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Abstract

We introduce the Singular Value Representation
(SVR), a new method to represent the internal
state of neural networks using SVD factorization
of the weights. This construction yields a new
weighted graph connecting what we call spectral
neurons, that correspond to specific activation
patterns of classical neurons. We derive a precise
statistical framework to discriminate meaningful
connections between spectral neurons for fully
connected and convolutional layers. To demon-
strate the usefulness of our approach for machine
learning research, we highlight two discoveries
we made using the SVR. First, we highlight the
emergence of a dominant connection in VGG
networks that spans multiple deep layers. Sec-
ond, we witness, without relying on any input
data, that batch normalization can induce signif-
icant connections between near-kernels of deep
layers, leading to a remarkable spontaneous spar-
sification phenomenon.

Code: A Python implementation of the SVR can be
found at https://github.com/danmlr/svr

1 INTRODUCTION

1.1 Motivation

Following the motivation for the first perceptron by Rosen-
blatt (1958), artificial neural networks are often introduced
as a stylized version of their biological counterpart. This
has led many to represent neural networks by the graph
of neurons connected by edges whose weights correspond
to tensor entries. This famous representation provides an
overview of calculations performed by the network and
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clearly highlights the role of activation functions. However,
this representation fails to identify collective patterns in
neural activations. We instead argue that the focus should
be shifted to the successive linear maps which define the
network. We propose to use Singular Value Decomposi-
tion (SVD) of those maps to identify meaningful input and
output directions corresponding to collective activation pat-
terns of neurons. We further investigate the interaction of
those directions across deep layers, which yields a new
graph representation of neural networks. This graph pro-
vides a high-level overview of the network that allows to
witness the emergence of global phenomenons across deep
layers as highlighted in the last section.

1.2 Related Work

Visualizing the internal computational pipeline of neural
networks has been widely studied. However, most ap-
proaches rely on studying the activations induced by input
data as it flows through the network (Chung et al., 2016;
Kahng et al., 2018; Halnaut et al., 2020). Moreover, those
approaches mainly focus on creating user-friendly inter-
faces that are not suited for theoretical analysis. On the
other hand, SVD factorization of weight tensors has also
been widely explored for its potential to compress neu-
ral networks while still maintaining good accuracy lev-
els (Xue et al., 2013; Denton et al., 2014; Cheng et al.,
2017). More specifically, the factorization technique we
use for convolutional layer has already been described in
Denton et al. (2014); Jaderberg et al. (2014); Idelbayev and
Carreira-Perpiñán (2020); Wen et al. (2017); Liebenwein
et al. (2021) but only for compression purposes. The orig-
inality of our approach lies in the use of this compression
technique to identify local structure accross layers.

2 THE SVR FOR FULLY CONNECTED
LAYERS

Definition of SVD: See Stewart (1993) for a historical
overview. The singular value decomposition (SVD) allows
factoring any real matrix, in the form A = USV T where
U and V are matrices whose columns are orthonormal vec-

https://github.com/danmlr/svr
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tors1 and where S is a diagonal matrix with strictly positive
entries in decreasing order that are called singular values.

2.1 Intuitive Explanation

The SVD of a matrix can be interpreted as a computational
pipeline. It breaks down into 3 parts the action of a lin-
ear map: in a first stage, orthogonally independent features
are computed by dotting the input with the columns of V .
Those features are then scaled according to their singular
values (S). The output is finally obtained by an orthogonal
base change2. The k-th column of V and the k-th column
of U can be seen respectively as the input and output repre-
sentation of the same underlying object which we call the
k-th spectral neuron3. Each spectral neuron thus has both
an input and an output representation which correspond
to collective activation patterns of classical neurons in re-
spectively the input and output layer. The idea behind the
SVR is that the relation between spectral neurons in con-
secutive layers captures key insights about deep informa-
tion processing.

2.2 Formal Definition

A simple fully connected and bias-free neural network
can be seen as a sequence of linear maps (Ai)0≤i≤n in-
tertwined with a non-linear activation function ψ applied
to every vector component (ReLU, Sigmoid, hyperbolic
tangent etc.). The network corresponds to the composi-
tion: (f ◦An ◦ ψ ◦An−1 ◦ ... ◦ ψ ◦A0) where f is the fi-
nal function applied to obtain the output (often argmax for
a classification task). The SVR of a fully connected neural
network can be formally defined as a graph:

Vertices (Spectral Neurons) Every linear map can be
factored using SVD:Ai = UiSiV

T
i . The k-th spectral neu-

ron in layer i is defined by the triplet:

((Ui) ,k, (Si)k, (Vi) ,k)

where (Ui) ,k (resp. (Vi) ,k) is the k-th column of Ui (resp
Vi) and where (Si)k ∈ R is the k-th singular value of Ai.

Edges (Connecting Spectral Neurons) The matrix
|V T

i+1Ui|2, whose entries are the square of the entries of
the matrix V T

i+1Ui, can be seen as a weighted adjacency
matrix between the spectral neurons of layer i and those
of layer i + 1. Each coefficient in this matrix correspond

1But not necessarily a base. If the linear map has lower output
dimension than input dimension, V will not be a square matrix.

2This part may seem obvious to the reader, however this point
of view is key to understand the generalization to convolutional
layers in the next sections

3The authors are aware that the term spectral is slightly mis-
used here but we found it to be less confusing than ”singular neu-
rons”.

to an edge weight which indicates the interaction intensity
between two spectral neurons respectively in layer i and
layer i+ 1.

This structure only captures the information flow between
spectral neurons and cannot be used for calculations,
as the non-linearity ψ is omitted in this representation4.
This method may seem overly simple to describe neural
networks, as it amounts to performing a locally linear
approximation between consecutive layer by removing
the non-linearity. It is therefore quite surprising that this
method allows to witness the emergence of meaningful
global structures across layers, as we shall see in the next
sections.

Activations and Spectral Activations: The activation
of neurons ((Xi)1≤i≤n+1) induced by an input X0 is the
set of vectors obtained after each linear map Xi+1 :=
(Ai ◦ ψ ◦Ai−1... ◦A0) (X0). It is also possible to define
activation over spectral neurons by applying the orthonor-
mal projection induced by the matrices (Vi)0≤i≤n. The
spectral activations (Yi)0≤i≤n are thus given by: Yi :=(
V T
i ◦ ψ

)
(Xi). This is summarized in Figure 1.

2.3 Elementary Properties

Upper Bound on Coefficients Each coefficient in the ad-
jacency matrix |V T

i+1Ui|2 is the square of the scalar product
between two normal vectors : a column of Vi+1 and a col-
umn of Ui. Each coefficient is thus bounded by 1 thanks to
the Cauchy-Schwarz inequality.

Positive Scale Invariance of Adjacency Matrices The
adjacency coefficients in the SVR are invariant under scal-
ing of the weights of the neural network by a positive scalar.
That is, for all sequence (λi)i, with λi > 0, the fully con-
nected networks associated to the collections of linear maps
(Ai)i and (λi · Ai)i have the same SVR adjacency matri-
ces. This is simply because singular values are not taken
into account. This is especially remarkable because most
classification networks using ReLU functions also exhibit
this property (Armenta et al., 2020): scaling their weights
by a positive scalar will not affect their behavior. This is
due to the fact that both the linear maps of the network and
the ReLU function are equivariant under multiplication by
a positive scalar whereas the last layer is often invariant to
such a scaling (argmax for example).

2.4 Statistical Significance Threshold

The adjacency matrix between two consecutive linear maps
Ai and Ai+1 is given by |V T

i+1Ui|2. It is worth asking

4If we let n denote the output dimension of Ui, the adjacency
matrix would not be changed if ψ was replaced by Q ◦ ψ ◦ QT

where Q ∈ On(R).
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Figure 1: SVR Diagram Overview

which coefficients in this matrix are significant and which
are simply induced by noise. Since each coefficient in this
matrix is the square of the scalar product between two unit
vectors, a simple probabilistic framework can be used to
obtain a threshold above which coefficients are considered
significant within a certain confidence level. The essen-
tial question is, if we draw randomly two independent vec-
tors X,Y ∼ U(Sn−1) according to the uniform distribu-
tion on the sphere in Rn, what is the distribution of the
square of their scalar product ⟨X,Y ⟩2 ? The expected value
can be computed by noticing that rotational invariance im-
plies that the distribution of ⟨X,Y ⟩ is the same than that
of ⟨X, e1⟩ = x1 where e1 is the first vector of the canon-
ical base. Exploiting permutation invariance between the
coordinates yields the result: 5

E(⟨X,Y ⟩2) = E(x21) =
1

n

n∑
i=1

E(x2i )

=
1

n
E

(
n∑

i=1

x2i

)
=

1

n
.

Using this scaling, we can gain a deeper understanding of
the distribution of ⟨X,Y ⟩2. The following result yields in
the limit n −→ +∞ a rescaled χ2(1) distribution (which
is simply the distribution of a squared normal random vari-
able).

Theorem 2.1. (Borel, 1914; Diaconis and Freedman,
1987) If X ∼ U(Sn−1) and Y ∈ Sn−1 then we have the
convergence in distribution:

n⟨X,Y ⟩2 =⇒
n−→+∞

χ2(1).

Proof. See Appendix, section A.3.

5Using similar symmetry techniques, it is possible to com-
pute all moments of ⟨X,Y ⟩. For the fourth moment, we get (see
Proposition A.1):

E(⟨X,Y ⟩4) = 3

n2 + 2n
≃

n→+∞
3 E(⟨X,Y ⟩2)2

Building on this analysis, we will now assume as a null
hypothesis that ⟨X,Y ⟩2 ∼ 1

nχ2(1).

If we now let n be the dimension of the columns of Ui

(and Vi+1) and denote by Qn(p) the quantile function of
1
nχ2(1), we can consider that all coefficients of |V T

i+1Ui|2
with a value above Qn(p) are significant with a probability
p confidence. We provide computation of higher moments
of ⟨X,Y ⟩ in Appendix A.1.

3 BLOCK MATRIX STRUCTURE

3.1 Overview

We use a simple setup to illustrate what has been described
above. We train for 5 epochs a fully connected neural net-
work with ReLU activations to classify the MNIST dataset
(reaching 94% test accuracy) (LeCun and Cortes, 2005).
We use the architecture: [28 × 28, 40, 40, 40, 10] (number
of neurons in each layer) with no bias.

Figure 2a and 2b depict respectively the SVR representa-
tion of the network before and after training. The y-axis
corresponds to singular values and the x-axis to the layers.
Only edges which are considered significant are depicted,
and their color indicates the magnitude of their weight. We
use a probability threshold p = 0.15 which means that in
a random setting, only 15% of edges would be shown. Re-
member that each layer on this graph represents a linear
map of the network, we thus have 4 layers corresponding
to the maps: R28×28 −→ R40,R40 −→ R40,R40 −→ R40

and R40 −→ R10. The maximal rank of each of those maps
is 40 except for the last one which is at most of rank 10.
Since each vertex represents a singular value in the SVD of
a linear map, we have 40 vertices in the layers 0,1,2 and 10
vertices in layer 3.

We can notice that the SVR of a trained network yields a
graph with a very specific structure compared to a random
baseline. More specifically, we observe the emergence of
highly significant connections between spectral neurons of
high singular values. The bottom part of the graph appears
to be randomly connected with less significant connections.
This double structure in the graph becomes even clearer if
one has a look at the adjacency matrices that connect con-
secutive layers (Figure 3). We can observe a 4 block struc-
ture which sharply separates two types of spectral neurons.
If we prune the spectral neurons in the bottom part (pre-
cisely defined in section 3.2), which amounts to perform-
ing an SVD compression of the layers, we do not observe
any changes in the network’s test accuracy beyond statisti-
cal fluctuations of the order of 1%. This suggests that the

6The color of each vertex measures the deviation of the associ-
ated column in the next adjacency matrix to a random distribution.
More precisely, it corresponds to the maximum deviation of the
cumulative sum of scalar products to the cumulative sum of 1/n.
The same idea is used to describe internal dimensions below.
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(a) Before Training - Randomly Initialized Network (b) After Training (5 Epochs on MNIST)

Figure 2: SVR of Neural Network Before (a) and After (b) training - architecture: [28× 28, 40, 40, 40, 10] 6

. Legend: gray-scale of edges correspond to intensity of entries of |V T
i+1Ui|2; spectral neuron color intensity is explained

at the end of section 3.2

Figure 3: Adjacency Matrix Between Layer 1 and 2 in the
Previous SVR Graph - Architecture:

[28× 28, 40, 40, 40, 10]

network only uses a small fraction of all the dimensions
available, which is the key idea behind low-rank matrix
factorization (Denton et al., 2014; Cheng et al., 2017; Yu
et al., 2017). The top-structure of the SVR graph could
also be viewed as an internal trained subnetwork which is
very reminiscent of the lottery ticket hypothesis (Frankle
and Carbin, 2019).

(a) First Adjacency Matrix (b) Second Adjacency Matrix

Figure 4: Internal Dimensions Used as Functions of n
(Averaged over 20 Runs)

3.2 Internal Dimensions

One may wonder if the dimensions of the top-left block in
Figure 3 change if the number of neurons (i.e. the num-
ber of available dimension) changes. Does the network use
more space if we give it more space ?
We first have to precisely define how to compute the dimen-
sion of the top-left block. Let us consider the adjacency
matrix A associated with two consecutive linear maps in a
network f : Rm −→ Rn and g : Rn −→ Rq . Let us call B
the matrix with the same shape as A and for which

Bi,j =
∑
k≤i

∑
l≤j

Ak,l. (1)

One can provide a geometrical interpretation for coeffi-
cients of B. If f has left singular vectors U1, ..., Um and
g has right singular vectors V1, ..., Vq the adjacency coef-
ficient is given by Ai,j = ⟨Vi, Uj⟩2. If we call Fj :=
Span(U1, ..., Uj) and Gi := Span(V1, ..., Vi), then Bi,j

corresponds to the square of the Frobenius norm of the
composition of orthogonal projections on those subspaces7.

7Given E a vector subspace of Rd, we let pE : Rd → Rd be
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Proposition 3.1. The following equality holds:

Bi,j =
∣∣∣∣pFj ◦ pGi

∣∣∣∣2
F
=
∣∣∣∣pGi ◦ pFj

∣∣∣∣2
F
. (2)

Proof. This result follows from a direct application of def-
initions. The composition in equation 2 can be written in
any order because orthogonal projections are symmetric
and transposition does not change the Frobenius norm.

Intuitively, Bi,j captures how much Fj matches with Gi.

Recall from the previous section that under a random base-
line hypothesis, the expected value of each coefficient in
the adjacency matrix is 1/n. Hence, under the null hy-
pothesis8, we expect Bi,j ≃ 1

n ij. We will thus define the
internal dimensions of the adjacency layer to be:

dout, din := argmax
i,j

(
Bi,j −

1

n
ij

)
.

The internal dimensions of the matrix are those that maxi-
mize the deviation of the cumulative sum of scalar products
from its random baseline. We provide in Appendix B.1 an
empirical validation of this definition in a controlled set-
ting.

In order to identify quickly internal dimension for each
layer in a visual way, we set the color intensity of spectral
neuron j to be9 :

color intensityj = max
i

∑
k≤i

Ak,j −
1

n
i


Taking the argmax instead of the max would yield the out-

put dimension associated to the matrix

A1,j

...
Aq,j

. This can

be visualized in Figure 2b where the bluest spectral neu-
ron in layer 1 correspond to the horizontal dimension of
the upper left block in Figure 3. This approach allows to
clearly witness sharp transitions that correspond to internal
dimensions while the use of a continuous criterion 10 still
provides meaningful insights when no block structure can
be identified in the adjacency matrix.

Experiment We consider a set of fully connected net-
works that have an architecture of the form [28 ×
28, n, n, 10]. Each network will thus have two adjacency
matrices: one that connects the maps R28×28 −→ Rn to
Rn −→ Rn and one that connects the maps Rn −→ Rn

the orthogonal projection onto E.
8Under which U and V are independent and uniformly sam-

pled on Omin(m,n),n(R)×On,min(n,q)(R)
9Color intensities are then normalized for each layer by their

maximums in order to have numbers between 0 and 1
10instead of simply using two colors to differentiate spectral

neurons that are below or above the output internal dimensions

to Rn −→ R10. We train each network for 5 epochs to
classify the FashionMNIST (Xiao et al., 2017) dataset. We
obtain test accuracies ranging from 81% (for n = 5) to 87%
we do not observe any significant increase of the test accu-
racy for n ≥ 40. Figure 4 depicts how internal dimensions
change as n varies.

Overall, it seems that the number of dimensions used by
the network does not depend on the number of available
dimensions as long as the latter is sufficiently high. Even
if we see a slight increasing tendency for the first adjacency
matrix, the variation of internal dimensions is extremely
small compared to the variations of n. Interestingly, the
best accuracies are reached when the network has more di-
mensions than what it will end up using. This extra capac-
ity may be crucial for an efficient exploration of the opti-
mization space during training. We can also observe that
we almost always have dout ≤ din for both matrices. This
is consistent with the idea that as one moves towards the
later layers, the network compresses the data into a lower
dimensional subspace.

4 THE SVR FOR CONVOLUTIONAL
LAYERS

Even though most modern neural network architectures in-
clude fully-connected heads, they are almost always used
in combination with other types of layers. This motivates
the following generalization to convolutional layers, which
are almost ubiquitous in artificial vision networks.

4.1 Intuitive Explanation

A fully connected layer between an input space of dimen-
sion i and an output space of dimension o can be seen as
a collection of o applications from Ri to R. Similarly, if
we denote by F the vector space of 2D images of a fixed
shape, a convolutional layer between an input space with i
channels and an output space with o channels can be seen as
a collection of o applications from F i to F 11. The analogy
between fully connected and convolutional layers is sum-
marized in Appendix (Table 1).
The factorization we introduce in the next section can again
be interpreted as a computational pipeline that breaks down
the convolution operation into three steps, albeit at the price
of a slightly more convoluted mechanism. Starting from
the input x ∈ F i, M spectral activation images y ∈ FM

are computed by performing a 2D-convolution of the in-
put x with all M filters corresponding to the input repre-
sentation of the spectral neurons (V ). The spectral activa-
tions y ∈ FM are then scaled according to the singular
values contained in S. The output for a specific channel
k ∈ J1, oK is finally computed by performing a linear com-

11We consider that convolution does not change the size of the
image (using 0-padding) on borders.
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bination of scaled spectral images using coefficients from
U :
∑M

m=1 uk,msmym ∈ F .

4.2 Formal Definition

The weights of a 2D-convolutional layer are given in the
form of a tensor T ∈ Ro×i×K×K where K is the kernel
size (typically 3, 5 or 7).

Vertices (Spectral Neurons) To compute the SVR we
first flatten down the tensor to 2 dimensions T̄ ∈ Ro×iK2

.
We then compute the classical SVD: USV̄ T = T̄ . Any
singular value in S corresponds to a spectral neuron of
the convolutional layer. Let M ∈ N be the number of
such values for layer T . The input representations as-
sociated to spectral neurons, are obtained by unflattening
V̄ ∈ RiK2×M to V ∈ Ri×K×K×M which should be seen
as M convolutional filter in Ri×K×K . The output repre-
sentations are simply given by the columns of U .

Edges (Connecting Spectral Neurons) To understand
how to define correctly the adjacency structure, one has to
understand how the activation of the spectral neuron n in
layer q+1 (before scaling) zn ∈ F is computed from spec-
tral activations (ym) ∈ FM in layer q (after scaling) if the
network did not have any non-linearity. We have:12

zn =

o∑
k=1

Vk,n ⋆

(
M∑

m=1

uk,mym

)

=

M∑
m=1

(
o∑

k=1

uk,mVk,n

)
⋆ ym.

This simple calculation shows that, thanks to the linearity
of the convolution operation, zn is simply the sum of spec-
tral activations in the previous layer (ym) convoluted by a
K ×K effective filter An,m =

∑o
k=1 uk,mVk,n ∈ RK×K .

We thus define the adjacency coefficient between spectral
neurons m and n to be:

an,m : = ||An,m||2F

=

∣∣∣∣∣
∣∣∣∣∣

o∑
k=1

uk,mVk,n

∣∣∣∣∣
∣∣∣∣∣
2

F

=
∑

z∈K×K

(
o∑

k=1

uk,mvk,z,n

)2

.

12Here V ∈ Ro×K×K×M′
is obtained from the SVD of layer

q + 1 while U ∈ Ro×M comes from the SVD of layer q. Since
V is a 4D-tensor, Vk,n for k ∈ J1, oK corresponds to a filter in
RK×K while uk,m for m ∈ J1,MK is simply a scalar since U is
just a matrix. The notation ⋆ corresponds to 2D-convolution.

We can also bound each coefficient by 1. Indeed, rewriting
the expression above using a matrix product and since the
Frobenius norm is sub-multiplicative:

an,m =
∣∣∣∣UT

mVn
∣∣∣∣2
F
≤ ||Um||2F ||Vn||2F ≤ 1.

Once again, this adjacency structure is invariant under mul-
tiplication of the weights by a positive scalar.

4.3 Statistical Significance Threshold

In order to distinguish signal from noise, we now wish to
develop a probabilistic model for an adjacency coefficient
a = ||XTY ||2 under a null hypothesis of random uniform
distribution ofX ∈ Rc and Y ∈ Rc×K2

on the unit spheres
Sc−1 and S(c×K2)−1 respectively13. When the number of
channel c is large enough, it becomes possible to approxi-
mate the distribution of a by a rescaled χ2 distribution with
K2 degrees of freedom.

Theorem 4.1. If X,Y ∼ U(Sc−1) ⊗ U(S(c×K2)−1) then
we have the convergence in distribution:

c||XTY ||2F =⇒
c−→+∞

1

K2
χ2(K

2).

Remark. We will thus use the following approximation for
adjacency coefficients:

a := ||XTY ||2F ∼ 1

cK2
χ2(K

2).

Proof. See Appendix, section A.4

Using this model, we can again compute a threshold above
which coefficients are considered significant with a prob-
ability p confidence. We provide computation of higher
moments of ⟨X,Y ⟩ in Appendix A.2.

4.4 Remarks

The generalization of the SVR to convolutional layers
induces an asymmetry between the input and the output
This is related to the choice of the dimensions merged dur-
ing the flattening operation. We could have instead cho-
sen to view the convolution layer as i maps from F to F o,
which leads to merging the output dimension with the ker-
nel dimensions of T . The SVD we would have obtained
corresponds to first performing a linear combination of in-
puts, scaling the result, and only then performing convo-
lutions to obtain the output. This alternative technique,
which we call co-SVR, seems somewhat less insightful, as it
prefers features relevant for the output of layers over those
that are relevant for the input. Since the network also has
a natural asymmetry as data flows from input to output, it

13Notation: S(c×K2)−1 :=
{
Y ∈ Rc×K2

|
∑

i,j y
2
i,j = 1

}
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makes sense to favor one direction. However, the co-SVR
may be insightful to analyze gradient flows, as it exactly
corresponds to the SVR seen by the gradient during back-
propagation.

Spatial pooling can be ignored Spatial pooling (aver-
age, max etc.) between layers does not affect the size of
the parameter space. Hence, we can simply ignore pooling
in the SVR representation.

Link to the theory of tensor factorization There are
several ways to generalize SVD for higher dimensional ma-
trices (ie tensors). The process we described here essen-
tially flattens the tensor to two dimensions in order to per-
form the classical SVD. This is closely related to the Tucker
decomposition for 3D-tensors, also known as higher order
SVD (HOSVD) (Hitchcock, 1927; Tucker, 1966). See Ra-
banser et al. (2017) for a modern introduction to tensor de-
compositions. The essential differences are that we only
perform the flattening along one dimension and that we
make use of both left and right singular vectors obtained
with the classical SVD.

5 EXPERIMENTAL RESULTS

As we explored SVR graphs, we swiftly encountered two
phenomenons that caught our attention. We detail them in
the next two sections. Those findings illustrate how the
SVR can provide valuable insights into deep neural net-
works. We leave their detailed analysis for future work.

5.1 The Super-Feature in VGG Networks

We computed the SVR for pretrained VGG networks on
PyTorch 1.11.0 (Simonyan and Zisserman, 2015; Paszke
et al., 2019) which were trained on the ImageNet dataset
(Deng et al., 2009). We noticed the presence of a ”super-
feature” in all VGG variants (11, 13, 16 and 19). It consists
of spectral neurons with high singular values on consecu-
tive layers that seem to connect to form a line. This is de-
picted in Figure 5a. To understand what this super-feature
represents, recall that any spectral neuron in the SVR graph
on a convolutional layer corresponds to a specific linear
map F c −→ F where F is a vector space of images of
a given size and c is the number of input channels. Thus,
for a specific input, the activation on each spectral neuron
corresponds to a single channel image. Visualizing these
images can provide complementary insights to already ex-
isting visualization techniques Voss et al. (2021), on what
information a specific spectral neuron is picking up. Figure
5b depicts spectral activations obtained between layers 5 to
10 in VGG16 for two different inputs. Deeper layers are not
depicted, because the size of the image become too small to
be interpreted. The activation of spectral neurons of high-
est singular value (forming the super-feature) are compared

with activations of the spectral neurons directly below. We
clearly observe that the super-feature highlights the con-
tours of the central object.

We validated this qualitative observation by computing the
cosine similarity between spectral images and a simple
baseline for edge detection. More precisely, for a sub-
sample of a 1000 pictures (one per class) from ImageNet
Schwartz (2022), we plotted the average cosine similarity
between spectral images (top-100 singular neurons) and the
Sobel edge detector 14 applied to input images15. We ob-
serve that the 0-th spectral image is significantly more sim-
ilar to the Sobel filter applied to the input image, than any
of the other spectral images. This is depicted in figure 6 for
Layer 6, but the observation generalizes to other layers (see
Appendix B.4).

5.2 Deep Effect of Batch Normalization

When computing the SVR of VGG networks that were
trained using Batch Normalization (Ioffe and Szegedy,
2015) and weight decay, we noticed a peculiar phe-
nomenon. We could repeatedly observe significant connec-
tions between spectral neurons of lowest singular value
(See Appendix, Figure 12b). This was completely unex-
pected from the experiments we had done so far.

5.2.1 Kernel Connections

We observed this phenomenon both in the SVR and the
co-SVR. This led us to construct layer-wise adjacency
matrices that connect the SVR to the co-SVR. This new
(symmetrical) construction turned out to capture the phe-
nomenon even more vividly. More formally, given a weight
tensor for a convolutional layer T ∈ Ro×i×K×K , the SVR
flattens the tensor down to T̄ ∈ Ro×iK2

while the co-SVR
flattens it to T̃ ∈ RoK2×i. This then provides two SVD
decompositions: Ū S̄V̄ T = T̄ and Ũ S̃Ṽ T = T̃ . For two
consecutive layers with weights Ti and Ti+1, the matrix
Ṽ T
i+1Ūi represents the linear application that sends the ac-

tivation of spectral neuron of layer i to the activation of
co-spectral neuron in layer i + 1. Figure 7 represents the
absolute value of this matrix for layers 2 and 3 in the Py-
Torch pretrained version of VGG19 trained with batch nor-
malization.16 The result is remarkably structured. One
can observe a block-diagonal structure with 3 blocks. The

14For a given input X, the Sobel edge detector is defined as:√√√√√
−1 0 1

−2 0 2
−1 0 1

 ⋆X
2

+

−1 −2 −1
0 0 0
1 2 1

 ⋆X
2

.

15In order to match the dimensions of spectral images, we
greyscaled and downsampled the input image through average
pooling before applying the Sobel edge detector

16Those layers were chosen because the matrices associated
were representative of the general phenomenon while being small
enough to be effectively visualized.
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(a) SVR of VGG16 - Red: Convolutional Layers, Blue: Fully
Connected Layers

(b) Activations of Spectral Neuron with Highest (s1) and Second
Highest (s2) Singular Value

Figure 5: The super-feature across layers in VGG networks highlights contours

Figure 6: Average (over 1000 images) Cosine similarity
between Spectral Images (ordered by decreasing singular
value), and Sobel filter of the input image. Red Shadow: 4

standard deviation interval.

Figure 7: |Ṽ T
3 Ū2| - VGG19 Trained With Batch Norm

two lowest blocks correspond to negligible (but measurably
non-zero) singular values compared with the singular val-
ues associated to the indices of the first block. This plot
highlights a remarkable correspondence between the near-
kernels of successive layers, even though those spaces do
not affect the output of the network by definition.

5.2.2 Spontaneous Sparsification

Remarkably, this phenomenon is also associated with a
spectacular spontaneous sparsification of the weights. Fig-
ure 8 depicts the output representation of spectral neu-
rons in the second layer (Ū2). One can see that each
row, and thus each usual neuron, can be unambiguously
mapped to one of the three blocks (corresponding to three
groups of spectral neurons). Hence, all the neurons that
are mapped to either the second or the third block can be
pruned without changing the network behavior, since their
output will be zeroed by negligible singular values. This
spontaneous sparsification phenomenon was indirectly no-
ticed by Mehta et al. (2019). They identified the neurons to
prune by selecting those for which activations over a large
sample of data remained below a certain threshold. Our
method, on the other hand, does not rely on having any in-
put data. Surprisingly, their experiments seem to indicate
that spontaneous sparsification does not occur when using
SGD (unless the regularization is too strong, thus degrading
accuracy). However, according to PyTorch reference train-
ing scripts (link here), the model we used (vgg19 bn) was
trained with default parameters which implies the use of the
SGD optimizer. This suggests that this batch norm sponta-
neous sparsification could be a more general phenomenon
than what was originally envisioned.

Moreover, the SVR may be the right tool to understand the
dynamic of this sparsification effect. We hypothesize that
irrelevant features for the network are first connected to-

https://github.com/pytorch/vision/tree/main/references/classification
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Figure 8: |Ū2| - VGG19 Trained With Batch Norm

gether before being zeroed out by singular values and/or
batch norm coefficients. The block structure in the near-
kernel of the weights would thus be a trace of past dimen-
sion reductions performed by the network.

This may provide useful research directions to understand
the effectiveness of batch normalization for training deep
neural networks.

6 CONCLUSION

The SVR offers a new perspective on representing the in-
ternal state of neural networks, by performing local SVD
factorizations in each layers. Although it omits the non-
linearities of the network, it allowed us to identify impor-
tant properties of the learning process, for fully connected
and convolutional networks of any size. This technique
opens up new possibilities for machine learning research,
by providing a rigorously defined summary of the learned
weights structure in order to witness global phenomenons
occurring across deep layers.

We believe that the SVR could be a helpful tool in archi-
tecture design and hyperparameter optimization, as it can
provide a more insightful overview of the internal state of
a neural network. This would allow going beyond simple
metrics based on accuracy and help to identify oversized
layers, and may open up new possibilities to determine op-
timal global SVD compression schemes, which has been
far less studied than layer-wise compression as noted by
Liebenwein et al. (2021).

The SVR can also be used as a preprocessing tool of
trained neural networks, in order to apply graph or topo-
logical techniques Dey and Wang (2021); Berkouk and Pe-
tit (2022) –that do not work at the usual scale of classical
neural networks– to analyze their weight structure. Indeed,
thanks to the statistical framework we have developed, the
SVR of a neural network usually has several orders of mag-
nitude less edges than the initial network thanks to thresh-
olding.
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A MISSING PROOFS

A.1 Fourth Moment of ⟨X,Y ⟩

We assume that X,Y ∼ U(Sn−1)⊗U(Sn−1). We have already shown above that E(⟨X,Y ⟩2) = 1
n . Moreover, because of

sign symmetry, the third moment will be zero.

Proposition A.1. We have:

µ4 := E(⟨X,Y ⟩4) = 3

n2 + 2n
.

Proof. Let us denote by Γ the covariance between two squared coordinates of X: Γ := E(x21x22). The first important
remark is that because of permutation symmetry between the coordinates we have:{

∀i ∈ J1, nK, E(x4i ) = µ4

∀i, j ∈ J1, nK2, i ̸= j =⇒ E(x2ix2j ) = Γ

Because of rotational symmetry, we can replace Y by any unitary vector without changing the distribution of ⟨X,Y ⟩.
Choosing Y := 1√

n
(1, 1, ..., 1) yields an equation linking µ4 and Γ:

µ4 = E

((
1√
n

∑
xi

)4
)

=
1

n2

∑
i

E(x4i ) + 3E

∑
i ̸=j

x2ix
2
j


µ4 =

1

n
µ4 + 3

n− 1

n
Γ.

(3)

The odd power terms in the expansion of the fourth power vanish because they have 0 expected value. We can get a second
equation linking µ4 and Γ by leveraging the fact that X is on the unit sphere:

1 = E

(∑
i

x2i

)2


= E

(∑
i

x4i

)
+ E

∑
i ̸=j

x2ix
2
j


1 = nµ4 + n(n− 1)Γ.

(4)

This last equation gives:

Γ =
1

n− 1

(
1

n
− µ4

)
.

Injecting the expression for Γ in the first equation we get:

µ4 =
3

n2 + 2n
, Γ =

1

n2 + 2n
.

Remark. The term 2n in the denominator can be viewed as a correction from the model 1
nχ2(1) which approximates

⟨X,Y ⟩2 and which has a fourth moment of 3
n2 .
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A.2 Standard Deviation of r1

Let Y ∈ Rc×K2

be a random variable uniformly sampled on the unit sphere S(c×K2)−1. First, note that the columns of Y
can be rewritten: ∀z ∈ J1,K2K, Yz = rzQz where (Qz) ∈ Rc are independent and identically distributed according to
U(So−1) and rz ∈ R+ are identically distributed random variables such that

∑K2

z=1 r
2
z = 1. This formulates the idea that

columns of Y only interact through the amount of norm they consume. This statement can be easily proved by rewriting
Y as the normalization of a sample from the multivariate normal distribution. Using the linearity of the expected value we
get that

∑K2

z=1 E(r2z) = 1 and hence E(r21) = 1
K2 . We now wish to compute std(r21). We have the following proposition:

Proposition A.2. We have:

std(r21) =
1

K2

√
2K2 − 2

cK2 + 2
≃
√

2

c
E(r21).

Proof. We start by computing the second moment of r21:

E(r41) = E

( c∑
k=1

y2k,1

)2


= E

(
c∑

k=1

y4k,1

)
+ E

 c∑
k,l=1,k ̸=l

y2k,1y
2
l,1


= cµ4 + c(c− 1)Γ

=
c+ 2

cK4 + 2K2
.

Where we used the expression for µ4 and Γ derived in Proposition A.1 with n := cK2. It follows that:

Var(r41) =
c+ 2

cK4 + 2K2
− 1

K4

=
1

K4

2K2 − 2

cK2 + 2

≃ 2

cK4

.

We finally get the claimed result: std(r21)/E(r21) ≃
√

2
c .

A.3 Proof of Theorem 2.1

Theorem 2.1. If X ∼ U(Sn−1) and Y ∈ Sn−1 then:

n⟨X,Y ⟩2 =⇒
n−→+∞

χ2(1).

Proof. Thanks to rotational invariance of the problem, we only consider the case of Y := (1, 0, ..., 0). Let us denote by
Z a random variable sampled according to the normal n-dimensional distribution N (0, In). The distribution of Z/||Z||
is concentrated on the unit sphere and is invariant under rotations, thus Z/||Z|| ∼ U(Sn−1) and therefore Z/||Z|| has the
same distribution than X . This observation allows us to obtain the limit distribution of (xi):

√
n⟨X,Y ⟩ =

√
nx1 ∼

√
n

||Z||
z1 =

(
1

n

n∑
i=1

z2i

)− 1
2

z1.

The law of large numbers guarantees the convergence 1
n

∑n
i=1 z

2
i =⇒

n→+∞
1 which implies, using Slutsky’s theorem, that

√
nx1 converges in distribution towards N (0, 1) when n is large. Since χ2(1) is simply the distribution of a squared normal

random variable, this proves the claimed result.
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A.4 Proof of Theorem 4.1

Theorem 4.1. If X ∼ U(Sc−1) and Y ∼ U(S(c×K2)−1):

c||XTY ||2F
P

=⇒
c−→+∞

1

K2
χ2(K

2)

.

Proof. Some details are intentionally omitted to favor intuition and to make the proof lighter.
First, just as in Proposition A.2, let us rewrite columns of Y in the form: ∀z ∈ J1,K2K, Yz = rzQz where (Qz) ∈ Rc

are independent and identically distributed according to U(So−1) and rz ∈ R+ are identically distributed random variables

such that
∑K2

z=1 r
2
z = 1. Moreover we can show that std(r21)/E(r21) ≃

√
2
c (see Proposition A.2) which means that the

standard deviation of rz becomes negligible compared to its expected value when the number of channel c is large. We
will thus use the expected value as an approximation:

∀z ∈ J1,K2K, r2z ≃ 1

K2
.

This approximation effectively removes the dependency between columns of Y . The adjacency coefficient a thus becomes
the sum of independent identically distributed random variable in the limit c −→ +∞:

a =
∑

1≤z≤K2

r2z⟨X,Qz⟩2 ≃ 1

K2

∑
1≤z≤K2

⟨X,Qz⟩2.

The independence comes from the the rotational invariance of the distribution of Qz which allows to replace X in every
term by any normal vector. From Theorem 2.1, we know that ⟨X,Qz⟩ ∼ 1

cχ2(1). This implies that a will follow a rescaled
χ2 distribution with K2 degrees of freedom:

a ∼ 1

cK2
χ2(K

2).

B ADDITIONAL EXPERIMENTS

B.1 Internal Dimensions - Experimental Validation

The definition of internal dimensions may seem slightly counter-intuitive at first. We provide here a small experiment to
show that in a simple case, internal dimensions can recover the dimensions of a block structure in an orthogonal matrix.

Let us consider two integers n ∈ N∗ and p < n. We sample independently two orthogonal matrices Qp and Qn−p

according to the uniform distribution over Op(R) and On−p(R). We consider the following block matrix :

P :=

(
Qp 0
0 Qn−p

)
.

P is itself an orthogonal square matrix. In order to add noise to it, we use the Lie Algebra of On(R) which is the set of
anti-symmetric matrices of size n. For ϵ > 0 we define the following random matrix:

P (ϵ) = Peϵ(A−AT ).

where A ∼ N (0, In). P (ϵ) is also an orthogonal matrix which will keep a strong block structure as long as ϵ is small
enough. We let B(ϵ) be the square matrix such that :

B(ϵ)i,j :=
∑
k≤i

∑
l≤j

(P (ϵ)k,l)
2
.

In Figure 9, we plot the output dimension dout(ϵ), := argmax
i,j

(
Bi,j − 1

n ij
)

as a function of ϵ for different values of p (and

n = 100). The problem is completely symmetric for the input dimension. We observe that the internal output dimension
does indeed recover the dimension of the first block up to a certain noise threshold above which it fluctuates around a value
of n/2.
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Figure 9: Estimated Internal Output Dimension As Function Of ϵ (n = 100) - Shadow : 95% Confidence Interval

B.2 Survival Function of Adjacency Coefficients

To validate the probabilistic models we developed for adjacency coefficients in a realistic setting, we performed the follow-
ing experiment. Matrices of two layers (either convolutional or fully connected) were randomly initialized with independent
coefficients sampled according to the normal distribution. The SVR was then computed to obtain the coefficients in the
adjacency matrices. Since we aim to model the highest values yielded by this distribution, we compare how the survival
function (one minus the cumulative distribution function) matches with the appropriately re-scaled χ2 distribution (Figure
10). Since the uniform distribution is also a common scheme for initializing weights, we performed the same experiments
with a tensor whose weights were initialized according to a uniform distribution on [−1, 1] (Figure 11).

B.3 SVR of VGG19 With and Without Batch Norm

We compute the SVR for the pretrained version of VGG networks availabe on PyTorch. In Figure 12 we depict the SVR for
both VGG19 (12a) and VGG19 with batch normalization (12b). For the latter, we ignored batch norm scaling coefficients
to allow for a more faithful comparison with the first case. We observe connections between the near-kernels of layers
when batch norm is introduced. In Figure 13, we compare VGG11 and VGG13 networks, in both cases the super-feature
noticed in section 5.1 can be observed.

B.4 The Super-Feature in VGG Networks Is An Edge Detector

We provide quantified numerical evidence for the ”super-feature” of VGG networks to be an edge detector. To do so,
we downscaled the input through average pooling down to the dimension of spectral images of a given layer, we then
transformed the image into grey scale and applied the Sobel filter to it17. This constitutes a fair proxy for edge detection.
We then plotted the cosine similarity (averaged over 1000 images, one per class) between the absolute value of spectral
images and this proxy in Figure 14. We clearly observed that for all layers where the super-feature is present, the first
spectral image reaches the highest cosine similarity.

17For a given input X, the Sobel filter is defined as :

√√√√√
−1 0 1

−2 0 2
−1 0 1

 ⋆X
2

+

−1 −2 −1
0 0 0
1 2 1

 ⋆X
2

.
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(a) Adjacency coefficients between two fully
connected layers: FC(16, 64) → FC(64, 32)

(b) Adjacency coefficients between two convolutional
layers: Conv(16, 64, 3× 3) → Conv(64, 32, 3× 3)

Figure 10: Survival function (1− cdf(x)) of adjacency coefficients in different settings for a network with weights
randomly sampled from the normal distribution

C A COMPUTATIONAL SUMMARY OF THE SVR

Table 1 summarizes the main resemblances and differences between the SVR computation for fully connected and convo-
lutional layers.
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(a) Adjacency coefficients between two fully
connected layers: FC(16, 64) → FC(64, 32)

(b) Adjacency coefficients between two convolutional
layers: Conv(16, 64, 3× 3) → Conv(64, 32, 3× 3)

Figure 11: Survival function (1− cdf(x)) of adjacency coefficients in different settings for a network with weights
randomly sampled from the uniform distribution

(a) SVR of VGG19 (b) SVR of VGG19 trained with Batch Norm

Figure 12: VGG19 With And Without Batch Normalization

(a) SVR of VGG11 (b) SVR of VGG13

Figure 13: Comparison between the SVR of VGG11 and VGG13
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(a) Layers 6,7 and 8 (b) Layers 9 and 10

Figure 14: Average (Over 1000 Images) Cosine Similarity Between Spectral Images (ordered by decreasing singular
value) And The Sobel Edge Detector Applied To The Input Image. Shadow: 4 Standard Deviation Interval

Table 1: Comparison Between Fully Connected And Convolutional Layers

Layer type Fully connected Convolutional

Input and output space Ri −→ Ro F i −→ F o

Factoring the output dimension o×
(
Ri −→ R

)
o×

(
F i −→ F

)
Fundamental operation Scalar product · 2D-convolution ⋆

Building block
Ri → R
x 7→ θ · x

F i → F
x 7→ θ ⋆ x

Parameter space of one building block
K denotes the kernel size (3 or 5 typically) θ ∈ Ri θ ∈ Ri×K×K

SVD

The bar corresponds to the flattening operation USV T =

 θT1
...
θTo

 USV̄ T =

 θ̄1
T

...

θ̄o
T


Recovering output k ∈ J1, oK θk · x =

∑
m
uk,msm (Vm · x) θk ⋆ x =

∑
m
uk,msm (Vm ⋆ x)

Adjacency between spectral neuron m and n
In this line, V is from the next layer

(
UT
mVn

)2 ∣∣∣∣UT
mVn

∣∣∣∣2
F

Baseline distribution of adjacency coefficients
when o −→ ∞, with randomness assumptions 1

oχ2(1)
1

oK2χ2(K
2)
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