout data.
In such cases, both d,, and d, will output values close to 1 on D,, samples, resulting high weights
to encourage policy learning on these samples. Conversely, if the expert demonstrations D, and
suboptimal dataset D,, has considerably large gap, a large (3, should be used to ensure policy learning
focus more on those expert-like samples.

B Algorithm and Implementation Details

B.1 Algorithm Details

We outline the pseudocode of DMIL in Algorithm 1 and D2MIL in Algorithm 2.

Algorithm 1 Discriminator-guided Model-based Offline Imitation Learning (DMIL)

Require: Expert dataset D, hyperparameter o, oy
1: Initialize the discriminator d, dynamics model f and imitation policy 7; set D, = (.
2: Train a preliminary dynamics model f using samples from D,
3: for training stept =1--- N do
4. Utilize dynamics model f and imitation policy 7 to generate rollouts and add into D,
5: Sample (S, ac, L) ~ D, and (8, a,, s,.) ~ D, to form a training batch
6:  Update d by minimizing the objective in Eq.(14)
7:  Update m by minimizing the objective in Eq.(22)
8:  Update f by minimizing the objective in Eq.(23)
9: end for

Algorithm 2 Dual-Discriminator Guided Model-based Offline Imitation Learning (D2MIL)

Require: Expert dataset D, suboptimal dataset D,, hyperparameter oy, ay, 3, 5o
1: Initialize the discriminators d,, d,., dynamics model f and imitation policy ; set D, = ().
2: Train a preliminary dynamics model f using samples from D, U D,,
3: for training stept =1--- N do

4:  Utilize dynamics model f and imitation policy 7 to generate rollouts and add into D,
5: Sample (S, ac, L) ~ De, (S0, 00, 8,) ~ D, and (s,,a,, s,.) ~ D, to form a training batch
6:  Update d, by minimizing the objective in Eq.(25)
7. Update d, by minimizing the objective in Eq.(26)
8:  Update 7 by minimizing the objective in Eq.(33)
9:  Update f by minimizing the objective in Eq.(34)
10: end for
Hyperparameters Values in experiments Tasks Transitions
D4RL tasks  Real-world tasks MuJoCo-exp-10% 100,000
DMIL-ar 10 10 MuloCo-exp-5% 50,000
DMIL-c ¢ 10 10 MuloCo-exp-2% 20,000
Pen-human 5,000
D2MIL-ctr 10 10 Hammer-human 11,310
D2MIL-a; 10 10 Door-human 6,729
D2MIL-7 0.5 0.5 ’
D2MIL-3, 0.5 0.6 exp-med-0.3 De: 7,000, D,: 23,000
D2MIL-3.. 0.5 0.4 exp-med-0.6 De: 4,000, D,: 26,000
Table 2: Hyperparemeter values. Table 3: Datesets details for D4RL tasks.

17



B.2 Implementation Details

For all experiments on MuJoCo tasks, all models (dynamics model f, imitation policy 7, discriminator
d (d,, d, for D2MIL)) are implemented as 2-layer neural networks with 256 hidden units each layer
for dynamics model and policy, and 512 hidden units for the discriminator. For Adroit tasks, we
use the same network configuration for dynamics model and discriminator, but increase the policy
networks to 3 layers with 1024 hidden units due to the high dimensional state space. We use Relu
activations for hidden layers and Adam optimizer. The batch size is 256, and the learning rate is
le — 4. For discriminators, to satisfy the continuity assumption when deriving the corrective loss
terms in Appendix A.1, the output is clipped to [0.1,0.9] after sigmoid activation.

For both DMIL and D2MIL, we set a and oy as 10 across all tasks, which are found to achieve
good performance. For D2MIL, n = 0.5 is used in all experiments, and the additional weight
hyperparameters 3, and 3, are set to 0.5 in simulation experiments. In real-world experiments, due
to large quality gap between the expert dataset and suboptimal human demonstrations, [, is set to
0.6, and S, is setto 1 — 8, = 0.4. Although DMIL and D2MIL contain several hyperparameters, we
found them do not need careful tuning. Even using the same set of default parameters in different
tasks, the model still provides good performance. We summarize these hyperparameters in Table 2
and provide evaluation and discussions on the different choices of hyperparameters in Appendix C.3.

B.3 Detailed Experiment Settings

D4RL Benchmark Experiments. In D4RL benchmark tasks under simulation environment, we use
the medium and expert datasets in Mujoco and human dataset in Adroit of D4RL [29] to conduct
our experiments. There are 1 million samples in each expert or medium dataset for D4RL-MuJoCo
tasks. We randomly sample 10%, 5% and 2% of transitions from these MuJoCo datasets (correspond
to 100,000, 50,000, 20,000 transitions) to evaluate policy performance under small datasets. For
Adroit tasks, there are only 5,000, 11,310 and 6,729 transitions in human datasets for Pen, Hammer
and Door tasks respectively, which are already small compared with their high dimensionality in
state space. Hence we directly use the original human datasets in our experiments. To evaluate
the policy robustness, we randomly pick 20% samples from previous constructed datasets and
add a Gaussian noise with A'(0,02) on the states, where o stands for the standard deviation of
each dimension of states in training dataset. As for the evaluation on D2MIL, we first sample 1%
trajectories (10,000 transitions) from D4RL-MuJoCo expert datasets, then sample X proportion of
these trajectories and combine them with 2% medium dataset (20,000 transitions) to constitute the
suboptimal dataset D,,. The remaining 1-X trajectories constitute the expert dataset D.. We term
each task in different environments as exp-med-X. Detailed statistics of the datasets used in the
experiments are summarized in Table 3.

(a) Hopper  (b) Halfcheetah  (c) Walker (d) Pen (e) Hammer (f) Door

Figure 7: Simulated tasks in D4RL benchmarks.

Real-world Experiments. For real-world validation, we deploy our methods and baselines on a
wheel-legged robot. The control action is the sum of the torque 7 of the motors at the two wheels (5
for each). The control frequency of the robot is 200Hz. We elaborate the two task settings as follows:

(1) Standing still: The state space of the robot is represented by s = (6, 0,z %), where 6 denotes

the forward tilt angle of the body, z is the displacement of the robot, € is angular velocity, and & is
linear velocity. We collect datasets containing human controlled transitions of (s, a, s’, 7, d), where s
is the current state, a is the torque of motors, s’ is the next state, 7 is the reward and d is the flag of
terminal. During performance evaluation, we run all algorithms for 200,000 training steps and report
the final results in the main text.
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Table 4: Normalized scores for models trained on different proportion of D4RL MuJoCo-medium
datasets. Results are averaged over 3 random seeds.

Ratio BC BC+d 2-phase BC+d  valueDICE 1Q-Learn DMIL
10%  46.26+8.69 47.55+7.56 48.55+7.30  53.96+5.48  47.01£5.59 53.72+8.78
Hopper-med 5% 43.31+8.81 45.194+7.86 46.47£7.13 52.43+£8.92  43.88+5.67 52.81+8.47
2% 41.354+8.38 41.444+6.51 46.07+£6.87 51.43+£6.48  25.4243.02 52.89+8.42
10%  41.58£1.69 41.124+1.49 41.354£2.23 40.81£2.32  40.36+1.92 41.86+2.19
Halfcheetah-med 5% 40.464+2.61 40.47+1.65 41.154+2.31 40.234+2.46  36.66+4.27 42.19+2.56
2% 36.29+5.71 34.59+5.91 39.37£3.46 37.21+£1.89  27.45+8.24 41.26+1.61
10%  66.14+16.54 66.25+15.54  68.08+15.28  47.114+3.55 54.28+11.74 71.66+12.51
Walker2d-med 5%  62.62+£19.84 64.38£18.97 64.95£18.13  37.864+8.99  13.57+8.28  67.51£15.75
2%  44.84+25.50 47.82+25.39  59.52+21.00 33.35+£6.11 5.87+4.24 62.25+17.05

(2) Moving straight: The state space in this task is represented by s = (6,0, 1), without the
forementioned displacement x since we only want to keep the velocity of the robot stable. Datasets
contain human controlled transitions of (s, a,s’, r, d) when the robot moves forward. Our goal is to
keep the robot at the target speed of 0.2m/s. During performance evaluation, we run all algorithm for
200,000 training steps and report the final results in the main text.

For each of the above two tasks, we collect 10,000 transition data from human demonstrations, which
are about 50 second human control. As the actual control frequency of the robot is high (200Hz),
human demonstrations can only be perceived as mediocre or suboptimal data. To evaluate the perfor-
mance of D2MIL, we additionally collect very few transitions (140 transitions, less than 1 second’s
control) generated by a high quality Linear Quadratic Regulator (LQR) policy for the standing still
task. We use such very small amount of expert data combined with human demonstrations to evaluate
and compare the performance of D2MIL against baseline methods.

C Additional Experiment Results

C.1 Additional Comparative Evaluation Results

Simulation Experiments on D4RL-MuJoCo Medium Datasets. We also evaluate DMIL on D4RL-
MuJoCo medium-quality datasets, which are generated from a policy trained to approximately 1/3
the performance of an expert policy. The comparative results are shown in Table 4. Due to the
suboptimality in medium datasets, the gap between different methods is not as large as the experiments
on expert data (Table 1 in the main text). However, we can still observe that DMIL consistently
outperforms other baselines in all tasks.

Real-world Experiments for Scenarios with Additional Suboptimal Dataset. We also conduct
real-world experiments on standing still task for D2MIL. In this setting, we collect 140 transitions
generated from a high quality LQR expert policy. In particular, we consider two different sizes
of expert dataset D,, one contains all the 140 transitions, the other contains only 1/10 of the data,
14 transitions. We also sample 5,000 transitions from the human demonstrations to constitute the
suboptimal dataset D,. The amount of expert data, especially the second case, is extremely small
compared with the suboptimal data, which requires the IL algorithm to maximally extract information
from the suboptimal datset D,, for policy learning.

The evaluation results are shown in Figure 8. Robot trained with BC-all, BC-exp and ORIL polices
cannot maintain balance in both task settings. Although robot trained with DWBC can maintain a
rather stable tilt angle, it fails to stay still and shows a slight drift. While for D2MIL, robot can stay
in place and keep balance at the same time, indicating superior performance over other baselines.

C.2 Ablation on the Cooperative-yet-Adversarial Learning Scheme.
We conduct ablation study on D4ARL-MuJoCO expert datasets to examine the benefits of introducing

the proposed cooperative-yet-adversarial learning scheme in DMIL. This scheme has two ingredients,
first is the incorporating element-wise loss information log 7 and log f into the discriminator d to
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Figure 8: Evaluation results of D2MIL on the standing still task on the real-world wheel-legged robot

establish cooperative information sharing; the second is adding adversarial learning strategy between
both m and f against d. To examine the impact of these ingredients, we evaluate the following
baselines or variants of DMIL on MuJoCo expert and 20% state noise datasets:

¢ DMIL-no-d-adv: removing the coupling and the adversarial relationship between discriminator d
and dynamics model f. In this variant, we remove both the additional information log f from the
inputs of d, as well as the corrective loss term [ch“""’" of f to remove its adversarial behavior on d.

DMIL-no-d-adv&-info: on the basis of DMIL-no-d-adv, we further remove the additional
information log 7 from the inputs of d. This removes the cooperative information sharing in DMIL,
but we keep the corrective loss term L of 7 to enable discriminator-guided policy learning.

¢ 2-phase BC+d: this baseline can be perceived as the reduction of DMIL that completely removes
the cooperative-yet-adversarial learning scheme.

¢ BC and BC+d: minimal baselines without or with a dynamics model used for comparison.

The results are presented in Table 5. From the results, we can see that without the cooperative-
yet-adversarial learning scheme (BC, BC+d, 2-phase BC+d), the performance of imitation policy
degenerates significantly on small datasets. When incorporating the adversarial relationship between
policy 7 and discriminator d (DMIL, DMIL-no-d-adv&m-info, DMIL-no-d-adv), the performance
of policy is substantially improved under small dataset. As for DMIL-no-d-adv and DMIL-no-d-
adv&m-info that remove adversarial relationship between f and d, they have similar performance
with DMIL when the training data are sufficient, but suffer from noticeable performance drop when
dataset is extremely small or contains noisy inputs. On the contrary, DMIL can maintain nearly the
same performance with reduced datasets as well as involvement of noisy data. Therefore, we can see
that the cooperative-yet-adversarial learning scheme involving 7, f and d indeed help with improving
policy robustness and imitation performance.
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Table 5: Ablation study of DMIL on different proportion of D4RL-MuJoCo expert and 20% state

noise datasets.

ratio BC BC+d 2-phase BC+d  DMIL-no-d-adv&m-info  DMIL-no-d-adv DMIL

10%  83.52+30.58 100.59£13.21  104.35£9.44 110.58£1.26 110.14£1.92 111.56+1.51

Hopper 5%  73.35£37.04 94.82+19.72  99.66+14.98 109.26+2.51 108.4444.49 111.14+1.83

2%  53.54+36.89  61.57430.18 88.24+25.63 105.45+10.46 103.99+11.26  108.51+3.88

10%  90.64£2.21 89.71+2.88 71.27+19.33 92.38+2.69 92.2242.42 92.69+1.82

Halfcheetah 5%  8290£11.71  76.40£16.94  70.89+23.06 88.19£7.77 88.26+6.46 90.18+4.43
2%  23.58+16.36  21.48+16.86  57.48+25.63 59.79428.56 53.71428.70 76.87+15.31

10%  105.36+4.38  107.61+£1.14 106.40£1.96 107.68+0.91 108.29+1.13 107.624+0.83

Walker2d 5%  103.21+7.81  105.42+£3.93 104.51£4.54 107.11£1.02 106.30£1.36 107.89+0.71
2%  58.34+35.86  60.64+35.10  86.71+£21.20 101.40+10.76 103.76+5.43 105.55+4.42

10%  74.284+29.69  75.66+31.14  100.32415.21 106.84+7.57 107.7946.07 110.17£1.95

Hopper+noise 5%  66.71£30.23  71.48+30.98 93.21£22.28 104.98+10.02 105.6446.23 109.62+3.02
2%  47.86+29.18  43.56+29.12  59.63£33.40 101.21+15.43 98.76+18.37 108.47+4.78

10%  84.90+7.58 86.84+4.96 71.56+23.06 88.17£7.51 88.13+7.93 88.421-6.88

Halfcheetah+noise ~ 5%  68.63£20.45  66.87+21.61 67.46+25.85 74.76+18.82 73.38+20.94 74.56+19.24
2%  58.21+24.17  23.794+22.31 61.74+23.08 64.83+27.91 65.58+26.11 73.14+18.01
10%  104.284+5.69  97.214+16.99 102.84+8.37 107.014+2.03 105.40+5.71 107.94+0.64
Walker2d+noise 5%  89.84£20.52  91.86+23.72  97.38+15.87 103.39+7.85 100.61+12.79  105.89+3.92
2%  66.98+37.23  74.76+35.07 92.01+£22.61 92.22422.76 95.13+£23.93 103.54+6.98

C.3 Discussion and Evaluations on Different Choices of Hyperparameters

In the proposed DMIL, the hyperparameters involved are o, and o ¢, which are used to balance the
impact of correction loss terms. In general cases, we can simply choose a; = ¢ > 1. In all our
experiments, the values of o and oy are set to be 10 without tuning (see Table 2), as we find this
choice already produces good model performance. To further verify their impact, we conducted
additional experiments on Hopper tasks with 2% expert data by setting o and ory to different values,
the results are presented below. It is found that these hyperparameters generally do not need careful
tuning and produce similar performance.

Table 6: Experimental results for different values of hyperparameters in DMIL
Qr, Qf 5 10 20
106.07£7.86  108.51+3.88  105.79+8.61

Results

For the extended D2MIL, although we have hyperparemeters o, oy, 17, 8, and 3, in the model, most
of them do not need to be tuned. Asin DMIL, we set o = ay = 10. We adopt p = 0.5 as a constant,
which is same as in ORIL [13] and DWBC [20]. In our implementation, we make 3, + 3, = 1 to
reduce the parameter numbers. 3, and j3, reflect the trade-off between the reliability and optimality
of samples in the suboptimal dataset D, and rollout data D,.. The detailed discussion on the impact
of B, and (3, is presented in the last paragraph of Appendix A.2. In practical scenarios, we suggest

the practitioners just setting 5, = 5, = 0.5, which generally leads to reasonably good performance.

In our real-world experiments, due to the large quality gap between the expert dataset and suboptimal
human demonstrations, we set 3, to be slightly larger value (8, = 0.6, 5, = 1 — 5, = 0.4).

Although DMIL and D2MIL contain several hyperparameters, the associated hyperparameter tuning
effort during practical use is actually very minor. We use the same set of hyperparameters in most of
our experiments without tuning. Moreover, we found that using the default hyperparameter values
summarized in Table 2 in most cases lead to good performance. This can be a particularly nice feature
for DMIL and D2MIL in practical applications.
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C.4 Co-evolution of Models During the Learning Process

To get a better understanding of our cooperative-yet-adversarial learning scheme in DMIL, we plot
the TSNE visualization of generated model rollouts at different model training stages together with
the original expert data in Figure 9 and 10. Moreover, we also plot the discriminator output values on
these generated rollouts to examine how do the policy, dynamics model and discriminator co-evolve
during training. We find that at the initial stage, the generated rollouts are inconsistent with expert
data due to less well-learned policy, and the discriminator d is also incapable of discriminating the
credibility of samples, which outputs around 0.5 for every rollout sample. As the training process
continues and the policy is learned better, we can see that the generated rollouts start to align with the
expert data, and the discriminator tends to believe most rollout data are reliable (d — 1). However,
at the later stage of training, as the discriminator is learned to be stronger, it can identify most of
the generated rollouts are fake data (d — 0). Under this stage, the policy will receive high learning
weights only on few highly reliable samples, and the final imitation performance (illustrated as the
average return scores in Figure 9 and 10) is gradually saturated.

It is intriguing that above co-evolution pattern is almost universal across tasks, as observed in both
Halfcheetah and Walker2d tasks with 5% expert data. It is also worth noting that such a co-evolution
pattern is very different from typical GAN-like methods. As in these approaches, the generator will
eventually become stronger and the discriminator cannot tell whether the generated samples are real
or fake (i.e., d — 0.5). In DMIL, the discriminator d can generally learned to be stronger compared
with those in GAN-like method, due to additional cooperative information shared from 7 and f (i.e.,
adding log 7 and log f to the input of d). Moreover, since both 7 and f also optimize their own
objectives in addition to enforcing the adversarial behavior on d, it is more likely the discriminator in
DMIL can eventually distinguish most of the generated rollouts as fake. When such phenomenon
occurs, it also suggests the saturation or convergence of the learning process.

C.5 Learning Curves

The learning curves on D4RL benchmark tasks for DMIL are shown in Figure 11.
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Figure 9: TSNE visualization of the expert data and the generated rollout data under different stages of training
on the Halfcheetah-5% task. The color of rollouts points indicates the output value of the discriminator.
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Figure 10: TSNE visualization of the expert data and the generated rollout data under different stages of training
on the Walker2d-5% task. The color of rollouts points indicates the output value of the discriminator.
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Figure 11: Learning curves of DMIL on D4RL benchmark tasks.
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