
Supplementary Material

A Data Recording Platform

Below (Fig. 6), we schematically illustrate the data recording platform used for recording our
dataset. It features a 32-beam Velodyne LiDAR mounted on top of the robot, a tilting LiDAR in
the front, a Stereo RGB camera facing forward, and an IMU unit. The total height of the robot is
approx. 1.80 m, offering camera viewpoints similar to those of a pedestrian. A photograph of the
platform is redacted to reduce the risk of submission anonymity violation.

Figure 6: Our robotic data recording platform is equipped with LiDAR, RGB vision, and an IMU
unit.

B Trajectory Projection

In the following, we illustrate the precise scheme of pixel-annotations based on a list of poses.
These poses may be the robot ego-poses or the observed tracklets of other traffic participants. Fig. 7
illustrates the geometric construction of the tracklet annotations from a list of poses. Adjacent poses
(pi, pi+1) are connected and form a 3D surface.

We illustrate a rendered ego-trajectory surface in Fig. 8. The trajectories of observed traffic partici-
pants are rendered using the same method. The object base width (i.e. footprint) changes depending
on the type of traffic participant.

C Obstacles

We found that the stixel-based approach described in Sec. 3.1 leads to some false-negative Obsta-
cle annotations. We, therefore, additionally leverage the bounding boxes obtained from our object
tracker and mark all pixels within detected bounding boxes as obstacles.

11



D MESH RENDERING 12

Figure 7: Geometric construction of the tracklet annotations from a list of poses. The scalar b
denotes the object base width.

Robot Base Poses

LiDAR Frame

Camera Frame

Annotated Region

Figure 8: Visualization of the one specific LiDAR coordinate frame and camera coordinate frame,
and multiple object base poses translated to the ground plane. We visualize the robot trajectory as a
green surface.

D Mesh Rendering

To render the semantic mesh generated with our prediction aggregation scheme, we use the py-
OpenGL framework. Below, we list an exemplary code snippet for initializing the shaders required
to render a mesh into an image and setting parameters for the virtual camera capturing the mesh. We
use a flat shader which does not consider any lighting effects, thus leading to monochrome surfaces
for each surface types. When training a model on this data, the mesh colors can be mapped to a
one-hot class encoding for each pixel.

1 window = glfw.create_window(self.w, self.h, "Projection", None , None)
2 glfw.make_context_current(window)
3

4 VERTEX_SHADER = """
5 #version 330
6 in vec3 position;
7 in vec3 color;
8 out vec3 newColor;
9

10 uniform mat4 projection;
11 uniform mat4 world_2_cam;
12

13 void main() {
14 // gl_Position = projection * vec4(position , 1.0f);
15 gl_Position = projection * world_2_cam * vec4(

position , 1.0f);
16 newColor = color;
17 }
18 """
19



E DATASET DETAILS 13

20 FRAGMENT_SHADER = """
21 #version 330
22 in vec3 newColor;
23 out vec3 outColor;
24 void main() {
25 outColor = floor(newColor * 1.99);
26 }
27 """
28 shader = OpenGL.GL.shaders.compileProgram(OpenGL.GL.shaders.

compileShader(VERTEX_SHADER , GL_VERTEX_SHADER),
29 OpenGL.GL.shaders.

compileShader(FRAGMENT_SHADER , GL_FRAGMENT_SHADER))
30 VBO = glGenBuffers (1)
31 glBindBuffer(GL_ARRAY_BUFFER , VBO)
32 glBufferData(GL_ARRAY_BUFFER , vertices.itemsize * len(vertices),

vertices , GL_STATIC_DRAW)
33

34 # Create EBO
35 EBO = glGenBuffers (1)
36 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER , EBO)
37 glBufferData(GL_ELEMENT_ARRAY_BUFFER , indices.itemsize * len(indices),

indices , GL_STATIC_DRAW)
38

39 # get the position from shader
40 position = glGetAttribLocation(shader , ’position ’)
41 glVertexAttribPointer(position , 3, GL_FLOAT , GL_FALSE , vertices.

itemsize * 6, ctypes.c_void_p (0))
42 glEnableVertexAttribArray(position)
43

44 # get the color from shader
45 color = 1
46 glBindAttribLocation(shader , color , ’color ’)
47 glVertexAttribPointer(color , 3, GL_FLOAT , GL_FALSE , vertices.itemsize

* 6, ctypes.c_void_p (12))
48 glEnableVertexAttribArray(color)
49

50 glUseProgram(shader)
51 glClearColor (0.0, 0.0, 0.0, 1.0)
52 glEnable(GL_DEPTH_TEST) # avoids rendering triangles behind other

triangle
53

54 # specify virtual camera intrinsic parameters "camera_intrinsics"
55 proj_loc = glGetUniformLocation(shader , "projection")
56 glUniformMatrix4fv(proj_loc , 1, GL_FALSE , camera_intrinsics)
57

58 # set virtual camera pose according to actual robot pose "world_2_cam"
59 world_2_cam_loc = glGetUniformLocation(self.shader , "world_2_cam")
60 glUniformMatrix4fv(world_2_cam_loc , 1, GL_FALSE , world_2_cam.T)

Listing 1: OpenGL Mesh Shader initialization and setting of virtual camera parameters

E Dataset Details

In Tab. 3, we list the duration of each of the data collection runs in our Freiburg Pedestrian Scenes
dataset.

E.1 Ground Truth BEV Semantic map

As part of our Freiburg Pedestrian Scenes dataset, we also annotated major sections of traversed
regions from a BEV perspective. The rendered annotations are shown in Fig. 9. This map can serve
as a reference to aggregated maps for qualitative and quantitative evaluations.



E DATASET DETAILS 14

Table 3: Freiburg Pedestrian Scenes dataset collection runs
Collection Run Name Duration [min]

Run01 36.3
Run02 27.1
Run03 6.1
Run04 192.8
Run05 70.3
Run06 23.5
Run07 5.3
Run08 3.1
Run09 2.3
Run10 1.4
Run11 6.8
Run12 6.6
Run13 17.5
Run14 57.9
Run15 20.7
Run16 16.5
Run17 114.9
Run18 119.0
Run19 37.1
Run20 14.9
Run21 41.7
Run22 6.6
Run23 17.5

Figure 9: Visualization of our BEV map annotations superimposed on an aligned RGB satellite
image layer. Best viewed zoomed in. Color-codes for the semantic classes are: Road, Pedestrian,

Crossing.



F TRAINING DETAILS 15

Figure 10: Aggregated 3D ground map, illustrating a non-planar surface structure in the pedestrian
area to the left of the image and in the obstacles present on both sides of the pedestrian pathway.
Color code: Road, Pedestrian, Crossing, Obstacle.

E.2 On the Fraction of Annotated Pixels

Using only the ego-trajectory, we were able to label 53% of all image pixels with the classes Pedes-
trian or Obstacle. Using additional tracklets of other traffic participants, we were able to label 70%
of all pixels with the classes Road, Crossing, Pedestrian, and Obstacle. Finally, using our mesh
aggregation scheme we were able to further increase the number of labeled pixels. Concretely, With
our aggregated map, we were able to label 87% of all pixels.

E.3 Visualization of 3D surface map

For illustrative purposes, we show an exemplary aggregated map in Fig. 10, including static ob-
stacles close to the ground surface (red color). It features multiple regions of non-planar ground
surfaces, showing our ability to model non-flat terrains with our approach.

F Training Details

We train our models using the standard per-pixel weighted cross-entropy loss formulation:

L = −
∑
k

αky log ŷk, (4)

where αi denotes the loss weight for class k, ŷi denotes the model class prediction, and yi denotes
the ground-truth class. For our experiments we select the following loss class weights: αObstacle =
0.2, αRoad = 1, αPedestrian = 1, αCrossing = 5, and αUnknown = 0.

We use the Adam optimizer with an initial learning rate of α = 0.001, and parameters β0 = 0.9 and
β1 = 0.999. The learning rate is adjusted according to an exponential decay with a decay rate of
0.9.

G Evaluation of Aggregated BEV Maps

In order to quantify the validity of the aggregated maps, we evaluate the IoU score, precision, and
recall on a per-map basis. Tab. 4 lists the metrics for five regions while Fig. 11 visualizes the
aggregated maps and their corresponding aligned ground-truth annotations.



H PATH PLANNING EXPERIMENTS 16

Table 4: BEV map performance evaluation for five maps. We denote all metrics in %.
Map Name Metric Road Pedestrian Crossing
Map 0 IoU 17.3 22.4 25.4

Precision 58.0 57.8 34.6
Recall 18.2 23.7 33.4

Map 1 IoU 0.0 55.0 0.0
Precision 0.0 57.6 0.0
Recall 0.0 55.0 0.0

Map 2 IoU 50.2 53.9 2.6
Precision 57.9 41.3 100.0
Recall 50.2 54.9 2.63

Map 3 IoU 4.0 62.8 21.2
Precision 44.0 69.2 70.0
Recall 40.2 62.9 22.0

Map 4 IoU 24.6 28.2 5.9
Precision 74.0 64.3 8.4
Recall 25.1 30.5 9.2

We observe that for most regions, the predicted semantic ground class overlaps with the actual
ground class. This hold true even for very complex environments such as the intersection depicted
in map 0 and map 3. Furthermore, in most scenarios, the clear border between class Predestrian and
Road is prominent, indicating a clear distinction between these two classes. It is crucially important
for an autonomously operating robot to have a robust distinction between sidewalks and roads in
order to navigate safely. We also observe misclassifications of surfaces, prominent in map 4. Note
that the incompleteness of our aggregated maps stems from the fact that not all ground surfaces
visible in the annotated map were visible in the onboard robot camera during the data collection
runs.

The quantitative evaluation underlines these findings. Please note that the IoU and recall values are
of limited significance for evaluating the aggregated maps due to the incompleteness of these maps.
The precision metric, in contrast, is more meaningful in this context. We find that for most maps,
decent precision values (values generally above 50 %) are obtained, indicating that when a surface
patch is observed in the robot camera, the prediction quality for this patch is high.

H Path Planning Experiments

In addition to the quantitative IoU evaluation of the aggregated BEV maps, we conduct additional
path planning experiments. One intended use-case of our map aggregation scheme is the ability
for an autonomous robots to perform high-level planning on the aggregated semantic maps. We,
therefore, convert the semantic class map into a costmap where each class is associated with a
traversability cost. Since our robot is supposed to operate and navigate alongside pedestrians, we
associate high cost with the classes Road and Unknown, while we associate low cost with the classes
Pedestrian and Crossing. Finally, we smooth the produced costmap with a Gaussian filter to encour-
age the search algorithm to follow pathways that are centered within a given corridor of low-cost
traversability such as sidewalks. We subsequently perform an A* search on the costmap to find opti-
mal routes between a start position and a goal position. Fig. 12 illustrates three exemplary planning
tasks in complex urban areas.

The results show that it is possible to use the semantic map as a data source for a planning algorithm.
The planned path follows legal pathways through complex surroundings such as street crossings and
sidewalks. As long as the SLAM solution to a given data collection run is accurate, large-scale
maps such as shown in 12, rightmost map, are possible to generate. Fig. 12, leftmost map, shows
an interesting failure case where the map does not contain a street crossing that would shorten the
overall route length from start position to goal position (indicated with a green circle). In this case,
the map contains a longer but also safe route across the street closer to the building where the street
surface is correctly classified as a pedestrian area (it turns into a pedestrian area after the crossing).



H PATH PLANNING EXPERIMENTS 17

map 0

map 1

map 2

map 3

map 4

Figure 11: Visualization of ground-truth map annotations obtained from manual labeling efforts
(left column) and corresponding crop of the aligned aggregated semantic map obtained with our
approach (right column).



I EXEMPLARY VISUALIZATION OF TRACKLET ANNOTATIONS 18

Figure 12: Path planning experiments on three exemplary complex urban areas. We superimpose the
color-coded semantic map onto an aligned satellite image. The start and goal positions are indicated
with red and white flags, respectively. The planned route according to the semantic map is indicated
as a red line. Best viewed zoomed in. Color code: Road, Pedestrian, Crossing.

Figure 13: Exemplary visualizations of annotation masks obtained with our tracklet-based annota-
tion scheme. Color code: Road, Pedestrian, Crossing, Obstacle.

I Exemplary visualization of Tracklet Annotations

In Fig. 13, we illustrate exemplary semantic annotations obtained from the projected tracklets in
each scene (dataset D0).

J Exemplary visualization of Semantic Map Projections

In Fig. 14, we illustrate exemplary map projections obtained from the aggregated surface maps
in each scene (dataset D1). Note how the number of labeled pixels is increased compared to the
annotations in Fig. 13.



J EXEMPLARY VISUALIZATION OF SEMANTIC MAP PROJECTIONS 19

Figure 14: Exemplary visualizations of annotation masks obtained with our map reprojection anno-
tation scheme. Note that the yellow-colored ego-trajectory is superimposed on the projected map
for visualization purposes and is not used to provide the annotations for the model. Color code:
Road, Pedestrian, Crossing, Obstacle.


	Data Recording Platform
	Trajectory Projection
	Obstacles
	Mesh Rendering
	Dataset Details
	Ground Truth BEV Semantic map
	On the Fraction of Annotated Pixels
	Visualization of 3D surface map

	Training Details
	Evaluation of Aggregated BEV Maps
	Path Planning Experiments
	Exemplary visualization of Tracklet Annotations
	Exemplary visualization of Semantic Map Projections

