
A Implementation Details

For training the NeRF models for objects in simulation and in the real world, we employ the default
configurations in the original NeRF paper [12] using a PyTorch implementation [35]. For the cGAN
model, we use a U-Net architecture that employs Conv-Norm-ReLU blocks as both encoder and
decoder layers [36]. Both the encoder and the decoder use 7 layers of convolutional blocks. RGB,
depth, and reference background images are encoded using separate decoders that have the same
architecture, where depth is treated as grayscale.

B Network Hyperparameters

The configuration and hyperparameters used in the NeRF models are shown in Table 4.

Environment Simulation Real-world Real-world deployed
Batch size 1024 4096 1024
Optimiser Adam Adam Adam

No. of layers in coarse network 8 8 8
Channels per layer in coarse network 256 256 256

No. of layers in fine network 8 8 8
Channels per layer in fine network 256 256 256

Learning rate 5e-4 5e-4 5e-4
Exponential learning rate decay (no. of steps) 500,000 250,000 250,000

Number of coarse samples per ray 64 64 64
Number of additional fine samples per ray 128 128 64

Table 4: NeRF training configuration

The architecture of the cGAN model is shown in Table 5.

Layer no. Type
1 Conv
2 ReLU
3 Conv
4 Norm
5 ReLu
6 Conv
7 Norm
8 ReLU
9 Conv

Layer no. Type
10 Norm
11 ReLU
12 Conv
13 Norm
14 ReLU
15 Conv
16 Norm
17 ReLU
18 Conv

(a) Encoder architecture

Layer no. Type
1 ReLU
2 TransConv
3 Norm
4 ReLU
5 TransConv
6 Norm
7 Dropout
8 ReLU
9 TransConv

Layer no. Type
10 Norm
11 Dropout
12 ReLU
13 TransConv
14 Norm
15 ReLU
16 TransConv
17 Norm
18 ReLU

Layer no. Type
19 TransConv
20 Norm
21 ReLU
22 TransConv
23 Tanh

(b) Decoder architecture

Table 5: Architecture of the cGAN encoder and decoder

The hyperparameters used in training the cGAN models are shown in Table 6.
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Hyperparameter Value
Batch size 1

Learning rate 2e-4
Optimiser Adam

Table 6: NeRF training configuration

C Object Dataset

The objects used in the simulation experiments are shown in Figure 5, and the objects used in the
real-world experiments are shown in Figure 6.

Train objects Test objects
Figure 5: Objects used in simulation experiments.

Train objects Test objects Test objects (in the wild)

Figure 6: Objects used in real-world experiments.

D Additional Results

Additional qualitative results for the novel view test sets are shown in Figure 7 and Figure 8.
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Figure 7: Qualitative results on the novel view test set in simulation. Real tactile refers to ground-
truth (simulated) tactile images. Fake tactile refers to tactile images generated by the cGAN model.
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Figure 8: Qualitative results on the novel view test set in the real world. Real tactile refers to
ground-truth tactile images collected in the real-world experiments. Fake tactile refers to tactile
images generated by the cGAN model.
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E Additional Classification Results

Additional precision-recall analyses of the results of classification are shown in Figures 9, 10, and 11.

(a) Precision of classification. Left: train objects. Right: test objects.

(b) Recall of classification. Left: train objects. Right: test objects.

Figure 9: Change in classification results for each object after augmenting the tactile dataset with
generated tactile images for the simulated Digit sensor. For each object, the blue bar indicates the
value of the metric before augmentation, and the orange bar indicates the value of the metric after
augmentation. As can be seen, the precision and recall rate for most of the objects increased after
augmenting the dataset, leading to an increase in overall classification success. This points to the
usefulness of the generated tactile images for this downstream task. The reason for the decrease in
the precision and recall rates for some objects (e.g. baseball) is most likely due to the fact that there
were multiple objects of similar shapes. This could have made the generation of accurate tactile
images more difficult, thus negatively impacting classification success. It should be noted that the
classification experiments for train objects and test objects are conducted separately.
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(a) Precision of classification. Left: train objects. Right: test objects.

(b) Recall of classification. Left: train objects. Right: test objects.

Figure 10: Change in classification results for each object after augmenting the tactile dataset with
generated tactile images for the simulated OmniTact sensor. Similar to the results for the Digit
dataset, for each object, the blue bar indicates the value of the metric before augmentation, and the
orange bar indicates the value of the metric after augmentation. From the figure, it can be seen that
the classification metrics for most objects have increased, pointing to the usefulness of the generated
tactile image dataset. Further, the cGAN model is only trained on a small fine-tuning dataset for the
OmniTact sensor. Thus, this points to the potential of the proposed approach in leveraging a different
tactile dataset for pre-training, and transferring the learned model to a new tactile sensor. It should
also be noted that the classification experiments for train objects and test objects are conducted
separately.
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(a) Precision of classification. Left: train objects. Right: test objects.

(b) Recall of classification. Left: train objects. Right: test objects.

Figure 11: Change in classification results for each object after augmenting the tactile dataset with
generated tactile images for the real Digit sensor. The blue bar indicates the value of the metric
before augmentation, and the orange bar indicates the value of the metric after augmentation. As
seen from the figure, for most objects, the precision and recall metrics have increased after augment-
ing the dataset with generated tactile images. This points to the potential of the proposed approach
in generating realistic tactile images useful for downstream tasks. It should also be noted that the
classification experiments for train objects and test objects are conducted separately.

Dataset Accuracy/%"
Sim 27± 0

Sim + T-N 47± 0
Sim + Lee 20± 1

Sim + Cycle 24± 1

(a) Simulated Digit

Dataset Accuracy/%"
Sim 34± 2

Sim + T-N 50± 1
Sim + FS 30± 2

(b) Simulated OmniTact

Dataset Accuracy/%"
Real 69± 5

Real + T-N 86± 1
Real + Lee 71± 4

Real+ Cycle 72± 2

(c) Real-world

Table 7: Classification results on train objects seen by the cGAN model in training.

17



F Classification Dataset Details

The details of the datasets for the example tactile classification task are shown in Table 8 for the train
objects that were used in cGAN training, and in Table 9 for the test objects. The experiments are
conducted separately for the train objects and test objects. The datasets are all balanced across the
objects, and for each object, the datasets include 10 simulated/real images and 50 generated images
for training, and 10 test images.

Experiment Simulation (Digit) Simulation (OmniTact) Real-world
No. of classes 24 24 6

Training set size (sim/real) 240 240 60
Training set size (sim/real + gen) 1440 1440 360

Testing set size 240 240 60
Table 8: Details of classification datasets for train objects

Experiment Simulation (Digit) Simulation (OmniTact) Real-world
No. of classes 3 3 3

Training set size (sim/real) 30 30 30
Training set size (sim/real + gen) 180 180 180

Testing set size 30 30 30
Table 9: Details of classification datasets for test objects
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