
A Additional Implementation Details

We describe all the details of our model implementation aside from the ones mentioned in main text.

A.1 Model Details

Region and Context Features Computation. For encoding images, we use ResNet-18 [46] as the
backbone. To obtain a spatial feature map with sufficient resolution for feature pooling, we remove
the last four layer of ResNet-18, it produces a spatial feature map with the size of 16 ⇥ 16 and we
perform ROI Align [17] to get the pooled features of size 6⇥ 6. In order to map the pooled features
into the same size as input tokens, we add a linear layer to project the pooled feature. We already
mentioned in the main text that we obtain global context featurex by passing the spatial feature maps
through a Spatial Softmax layer. For eye-in-hand images, we use a Resnet-18 backbone followed by
Spatial Softmax to get eye-in-hand features. We use one linear layer to map from robots’ states to
proprioceptive features.

Sensor Modalities All the models including VIOLA use the same set of sensor modalities, which
are the RGB images from the workspace camera, RGB images from the eye-in-hand camera, joint
configuration, and binary gripper state. We use the eye-in-hand camera following the same setup
as in the previous work on imitation learning for manipulation [27]. This camera view has been
empirically shown to contribute significantly to the performance of visuomotor policies [27, 59, 60].

Neural Network Details. We use a standard Transformer [22] architecture in our paper. We use 4
layers of transformer encoder layers, and 6 heads of the multi-head self-attention modules. For the
two-layered fully connected networks, we use 1024 hidden units for each layer. For GMM output
head, we choose the number of modes for gaussian mixture model to be 5, which is the same as in
Mandlekar et. al. [27].

Positional Encoding. We provide details about both positional features for regions and the tem-
poral positional encoding. For all the encodings, they have the same dimensionality D as the in-
put tokens. For a region’s positional feature, we compute it based on its bounding box positions
bboxpos = (x0, y0, x1, y1):

PE(bboxpos, 4i) = f(
x0

104i/D
)

PE(bboxpos, 4i + 1) = f(
y0

10(4i+1)/D
)

PE(bboxpos, 4i + 2) = f(
x1

10(4i+2)/D
)

PE(bboxpos, 4i + 3) = f(
x2

10(4i+3)/D
)

and f is the sine function when i is even and cosine function when i is odd.
For computing temporal positional encoding, we follow the equation for each dimension i in the
encoding vector at a temporal position pos:

PE(pos, 2i) = sin (
pos

102i/D
)

PE(pos, 2i + 1) = cos (
pos

10(2i+1)/D
)

We choose the frequency of positional encoding to be 10 that is different from the one in the original
transformer paper. This because our input sequence is much shorter than those in natural language
tasks, hence we choose a smaller value to have sufficiently distinguishable positional features for
input tokens.

Data Augmentation We applied both color jittering and pixel shifting to VIOLA and all the base-
lines. As for random erasing, it is used for VIOLA and its variants. We applied random erasing to
VIOLA to prevent the policy from overfitting to region proposals. We did not apply this augmen-
tation for baseline behavioral cloning models such as BC-RNN as it yields lower performance than
without using random erasing.

13

For random erasing, we use the open-sourced Torchvision function whose parameters are: p = 0.5,
scale = (0.02, 0.05), ratio = (0.5, 1.5), value = random.
For applying color jittering to the data, we apply color jittering with brightness=0.3, contrast=0.3,
saturation=0.3, hue=0.05 on 90% of the trajectories. We keep 10% unchanged so that we still keep
the main visual cue patterns from demonstrations. We do 4 pixel shifting as in Mandlekar et al. [27].
Aside from data augmentation on images, we also add very small gaussian noise on the proposal
positions to add more variety on proposal data.

Training Details. In all our experiments of VIOLA, we train for 50 epochs. We use a batch
size of 16 and a learning rate of 10�4. We use negative log likelihood as the loss function for action
supervision loss since we use a GMM output head. As we notice that validation loss doesn’t correlate
with policy performance [27], we use a pragmatic way of saving model checkpoint, which is to save
the checkpoint that has the lowest loss over all the demonstration data at the end of training. As
we use e Transformer as a model backbone, we apply several optimization technique that is suitable
for training transformer. We use AdamW optimizer [] along with cosine annealing scheduler of
learning []. We also apply gradient clip [22]: 10 for all tasks but 0.1 for the two long-horizon tasks,
namely BUDS-Kitchen and Make-Coffee.
For training baselines, we take the general configs from Mandlekar et al., which is 500 epochs for
BC and 600 epochs for BC-RNN, and follow the same model saving criteria as ours. The benchmark
study of approaches in Mandlekar et al. [27] report the highest performance of all checkpoints across
training, as the loss values do not correlate with policy performance. We recognize that this criteria
can inflate the model performance, and it’s not pragmatic to evaluate all model checkpoints during
real robot experiments. Therefore, we adopt the saving criteria that is same as Zhu et al. [4], where
the policies that have lowest training loss on demonstration datasets are taken. As we show in
our experiments, our training procedure of VIOLA can easily find a good-performance checkpoint
consistently across simulation and real-world.

B Additional Experiments

Here we compile two additional experiments to support some of our design.

B.1 Choice of K in simulation

While simulation images have a huge domain gap from real world, we find that RPN can still localize
objects on simulated images given its good priors of ”objectness”. Here we show the preliminary
experiment to decide to choose K = 20 in simulation experiments. We quantitatively compute the
coverage of object proposals from RPN over objects in the scene (including robots) and we evaluate
the coverage with recall rates of object proposals. The recall rates in simulation is easy to compute
as ground-truth object bounding boxes are easily accessible in simulation. We iterate K from 5 to
40 with an interval of 5. We compute recall rates of proposals using IoU= 0.5, meaning that we
consider an object covered if IoU of a proposal bounding box and the ground-truth bounding box is
larger than 0.5. We can see that when K = 20, we have recall rates that is larger than 70%, which
is considered large coverage. Moreover, we can see that when K is larger than 20, the marginal
increase of recall rates is only 1% every 5 more proposals. So we choose K = 20 in our simulation
experiments.

K 5 10 15 20 25 30 35 40

Sorting 59.0 69.0 72.0 74.0 75.0 76.0 77.0 77.0
Stacking 67.0 74.0 77.0 79.0 80.0 81.0 82.0 83.0
BUDS-Kitchen 72.0 81.0 83.0 84.0 85.0 86.0 86.0 87.0

Table 3: Recall rates (%) of object proposals from pre-trained RPN on all simulation environments with
IoU= 0.5.

B.2 Visual Feature Design

In our work, we learn a spatial feature map from scratch for extracting visual features, aiming to
learn actionable visual features that are informative for continuous control. To show the importance
of learning actionable visual features from scratch and that pre-trained visual features in visual tasks

14

are not sufficient for control tasks, we conduct an ablative experiment by comparing our model with
two variants that use the pre-trained feature map from Feature Pyramid Network (FPN) in RPN
without fine-tuning, and fine-tuning. The result is presented in Table 4. The table suggests that
directly using pre-trained spatial feature map without fine-tuning are overall worse in performance
than learning from scratch. And fine-tuning the feature map on the downstream tasks doesn’t give a
matching performance as learning from scratch. This shows the importance of optimizing actionable
visual-features for manipulation tasks. Fine-tuning FPN gives an increase in performance to almost
match our original model, but doesn’t outperform it. This shows that pre-trained visual features are
not critical to the model performance, not to mention that the trainable parameters in FPN takes
about 200 MB while ours convolutional encoder for spatial feature maps only take 14 MB trainable
parameters.

Models Canonical Placement Distractor Camera-Jitter

VIOLA(From Scratch) 87.6 ± 1.1 68.3 ± 1.5 74.4 ± 5.7 50.7 ± 0.6
w/o Fine-tuned FPN 79.7 ± 1.5 52.7 ± 1.2 61.8 ± 3.3 53.7 ± 1.8
w/ Fine-tuned FPN 84.9 ± 1.1 60.4 ± 78.4 76.7 ± 5.1 46.7 ± 1.7

Table 4: Comparison among models that use spatial feature maps learned from scratch, pre-trained spatial
feature masks without fine-tuning, and with fine tuning.

C Environment Details

Here we describe the details of environments, including how the testing variants are defined.

Overall setup We use a 7-DoF Franka Emika Panda arm in all tasks, and we use Operational
Space Controller [61] for end-effector control, a binary command control for parallel-gripper 20Hz.
We use Kinect Azure as the workspace camera and Intel Realsense D435i as the eye-in-hand camera.

Task Details For the Sorting task, the robot needs to pick up two boxes successively and place
them together in the sorting bin. For the Stacking task, the robot needs to stack the same type of
boxes in the target region. For the BUDS-Kitchen task, the robot needs to place the bread in the pot
and serve it after putting on the stove, and turn off the stove after serving. In Dining-PlateFork,
the robot needs to push the plate into the target region and place the fork next to the plate. The
Dining-Bowl task requires the robot to push the turntable around and pick up the bowl and place
it on the plate. In Make-Coffee, the robot is tasked with an entire coffee-making procedure from
opening up the k-cup holder to pushing the button to activate the espresso machine.

Data Collection We use a 3Dconnexion SpaceMouse to collect 100 human-teleoperated
demonstrations for each simulation task and 50 for each real-world task. We apply color augmenta-
tion [62, 63] to the visual observations in demonstrations to increase the visual diversity in datasets,
making learned policy robust to visual cue variations due to surrounding lighting conditions.

Task Success Determination The success rates of models are computed based on the success
of all evaluated rollouts. In the simulation, the success is determined by whether the object states
in the simulator meets the pre-programmed goal function. For example, in **Sorting** task, the
goal function is programmed to check if the two boxes are both in the bin, and the simulation
environment decides a rollout is successful only if the goal function returns true value. In the real
world, the success of a rollout is determined by whether the objects are in the goal configuration,
which is implicitly specified in the given demonstrations. We have added this detail in Appendix C
(see Ln 588 - Ln 592) to clarify this point.

Evaluation Horizons Based on the collected demonstrations, we determine the evaluation hori-
zons of our simulation tasks in the case of Canonical, which are: 1) 1000 for Sorting, 800 for
Stacking, and 1500 for BUDS-Kitchen. And for evaluating in testing variants, we have 200 steps
more than in Canonical for each task.

15

	Introduction
	Related Work
	Approach
	Problem Formulation
	Object-Centric Representation
	Transformer-based Policy

	Experiments
	Experimental Setup
	Experiment Results.

	Conclusion
	Additional Implementation Details
	Model Details

	Additional Experiments
	Choice of K in simulation
	Visual Feature Design

	Environment Details

