
Supplementary Material
Modularity through Attention:

Efficient Training and Transfer of Language-Conditioned
Policies for Robot Manipulation

1 Additional Experiments

In this section, we investigate generalization capabilities along different dimensions. Experiments
address the robustness to a.) to unseen colors, b.) object scaling, c.) object synonyms, d.) image
occlusions, and e.) unseen object types. Summarizing the generated insights and success rates (SR)
on the pushing task, we notice that our method:

• is on par or outperforms BC-Z in presence of occlusions (SR: 81.25% at 20% occlusion)

• generalizes well to unseen object colors and color names (SR: 74.3%)

• can deal with synonyms of object names (SR: 82.5%)

• moderately addresses changes in object size (SR: 57.89%)

• does not generalize well to objects not contained in the training set (SR: 34.6%)

• can easily be extended with new modules, e.g., obstacle avoidance (SR: 88.0%)
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Figure 1: Success rate in generalization tasks.

Below, we present technical details of
above experiments. In all of the experi-
ments, six objects were placed on the ta-
ble. In addition, we demonstrate an easy
and intuitive way to add new modules to
an existing hierarchy by performing exper-
iments of plugging in a new module for ob-
stacle detection and avoidance in Sec. 1.6.

1.1 Task Execution under Occlusion

In this experiment, we evaluated the ability
of our previously trained model to deal with occlusions in the input image. To this end, we black
out an image patch from the camera feed, thereby partially covering the target object. We performed
experiments with varied mask sizes of 4, 6, 8, 10 pixels, which result in covering approximately
20%, 42%, 68% and 80% of the object area. To accurately measure the coverage we calculate the
number of pixels of the object that are affected (occluded) by the mask. We also performed the
same experiment with the best BC-Z model generated in our previous experiments. Fig. 2 depicts
the results of this experiment. Note that at test time, six objects are placed on the table. All of 3
tasks (pick, putdown and push) are incorperated in this experiment. For small masks and occlusion
rates of up to 20%, the success rate of our model is only marginally affected with a drop of about
1.1%. However, the BC-Z model saw a drop of about 9.35%. For occlusion rates of 40% or more,
no significant differences between our model and BC-Z can be noticed. both our model and BC-Z
are comparable in performance. In summary, our modular method shows resilience to occlusions
that is at least on par, if not better, than BC-Z.

1.2 Task Execution with Unseen Colors
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Figure 3: Color used for the generalization test.
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Figure 2: Success rate when part of the target
object is occluded.

In this experiment, we investigated the ability of our
model to identify objects when colors are changed.
As reported before, the model was trained with 6 ob-
jects whose colors were: red, green, blue, white and
brown. Hence, five colors were present in the origi-
nal training set. For this experiment, we changed the
colors of the objects by randomly assigning them a
color from the palette in Fig. 3.

In each test run, six objects are placed on the ta-
ble and the target object is referred to by color in
the instruction, i.e., “Push the navy object!”. Object
names are not used in order to ensure that the model
correctly identifies the color in both the verbal instruction and the visual image feed. At test time,
six random objects are placed on the table. The achieved success rate is 74.3% for the push task. A
possible explanation of this high success rate is that the primary colors were part of the training set
and that the training successfully aligned the embedding of the visual inputs and the linguistic inputs
(image features vs. language features) to enable generalization to new colors. Going forward, we
will analyse this result in more detail to better understand the process by which this generalization
came to be. A crucial aspect of this experiment is that the model does not only choose the next best
color by mapping a novel color to a learned one. Instead, the model is able to accurately distinguish
the novel colors in the presence of all learned colors, showing true generalization to novel aspects.

1.3 Task Execution with Scaled Objects

In this experiment, we investigated the resilience of the trained model to changes in object size.
We apply a scaling factor of between 0.5x and 3x to scene objects. We first randomly sample the
number of dimensions that will be modified and, subsequently, sample scaling factors in the above
range. Hence, the number of dimensions being modified is variable. Again, at test time six objects
are on the table, with one being the scaled target object. The achieved success rate is 57.89% for
the push task, i.e., the percentage of executed instructions that correctly identified the target object
and finished successfully. This result can be seen as a moderate generalization rate (substantially
higher than random chance, i.e. 17%, but lower than the success rate in previous experiments). One
possible explanation is the relatively large range of values for the scaling factor that we allowed for
in this experiment, namely up to 3x times the original size.

1.4 Task Execution under Unseen Synonyms

In this experiment, we evaluate the ability of our model to identify the correct object even when
a synonym is used. To this end, we replace object names by synonyms as shown in Tab. 9. As
synonyms we utilise both single word and short phrase candidates. 10 synonyms are used for each
object (we excluded the Pepsi can, since the same synonyms apply also to the Coke can) adding
up to 50 synonyms in total. The achieved success rate for push task is 82.5%, which indicates a
reasonably high degree of linguistic generalization.
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Figure 4: The new hierarchy of modules after adding the obstacle related modules. Obst2D locates
the obstacle in the image. Obst3D predicts the obstacle spatial coordinates. DISP2 is the displace-
ment between the end-effector and the obstacle.

1.5 Task Execution with Unseen Objects
In this experiment, we evaluate the ability of our model to recognize new, previously unseen objects.
To this end, we create a new set test of 15 objects 6 of which are of similar object type as our
training data (e.g. bottles, bread, etc.) and 9 are completely unseen object categories (e.g. helmet,
horse, etc.). In the executed instructions we referred to the objects only by name in order to avoid
identification through color. The resulting success rate of 34.6% for push task, does not indicate
a high degree of generalization. However, this is to be expected since the model was trained on a
small data set of geometries. Multiple possible remedies for this limitation exist, such as a.) training
with a larger dataset, b.) using unsupervised pre-training, c.) leveraging existing vision backbones
etc.
1.6 Obstacle Avoidance: Adding New Modules to the Hierarchy
In this experiment, we address the question “whether there is a clean way to add new elements to the
hierarchy”. More specifically, we investigate adding the capability to avoid obstacles (as suggested
by the reviewer) on the way to performing a manipulation action. To this end, we first add new
modules that detect the obstacle. This is done in the same vain as previously for the target or the
end-effector. The resulting modules OBST2D and OBST3D are trained to generate the location of
obstacle in image space and world space. More specifically, OBST2D identifies image patches that
belong to the object. In turn, these patches are fed into OBST3D to generate a 3D world-coordinate.

Obstacle avoidance also involves the robot itself. Hence, we need to relate the detected obstacle
position to the location of the robot. To this end, EE3D and OBST3D are used to calculate a second
displacement DISP2 – this time between the obstacle and the end-effector. Fig. 4 shows the new
hierarchy. The output of DISP2 feeds into the calculation of the control value where it is combined
with the output of DISP (the displacement of the end-effector to the target object). All new modules
are shown in red in Fig. 4.

For training the model, we introduced a basketball as an obstacle and placed it randomly within the
workspace. Training trajectories that avoid the obstacle were generated by using a potential field
approach [1]. More specifically, the basketball is a repulsor that pushes the end-effector away from
it. Using this approach, we collected 200 training demonstrations. Note that in some demonstrations
the basketball is visible but not in the way of the robot.

Figure 5: Robot performing a task while avoiding a basketball. The top row shows a pick action and
the bottom row shows a push action. In both cases the robot changes its course to avoid collision
with the obstacle.
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To evaluate the new model, we performed a set of 100 test trials in which the obstacle was placed so
as to block the robot’s path. To this end, we compute the midpoint of the line connecting the robot
to the target object and and apply a random perturbation. We define success as task completion
without any collision between the ball and the robot. The achieved success rate for push task is
88%. In the cases where collisions occurred, we noticed that this was often the result of the robot
fingertips touching the ball. A potential remedy would be to retrain EE3D module so as to focus on
the fingertips of the gripper.

2 Training Details
2.1 Input Embeddings, Tokens and Register Slots
In our model, we use a multi-layer attention module for the interaction between different modalities.
The input and output of an attention layer is a matrix respectively, which is composed of a sequence
of embeddings V ∈ RN×E . There are N tokens and each token has the shape of 1 × E. Overall,
the embedding V is the concatenation of the following tokens:

• Vision tokens: Vision tokens are the flattened output from a CNN. We use the CNN to
downsample the raw input visual image from 224×224×3 to 28×28×192, and then flatten
it to 784×192. Now, each token from this sequence has the shape of 1×192, and represents
a patch of the original image.

• Language tokens: The language token is the output of CLIP model’s language encoder.
With the input being a natural language sentence, the language encoder generates a token
of 1×500. We then downsize it to 1×192 as the language token.

• Proprioception tokens: Our model also takes joint angles as inputs. We simple use a
multi-layer perceptron for the purpose of encoding joint angles. The raw input are 1×7
or 1×8, depending on the robot and gripper DoFs. We also transform that into a token of
1×192 as the input the attention layers.

• Register slot tokens: Register slots are used to store the output of a module so that it can
be accessed in subsequent modules in the hierarchy. Accordingly, each module within our
method has corresponding register slot tokens. The role of the register slots is to provide
access to the output of previously executed modules within the hierarchy.

Figure 6: For TAR2D task, the supervision la-
bel is set to 1 for the image patch containing the
target object. The output is then stored in the
TAR2D register slot. In the next attention layer,
for TAR3D task, the label is highlighted only for
the TAR2D register slot, and the output is stored
in TAR3D register slot.

For processing attention, the register slot tokens
are used as Queries, while all the tokens together
are used as Keys and Values.

2.2 Supervision Labels

The supervision labels are used to focus atten-
tion on certain parts of the input embeddings.
The attention focus depends on the underlying
task. In the TAR2D and EE2D tasks, the su-
pervision label is set to 1 for patches of the im-
age that contain the target or end-effector re-
spectively and to 0 otherwise. Fig. 6 depicts
and explains the process of generating supervi-
sion labels for target prediction. The attention
layer for module TAR2D should only focus on
the image patch which includes the object. Ac-
cordingly, the label for this patch is set to one.
Consequently, the TAR3D attention layer takes
the output of TAR2D as input value and gener-
ates the world coordinate of the target as output.
Therefore, the attention label for the register slot

4



of TAR2D is set to 1. The register slot for TAR3D will subsequently contain the 3D world coordinate
of the object.

For the sake of completeness, below a list detailing the role and function of the supervision labels
for each of the modules:

• EE2D and TAR2D: Given an input image embedding I ∈ RM×E with M patches of
dimension E, we require a binary matrix B of size M × 1 as the attention supervision
label. To this end, all patches in which the center of the end-effector or the object is located
are set to 1. Each module is assigned a register slot shaped 1×E respectively, in which the
output will be stored.

• EE3D and TAR3D: The two modules calculating 3D positions of the end-effector and tar-
get take as input only the output of the corresponding 2D modules, i.e., EE2D and TAR2D.
To achieve this goal, we set the attention supervision label for the corresponding register
slots to 1.

• LANG and CTRL: In the LANG task, the supervised attention label highlights the slot
pertaining to the language embedding. In the CTRL task, the label highlights the slots for
the language embedding, as well as the register slots for TAR3D and DISP (displacement
between target and end-effector). This is due to the fact that the final control should take
into account the target object, its relationship to the gripper and the linguistic instruction.

Table 1: Table of subtasks for modularity.

Abbreviation Subtask Description

LANG Get target object from language
TAR2D Find object patch
TAR3D Calculate object position
EE2D Find robot end-effector patch
EE3D Calculate end-effector position
DISP Find distance object to end-effector
CTRL Predict robot positions for control

This cascaded processing of information is
guided by the proposed supervised attention
mechanism. Register slots play an integral part
in the routing of information throughout the hi-
erarchy. They store the outputs of individual
modules for later access in subsequent mod-
ules. Supervised attention is used to force mod-
ules to access or neglect the information in reg-
ister slots.

2.3 Data Collection and Labelling

A simulated dataset was collected for all 3
robots involved in the experiments (Kinova,
UR5 and Franka). We recorded 2000 demon-
strations for training a policy from scratch, and 400 for transferring a policy to an unseen robot. For
each of the demonstrations, we recorded object positions, robot proprioception (joint angle data),
camera images, and end-effector positions throughout the whole trajectory at 125 Hz. As shown in
Fig. 7, we perform a transformation of the positions into image patches, thereby locating the end-
effector and objects in the image. Images are collected at a resolution of 224×224 resolution. Each
demonstration typically comprises 100-400 timesteps.

For real-robot experiments, we recorded robot proprioception, camera images, end-effector position
and the target object position. A higher cost comes from collecting 3D object positions. In order
to calculate the 3D end-effector position, we use the forward kinematics of the robot and transform
the result into camera coordinates. However, this process requires extrinsic and intrinsic camera
information and therefore a manual calibration step. Similarly, in order to generate an estimate
of the object’s position, we use the robot end-effector’s Tool Center Point (TCP) position after it
touches the object. For higher accuracy, an object tracking algorithm [2] can also be used instead.
The overall labeling process is largely automated and only involves human intervention in two
steps, namely a.) extrinsic and intrinsic camera calibration and b.) which modules should attend
to which register slots. The latter step (b) can also be automated if the structure of the hierarchy is
given (as in Fig. 4) – attention is set to 1 for register slots of all modules that have inbound transitions
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Figure 7: In order to collect labels for supervised attention in images, we firstly track the 3D position
of the object, which is then projected onto the 2D image, and falls into one of the image patches. In
the real world experiment, this patch along with the adjacent patches are selected as the labels.

Object Adj Noun

Coke
red can

coke bottle
cocacola

Pepsi
blue can
pepsi bottle

pepsi coke

Bottle

green bottle
glass

‘’
green glass

Carton milk carton
white box

Cube
red object

maroon cube
square

Bread
‘’ bread

yellow object
brown object

Table 2: The noun phrase template.

Verb Pick Verb Push Verb Put

pick push put down
pick up move place down

raise
Table 3: The verb phrase template.

Annotator Labeled Sentences Success

Grab the loafs F
put down the lime soda T
lay down the red block T
tip over the azure can T
lift the white carton F
knock over the pastry T
lift the coke can T
put down the sprite T
grab the pepsi T
elevate the red cube T
Pick up the red cube T
Lift up the blue cylinder T
Move away the brown object T
Push away the white object T
Lift the blue object T
Put down the green sprite T
Push the green sprite T
Push the reddish can T
Pick up the milk container F
Hold up the milk carton F
Please pick up the green thing F
Lift the red colored coke can T
Push the yellow bread T
Grab the blue colored can T
Nudge that green bottle F
Put down the red colored cuboid T
Lift the white box T
Take the pepsi off the table F
Push the green object forward F
Put down the zero coke on the desk T

Table 4: Sentences collected from annota-
tors for evaluation purposes. Our model
achieves 73.3% success rate on variations of
languages.

to the current layer/module. Also, the camera calibration step only has to be done once per robot
setup.

For learning natural language instructions, we use a template to generate well-formed sentences
during demonstrations. The template first randomly chooses a verb phrase according to Tab. 3, and
then determines a noun phrase by randomly picking from Adj and Noun in Tab. 2. We leverage
this procedure to generate sentences during training, validating and testing. In addition, we also,
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for evaluation purposes, collected 30 natural language sentences from human annotators where our
model achieves 73.3% success rate. The full list can be found in Tab. 4.

2.4 Network Architectures and Hyperparameters

We use a convolutional neural network for image encoding, as shown in Tab. 5. We use fully
connected layers for joint encoders, target position decoders, displacement decoders and controllers,
which are shown in Tab. 6, Tab. 7 and Tab. 8 respectively. We use 4 eight-head attention layers of
192 dimensions for modality fusing and interaction. The Adam optimizer with learning rate of 1e-4
is adopted for training.

Table 5: Image Encoder Architecture

Layer Kernel Channel Stride Padding

CNN 7 64 1 3
CNN 3 128 2 1
CNN 3 256 2 1
CNN 3 256 2 1
ResBlock 3 256 1 1
ResBlock 3 256 1 1
ResBlock 3 256 1 1

Table 6: Joint En-
coder Architecture

Layer Dimension

FC 256
FC 128
FC 192

Table 7: Position and
Displacement Decoder
Architecture

Layer Dimension

FC 128
FC 9

Table 8: Controller Ar-
chitecture

Layer Dimension

FC 2048
FC 1024
FC 256
FC 120

Table 9: Synonyms Used in Test

Milk Carton Bottle Coke Cube Bread

skimmed milk package soda coke zero brick cinnamon roll
goat milk carton Perrier round container block sourdough
milk case tonic can cuboid brown bread
white packet flask coca cola bar loaf
milk parcel pitcher red soda solid lump naan
cream carton container cola rectangular object rye bread
cream package decanter metal container solid piece toast
heavy milk carton vial small soft drink slab gluten free food
almond milk box vessel fizzy drink cuboidal slice light bread
goat milk packs cruet diet coke square object food

References
[1] O. Khatib. The potential field approach and operational space formulation in robot control. In

Adaptive and learning systems, pages 367–377. Springer, 1986.

[2] F. Chen, X. Wang, Y. Zhao, S. Lv, and X. Niu. Visual object tracking: A survey. Computer
Vision and Image Understanding, page 103508, 2022.

7


	Additional Experiments
	Task Execution under Occlusion
	Task Execution with Unseen Colors
	Task Execution with Scaled Objects
	Task Execution under Unseen Synonyms
	Task Execution with Unseen Objects
	Obstacle Avoidance: Adding New Modules to the Hierarchy

	Training Details
	Input Embeddings, Tokens and Register Slots
	Supervision Labels
	Data Collection and Labelling
	Network Architectures and Hyperparameters


