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Linköping University Linköping University
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Abstract

This paper proposes a temporal graph neural net-
work model for forecasting of graph-structured
irregularly observed time series. Our TGNN4I
model is designed to handle both irregular time
steps and partial observations of the graph. This
is achieved by introducing a time-continuous la-
tent state in each node, following a linear Ordi-
nary Differential Equation (ODE) defined by the
output of a Gated Recurrent Unit (GRU). The
ODE has an explicit solution as a combination of
exponential decay and periodic dynamics. Ob-
servations in the graph neighborhood are taken
into account by integrating graph neural network
layers in both the GRU state update and predic-
tive model. The time-continuous dynamics ad-
ditionally enable the model to make predictions
at arbitrary time steps. We propose a loss func-
tion that leverages this and allows for training the
model for forecasting over different time hori-
zons. Experiments on simulated data and real-
world data from traffic and climate modeling val-
idate the usefulness of both the graph structure
and time-continuous dynamics in settings with ir-
regular observations.

1 INTRODUCTION

Many real-world systems can be modeled as graphs. When
data about such systems is collected over time, the resulting
time series has additional structure induced by the graph
topology. Examples of such temporal graph data is the traf-
fic speed in the road network (Li et al., 2018) and the spread
of disease in different regions (Rozemberczki et al., 2021).
Building accurate machine learning models in this setting
requires taking both the temporal and graph structure into
account.
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While many works have studied the problem of modeling
temporal graph data (Wu et al., 2020a), these approaches
generally assume a constant sampling rate and no missing
observations. In real data it is not uncommon to have irreg-
ular or missing observations due to non-synchronous mea-
surements or errors in the data collection process. Deal-
ing with such irregularities is especially challenging in the
graph setting, as node observations are heavily interdepen-
dent. While observations in one node could be modeled us-
ing existing approaches for irregular time series (Rubanova
et al., 2019; Schirmer et al., 2022), the situation becomes
complicated when irregular observations in different nodes
occur at different times.

In this paper we tackle two kinds of irregular observa-
tions in graph-structured time series: (1) irregularly spaced
observation times, and (2) only a subset of nodes being
observed at each time point. We propose the TGNN4I
model for time series forecasting. The model uses a time-
continuous latent state in each node, which allows for pre-
dictions to be made at any time point. The latent dynam-
ics are motivated by a linear Ordinary Differential Equation
(ODE) formulation, which has a closed form solution. This
ODE solution corresponds to an exponential decay (Che
et al., 2018) together with an optional periodic component.
New observations are incorporated into the state by a Gated
Recurrent Unit (GRU) (Cho et al., 2014). Interactions be-
tween the nodes are captured by integrating Graph Neu-
ral Network (GNN) layers both in the latent state updates
and predictive model. To train our model we introduce a
loss function that takes into account the time-continuous
model formulation and irregularity in the data. We eval-
uate the model on forecasting problems using traffic and
climate data of varying degrees of irregularity and a simu-
lated dataset of periodic signals.

2 RELATED WORK

GNNs are deep learning models for graph-structured data
(Gilmer et al., 2017; Wu et al., 2020a). By learning rep-
resentations of nodes, edges or entire graphs GNNs can
be used for many different machine learning tasks. These
models have been successfully applied to diverse areas
such as weather forecasting (Lam et al., 2022) molecule



Temporal Graph Neural Networks for Irregular Data

generation (Zang and Wang, 2020) and video classification
(Kosman and Di Castro, 2022). Temporal GNNs model
also time-varying signals in the graph. This extension
to graph-structured time series is achieved by combining
GNN layers with recurrent (Li et al., 2018), convolutional
(Wu et al., 2019; Yu et al., 2018) or attention (Guo et al.,
2019) architectures. While the graph is commonly as-
sumed to be known a priori, some approaches also explore
learning the graph structure jointly with the temporal GNN
model (Zhang et al., 2022; Wu et al., 2020b).

Time series forecasting is a well-studied problem and a
vast amount of methods exist in the literature. Tradi-
tional methods in the area include ARIMA models, vector
auto-regression and Gaussian Processes (Box et al., 2015;
Roberts et al., 2013). Many deep learning approaches have
also been applied to time series forecasting. This includes
Recurrent Neural Networks (RNNs) (Lazzeri, 2020), tem-
poral convolutional neural networks (Chen et al., 2020) and
Transformers (Giuliari et al., 2021).

The latent state of an RNN can be extended to continu-
ous time by letting the state decay exponentially in be-
tween observations (Che et al., 2018). Such decay mecha-
nisms have been used for modeling data with missing ob-
servations (Che et al., 2018), doing imputation (Cao et al.,
2018) and parametrizing point processes (Mei and Eisner,
2017). Another way to define time-continuous states is
by learning a more general ODE. In neural ODE models
(Chen et al., 2018; Kidger, 2021) the latent state is the
solution to an ODE defined by a neural network. Neu-
ral ODEs have been successfully applied to irregular time
series (Rubanova et al., 2019) and can be used to define
the dynamics of temporal GNNs (Fang et al., 2021; Poli
et al., 2021). Poli et al. (2021) use such a model for graph-
structured time series with irregular time steps, but consider
the full graph to be observed at each observation time. Also
the GraphCON framework of Rusch et al. (2022) combines
GNNs with a second order system of ODEs. In GraphCON
the time-axis of the ODE is however aligned with the lay-
ers of the GNN. This makes the framework suitable for
node- and graph-level predictive tasks, rather than time-
series modeling.

Another related body of work is concerned with using
GNNs for data imputation in time series (Cini et al., 2022;
Gordon et al., 2021; Omidshafiei et al., 2022). These meth-
ods generally do not assume that the time series come with
some known graph structure. Instead, the GNN is defined
on some graph specifically constructed for the purpose of
performing imputation.

The closest work to ours found in the literature is the LG-
ODE model of Huang et al. (2020). They consider the
same types of irregularities, but are motivated more by a
multi-agent systems perspective. LG-ODE is based on an
encoder-decoder architecture and trained by maximizing

the Evidence Lower Bound (ELBO). The encoder builds
a spatio-temporal graph of observations and aggregates in-
formation using an attention mechanism (Vaswani et al.,
2017). The decoder then extrapolates to future times by
solving a neural ODE. The encoder-decoder setup differs
from our TGNN4I model that sequentially incorporates ob-
servations and auto-regressively makes predictions at every
time point. Because of the multi-agent motivation Huang
et al. (2020) are also more focused on smaller graphs with
few interacting entities, but longer forecasting horizons.
An extended version of LG-ODE, called CG-ODE (Huang
et al., 2021), also aims to learn the graph structure in the
form of a weighted adjacency matrix.

3 A TEMPORAL GNN FOR IRREGULAR
OBSERVATIONS

3.1 Setting

Consider a directed or undirected graph G = (V,E) with
node set V and edge set E. Let {ti}Nt

i=1 be a set of (pos-
sibly irregular) time points s.t. 0 < t1 < · · · < tNt . We
will here present our model for a single time series, but
in general we have a dataset containing multiple time se-
ries. Let Oi ⊆ V be the set of nodes observed at time ti.
If n ∈ Oi, we denote the observed value as yn

i ∈ Rdy

and any accompanying input features as xn
i ∈ Rdx . We

let yn
i = xn

i = 0 if n /∈ Oi. Note that this general set-
ting encompasses a spectrum of irregularity, from single
node observations (|Oi| = 1 ∀i) to fully observed graphs
(Oi = V ∀i). A table of notation is given in appendix A.

The problem we consider is that of forecasting. At future
time points we want to predict the value at each node, given
all earlier observations. Since observations are irregular
and we want to make predictions at arbitrary times, we need
to consider models that can make predictions for any time
in the future.

We consider a model where at each node n a latent state
hn(t) ∈ Rdh evolves over continuous time. We define the
dynamics of hn(t) by: (1) how hn(t) evolves in between
observations, and (2) how hn(t) is updated when node n is
observed. If node n is observed at time ti we incorporate
this observation into the latent state using a GRU cell (Cho
et al., 2014). This information can then be used for making
predictions at future time points. An overview of our model
is given in Figure 1.

3.2 Time-continuous Latent Dynamics

Consider a time interval ]ti, tj ] where node n is not ob-
served. During this interval we define the latent state of
node n by the sum hn(t) = h̄n

i + h̃n(t). The first part h̄n
i

is constant over the time interval, constituting a base level
around which the state evolves. The dynamics of h̃n(t) are
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Figure 1: Left: Example graph with four nodes and their latent states, here one-dimensional for illustration purposes. Node
observations are indicated with ⃝. Right: Schematic diagram of the GRU update and predictive model g. Everything
inside the shaded area happens instantaneously at time ti. The GRU cell outputs the new initial state h̄n

i + ĥn
i , the static

component h̄n
i and the ODE parameters ωn

i . The parameters ωn
i define the dynamics until the next observation. The

prediction ŷn
i here is based on information from all earlier time points.

dictated by a linear ODE of the form

dh̃n(t) = Ah̃n(t) dt (1)

with A ∈ Rdh×dh and initial condition h̃n(ti) = ĥn
i . Over

this interval the ODE has a closed form solution (Arrow-
smith and Place, 1992) given by

h̃n(t) = exp(δtA)ĥn
i (2)

where exp is the matrix exponential function and we define
δt = t− ti. Assuming that all eigenvalues of A are unique,
we can use its eigen-decomposition1 A = QΛQ−1 to write

h̃n(t) = Q exp(δtΛ)Q
−1ĥn

i . (3)

Since Q contains an eigen-basis of Rdh it can be viewed as
a transition matrix, changing the basis of the latent space.
While we could in principle learn Q, we note that the basis
of the latent space has no physical interpretation and we
can without loss of generality choose it such that Q = I .

Next, if we make the assumption that A has real eigenval-
ues the resulting dynamics are given by

h̃n(t) = exp(−δt diag(ω
n
i ))ĥ

n
i (4)

where ωn
i > 0 is a parameter vector representing the nega-

tion of the eigenvalues. We arrive at an exponential de-
cay in-between observations, a type of dynamics used with
GRU-updates in existing works (Che et al., 2018; Cao et al.,
2018). The positive restriction on ωn

i ensures the stability

1Recall that the eigen-decomposition of a diagonalizable ma-
trix A is given by A = QΛQ−1, where Λ is a diagonal matrix
containing the eigenvalues of A and the columns of Q are the
corresponding eigenvectors (Searle and Khuri, 1982).

of the dynamical system in the limit, which for the com-
plete state means that hn(tj) → h̄n

i as tj → ∞.

On the other hand, if we instead allow A to have com-
plex eigenvalues we can decompose A using the real Jor-
dan form (Horn and Johnson, 2012). This makes Λ block-
diagonal with 2× 2 blocks

Cj =

[
aj −bj
bj aj

]
(5)

corresponding to complex conjugate eigenvalues aj ± bji.
If we compute the matrix exponential for this Λ we end up
with a combination of exponential decay and periodic dy-
namics (Arrowsmith and Place, 1992). The solution gives
dynamics that couple each pair of dimensions as[

h̃n(t)
]
j:j+1

= exp(δtaj)×[
cos(bjδt) − sin(bjδt)
sin(bjδt) cos(bjδt)

][
ĥn
i

]
j:j+1

.
(6)

We parametrize also these dynamics with ωn
i =

[−a1,−a3, . . . ,−adh−1, b1, b3, . . . , bdh−1]
⊺ > 0. Note

that when bj → 0 these periodic dynamics reduce to the
exponential decay in Eq. 4, but with the parameter for −aj
shared across pairs of dimensions. We consider both the
exponential decay and the more general periodic dynamics
as options for our model. The periodic dynamics can nat-
urally be seen as advantageous for modeling periodic data,
as we will explore empirically in section 4.4.

3.3 Incorporating Observations from the Graph

When node n is observed at time ti the observation is in-
corporated into the latent state by a GRU cell, incurring an
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instantaneous jump in the latent dynamics to a new value
h̄n
i + ĥn

i . Inspired by the continuous-time LSTM of Mei
and Eisner (2017), we extend the GRU cell to output also
the parameters ωn

i , which define the dynamics of h̃n(n)
for the next time interval.

So far we have considered each node of the graph as sepa-
rate entities, but in a graph-based system future observa-
tions of a node can depend on the history of the entire
graph. To capture this we let the state of each node de-
pend on observations and states in its graph neighborhood.
This is achieved by introducing GNNs (Gilmer et al., 2017;
Wu et al., 2020a) in the GRU update (Zhao et al., 2018).
We replace matrix multiplications with GNNs, taking in-
puts both from the node n itself and from its neighbor-
hood N (n) = {m|(m,n) ∈ E}. The type of GNN we use
is a simple version of a message passing neural network
(Gilmer et al., 2017), defined as

GNN
(
hn, {hm}m∈N (n)

)
= W1h

n +
1

|N (n)|
∑

m∈N (n)

em,nW2h
m (7)

where the matrices W1,W2 are learnable parameters
shared among all nodes and em,n is an edge weight associ-
ated with the edge (m,n). The use of edge weights allows
for incorporating prior information about the strength of
connections in the graph. We can additionally stack mul-
tiple such GNN layers, append fully-connected layers and
include non-linear activation functions in between. The in-
clusion of multiple GNN layers makes the GRU update de-
pendent on a larger graph neighborhood.

In a standard GRU cell the input and previous state are first
mapped to three new representations using matrices U and
W (Cho et al., 2014). These representations are then used
to compute the state update. In our GNN-based GRU up-
date the matrices are replaced by GNNs and we require
seven such intermediate representations to update ĥn

i , h̄n
i

and ωn
i , as shown below. The node states are combined as

[un
i,1, . . . ,u

n
i,7]

⊺ = GNNU
(
hn(ti), {hm(ti)}m∈N (n)

)
(8)

where the resulting vector is split into seven equally sized
chunks. Another GNN is then used for the combined ob-
servations and input features x̃n

i = [yn
i ,x

n
i ]

⊺,

[vn
i,1, . . . ,v

n
i,7]

⊺ = GNNW
(
x̃n
i , {x̃m

i }m∈N (n)

)
. (9)

Note that while all nodes might not be observed at time ti,
x̃m
i = 0 for any unobserved m and thus do not contribute

to the sum over neighbors in the GNN. With the combined
information from the graph neighborhood the full GRU up-

date is computed as

rni = σ(vn
i,1 + un

i,1 + b1) (10a)

zn
i = σ(vn

i,2 + un
i,2 + b2) (10b)

qn
i = tanh(vn

i,3 + (rni ⊙ un
i,3) + b3) (10c)

h̄n
i + ĥn

i = (1− zn
i )⊙ hn(ti) + zn

i ⊙ qn
i (10d)

r̄ni = σ(vn
i,4 + un

i,4 + b4) (11a)

z̄n
i = σ(vn

i,5 + un
i,5 + b5) (11b)

q̄n
i = tanh(vn

i,6 + (r̄ni ⊙ un
i,6) + b6) (11c)

h̄n
i = (1− z̄n

i )⊙ h̄n
i−1 + z̄n

i ⊙ q̄n
i (11d)

ωn
i = log(1+ exp(vn

i,7 + un
i,7 + b7)) (12)

where σ is the sigmoid function and b1–b7 learnable bias
parameters. In Eq. 11d we let h̄n

k = h̄n
k−1 if n /∈ Ok.

Eq. 10a–10d correspond to one GRU update, using the de-
cayed state hn(ti). Eq. 11a–11d define a separate GRU
update, but for the decay target h̄n

i . Note that we get ĥn
i ,

the initial value of h̃n(t), implicitly from the difference be-
tween Eq. 10d and Eq. 11d. Finally Eq. 12 computes the
parameters ωn

i defining the dynamics of h̃n(t) up until the
next observation of node n. The parameters of the GRU
cell are shared for all nodes in the graph. To capture any
node-specific properties we parametrize initial states hn(0)
separately for all nodes and learn these jointly with the rest
of the model.

3.4 Predictions

The time-continuous dynamics ensure that there is a well-
defined latent state hn(t) in each node at each time point
t. The value of the time series can then be predicted at any
time by applying a mapping g : Rdh → Rdy from this latent
state to the prediction ŷn

j .

The addition of GNNs into the GRU update makes the la-
tent state dynamics of each node dependent on historical
observations in its neighborhood. However, since the GRU
updates happen only when a node is observed, information
from observed neighbors might not be incorporated imme-
diately in the latent state. Consider three consecutive time
points ti < ti+1 < ti+2 s.t. n ∈ Oi, n /∈ Oi+1. Then any
observation ym

i+1 for m ∈ Oi+1 ∩ N (n) will not be taken
into account by the model for the prediction ŷn

i+2, as that
prediction is based on a latent state with only information
from time ti. To remedy this we choose also the predictive
model g to contain one or more GNN layers,

ŷn
j = GNNg

(
[hn(tj),x

n
j ]

⊺,
{
[hm(tj),x

m
j ]⊺
}
m∈N (n)

)
.

(13)

This way g takes the latent states and input features of the
whole neighborhood into account for prediction. We name
the full proposed model Temporal Graph Neural Network
for Irregular data (TGNN4I).
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3.5 Loss Function

In order to make predictions for arbitrary future time points
we introduce a suitable loss function based on the time-
continuous nature of the model. Let ŷm

i→j be the predic-
tion for node m at time tj , based on observations of all
nodes at times t ≤ ti. Define also a time-continuous
weighting function w : R+ → R+ and the set τm,i =
{j : m ∈ Oj ∧ i < j} containing the indices of all times
after ti where node m is observed. We do not include pre-
dictions from the first Ninit time steps in the loss, treating
this as a short warm-up phase. The loss function for one
graph-structured time series is then

Lℓ =
1

Nobs

∑
m∈V

Nt∑
i=Ninit+1

∑
j∈τm,i

ℓ
(
ŷm
i→j ,y

m
j

)
w(tj − ti)

j −Ninit − 1

(14)
where ℓ is any loss function for a single observation and
Nobs =

∑Nt

i=Ninit+2|Oi| the total number of node observa-
tions. We use LMSE with Mean Squared Error (MSE) as
ℓ, but the framework is fully compatible with other loss
functions as well. This includes general probabilistic pre-
dictions with a negative log-likelihood loss. Dividing by
j − Ninit − 1, the number of times observation j has been
predicted, guarantees that later observations are not given a
higher total weight.

The weighting function w allows for specifying which
time-horizons that should be prioritized by the model. This
choice is highly application-dependent and should capture
which predictions that are of interest when later deploying
the model in some real-world setting. If we care about all
time horizons, but want to prioritize predictions close in
time, a suitable choice could be w(∆t) = exp

(
−∆t

Ω

)
. It

might also be desirable to focus predictive capabilities on a
specific ∆t. If we want predictions around ∆t = µ to be
prioritized we can for instance use a Gaussian kernel as

w(∆t) = exp

(
−
(

∆t−µ
Ω

)2)
. (15)

A limitation of the proposed loss function is the quadratic
scaling in the number of time steps, as predictions are made
from all times to all future observations. This especially
requires large amounts of memory for nodes that are ob-
served at many time steps. However, for many sensible
choices of w predictions far into the future have a close to
0 impact on the loss. In practice we can utilize this to ap-
proximate Lℓ by only making predictions Nmax time steps
into the future. This approximation explicitly corresponds
to setting τm,i = {j : m ∈ Oj ∧ i < j ≤ i+Nmax} and
changing the denominator in Eq. 14 to min(Nmax, j −
Ninit − 1). Alternatively, we can select a weight function
with finite support which implies that many terms in Eq. 14
will be exactly zero. This does however require more book-
keeping than the aforementioned truncation method.

4 EXPERIMENTS

The TGNN4I model was implemented2 using PyTorch and
PyG (Fey and Lenssen, 2019). We evaluate the model on a
number of different datasets. See appendix D and E for de-
tails on the pre-processing and experimental setups used.
As the loss function LMSE captures errors throughout an
entire time series we adopt this also as our evaluation met-
ric. Given that the loss weighting w used for training accu-
rately represents how we value predictions at different time
horizons, it is natural to use the same choice for evalua-
tion. In our experiments we rescale each time series so that
t ∈ [0, 1] and use w(∆t) = exp

(
− ∆t

0.04

)
. By inspecting

w and the time steps in the data we also choose a suitable
Nmax = 10.

We consider three versions of our TGNN4I model:
(static) with a constant latent state in-between observations
(h̃n(t) = ĥn

i ∀ t∈ ]ti, tj ]), (exponential) with the expo-
nential decay dynamics from Eq. 4 and (periodic) with the
combined decay and periodic dynamics from Eq. 6. In all
our experiments the training time of a single model on an
NVIDIA A100 GPU is less than an hour and for the small-
est dataset (METR-LA) not more than 20 minutes.

4.1 Baselines

We compare TGNN4I to multiple baseline models. As a
simple starting point we consider a model that always pre-
dicts the last observed value in each node for all future time
points (Predict Previous). Che et al. (2018) propose the
GRU-D model for irregular time series, which we extend
with our parametrization of the exponential decay and in-
clude as a baseline. GRU-D does not use the graph struc-
ture explicitly, so there are two ways to adapt this model
to our setting. We can view the entire graph-structured
time series as one series with (|V |dy)-dimensional vectors
at each time step (GRU-D (joint)). Alternatively, we can
view the time series in each node as independent (GRU-D
(node)), which is essentially the same as TGNN4I with all
edges in the graph removed. Two Transformer baselines
are also included, used in the same (joint) and (node) con-
figurations. In these models the irregular observations are
handled through attention masks and the use of timestamps
in the sinusoidal positional encodings. We also compare
against the LG-ODE model of Huang et al. (2020) us-
ing the code provided by the authors. We follow their pro-
posed training procedure, where the model encodes the first
half of each time series and has to predict the second half.
When computing LMSE using LG-ODE we encode all ob-
servations up to ti and decode from that time point in order
to get each ŷm

i→j . More details on the baseline models are
given in appendix C. An attempt was also made to adapt
the RAINDROP model of Zhang et al. (2022) to our fore-

2Our code and datasets are available at https://github.
com/joeloskarsson/tgnn4i.

https://github.com/joeloskarsson/tgnn4i
https://github.com/joeloskarsson/tgnn4i
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Figure 2: Test LMSE on METR-LA traffic data for the best
performing models from Table 1. Shaded areas correspond
to 95% confidence intervals based on re-training models
with 5 random seeds.

casting setting. We were however unable to get useful pre-
dictions without making major changes to the model and it
is therefore not included here.

4.2 Traffic Data

We experiment on the PEMS-BAY and METR-LA
datasets, containing traffic speed sensor data from the Cal-
ifornia highway system (Li et al., 2018; Chen et al., 2001).
To be able to control the degree of irregularity, we start
from regularly sampled data and choose subsets of obser-
vations. We use the versions of the datasets pre-processed
by Li et al. (2018). Each dataset is split up into time series
of 288 observations (1 day). PEMS-BAY contains 180 such
time series with 325 nodes and METR-LA 119 time series
with 207 nodes. We include the time of day and the time
since the node was last observed as input features xn

i . In
order to introduce irregularity in the time steps we next sub-
sample each time series by keeping only 72 of the 288 ob-
servations. These Nt = 72 observation times are the same
for all nodes. However, from these subsampled time se-
ries we furthermore sample subsets containing 25%–100%
of all Nt × |V | individual node observations. This results
in irregular observation time points and a fraction of nodes
observed at each time. Our additional pre-processing pre-
vents us from a direct comparison with Li et al. (2018), as
their method does not handle irregular observations.

We report results for both datasets in Table 1 and high-
light the best performing models on METR-LA in Figure 2.
GRU-D (joint) has a hard time modeling all nodes jointly,
often not performing better than the simple Predict Previ-
ous baseline. The Transformer models achieve somewhat
better results, but still not competitive with TGNN4I. We
additionally note that the Transformers can be highly sen-
sitive to the random seed used for initialization, something
that we have not observed for other models. Comparing
TGNN4I and GRU-D (node) in Figure 2 it can be noted

that the importance of using the graph structure increases
when there are fewer observations. Out of the different ver-
sions of TGNN4I the exponential and periodic dynamics
show a clear advantage over the static one, with the largest
difference for the most sparsely observed data. We have
observed that the periodic models output only low frequen-
cies, resulting in dynamics and results similar to the model
with exponential decay. While the periodic dynamics in
Eq. 6 have fewer degrees of freedom when reduced to pure
exponential decay, this does not seem to hurt the perfor-
mance in this example.

We found that the training time of LG-ODE scales poorly
to large graphs, limiting us to only training a single model
for each dataset. The predictions are however quite poor,
especially on the PEMS-BAY data. While the model seems
to learn something more than just predicting the mean, it is
not competitive with our TGNN4I model. We believe that
the poor performance of LG-ODE can be explained by a
combination of multiple things: (1) The LG-ODE model
is primarily designed for data with clear continuous under-
lying dynamics, which might not match this type of traffic
data. (2) When the model is trained as proposed by Huang
et al. (2020), it can require large amounts of data. For some
of the experiments in the original paper 20 000 sequences
are used for training, while we use less than 150. (3) The
slow training has limited possibilities for exhaustive hyper-
parameter tuning on our datasets. Training one LG-ODE
model on the PEMS-BAY data takes us over 50 hours.

4.3 USHCN Climate Data

Irregular and missing observations are common problems
in climate data (Schneider, 2001). The United State His-
torical Climatology Network (USHCN) daily dataset con-
tains over 50 years of measurements of multiple climate
variables from sensor stations in the United States (Menne
et al., 2015). We use the pre-processing of De Brouwer
et al. (2019) to clean and subsample the data. The target
variables chosen are minimum and maximum daily tem-
perature (Tmin and Tmax), which we model as separate
datasets. While existing works (De Brouwer et al., 2019;
Schirmer et al., 2022) have treated time series from differ-
ent sensor stations as independent, we model also the spa-
tial correlation by constructing a 10-nearest-neighbor graph
using the sensor positions. Each full dataset contains 186
time series of length Nt = 100 on a graph of 1123 nodes.
The pre-processed USHCN data is sparsely observed with
only around 5% of potential node observations present.

We report results on both datasets in Table 2. Due to the
large size of the graph it was not feasible to apply the
LG-ODE model here. We note that for these datasets the
(joint) baselines clearly outperform the (node) versions.
For GRU-D this is the opposite of what we saw in the traf-
fic data. This can be explained by the fact that climate data
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Table 1: Test LMSE (multiplied by 102) for the traffic datasets with different fractions of node observations. Where appli-
cable we report mean ± one standard deviation across 5 runs with different random seeds. The lowest mean LMSE for each
dataset and observation percentage is marked in bold.

PEMS-BAY

Model 25% 50% 75% 100%

Predict Previous 26.32 18.60 15.25 13.50
GRU-D (joint) 18.79±0.07 18.27±0.10 17.93±0.08 17.75±0.12
GRU-D (node) 8.79±0.06 6.62±0.02 5.82±0.06 5.49±0.06
Transformer (joint) 12.05±1.19 13.13±2.59 12.21±1.95 11.09±1.38
Transformer (node) 16.49±0.17 14.44±0.48 13.20±0.56 13.16±1.23
LG-ODE 27.00 24.93 24.71 23.52
TGNN4I (static) 7.41±0.09 5.98±0.07 5.29±0.08 4.89±0.05
TGNN4I (exponential) 7.10±0.07 5.78±0.05 5.23±0.03 4.87±0.09
TGNN4I (periodic) 7.10±0.09 5.80±0.08 5.22±0.09 4.87±0.02

METR-LA

Model 25% 50% 75% 100%

Predict Previous 9.86 7.54 6.52 6.04
GRU-D (joint) 8.38±0.05 8.03±0.04 7.89±0.03 7.80±0.02
GRU-D (node) 4.36±0.08 3.62±0.07 3.28±0.08 3.16±0.04
Transformer (joint) 5.70±1.41 7.17±1.66 5.95±1.90 6.11±1.80
Transformer (node) 7.01±0.31 6.34±0.24 5.84±0.23 5.96±0.50
LG-ODE 8.51 7.35 6.71 6.24
TGNN4I (static) 3.86±0.02 3.31±0.02 3.03±0.02 2.88±0.02
TGNN4I (exponential) 3.68±0.05 3.18±0.03 2.97±0.03 2.86±0.04
TGNN4I (periodic) 3.69±0.02 3.19±0.04 3.01±0.05 2.88±0.03

Table 2: Test LMSE (multiplied by 102) for the two USHCN
climate datasets.

Tmin Tmax

Predict Previous 16.88 17.18
GRU-D (joint) 8.03±0.23 7.97±0.19
GRU-D (node) 13.12±0.03 13.67±0.04
Transformer (joint) 7.36±0.41 7.37±0.28
Transformer (node) 15.68±0.32 15.74±0.34
TGNN4I (static) 6.97±0.05 6.86±0.04
TGNN4I (exponential) 6.72±0.04 6.60±0.04
TGNN4I (periodic) 6.72±0.05 6.63±0.03

has strong spatial dependencies. The (joint) models can to
some extent learn to pick up on these, while for (node) no
information can flow between nodes. The best results are
however achieved by TGNN4I, showing the added benefit
of utilizing the spatial graph.

4.4 Synthetic Periodic Data

In the previous experiments, using periodic dynamics with
TGNN4I has not added any value. Instead, the learned dy-
namics have been largely similar to just using exponential

decay. This should to some extent be expected, as none
of the previous datasets show any clear periodic patterns at
the considered time scales. To investigate the possible ben-
efits of the periodic dynamics we instead create a synthetic
dataset with periodic signals propagating over a graph.

The synthetic dataset is based on a randomly sampled di-
rected acyclic graph with 20 nodes. We define a periodic
base signal

ρn(t) = sin(ϕnt+ ηn) (16)

with random parameters ϕn and ηn for each node n. The
target signal yn(t) in each node is then defined through

κn(t) = ρn(t) +
0.5

|N (n)|
∑

m∈N (n)

κm(t− 0.05) (17a)

yn(t) = κn(t) + ϵn(t) (17b)

where ϵn(t) is Gaussian white noise with standard devia-
tion 0.01. The target signal in each node depends on the
base signal in the node itself and the signals in neighboring
nodes at a time lag of 0.05. To construct one time series we
sample yn(t) at 70 irregular time points on [0, 1]. In total
we sample 200 such time series and keep 50% of the node
observations in each.

We train versions of the GRU-D (node) and TGNN4I mod-
els with different latent dynamics on the synthetic data.
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Table 3: Test LMSE (multiplied by 102) for synthetic data.

Static Exponential Periodic

GRU-D (node) 8.88±0.36 3.13±0.06 2.81±0.04
TGNN4I 15.12±0.05 2.91±0.17 1.95±0.11

Predict Prev. 27.52
Transformer (joint) 23.19±0.38
Transformer (node) 15.39±0.05
LG-ODE 16.61±0.23
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Figure 3: MSE (Top) for predictions at time ∆t in the
future for models trained with different loss weighting
w (Bottom). The weighting functions are described in
Eq. 18a–18d. To compute the MSE all predictions in the
test set were binned based on their ∆t, with bin width 0.02.
The bottom subplot also shows a histogram of the number
of predictions in each bin.

Also our other baselines are included for comparison. Re-
sults are reported in Table 3. For both GRU-D (node) and
TGNN4I we see a large difference between the different
types of latent dynamics. The periodic dynamics seem to
help the model to keep track of the base signal in the node
and its neighborhood in order to achieve accurate future
predictions. While this is a synthetic example, periodic be-
havior is prevalent in much time series data and being able
to explicitly model this in the latent state can be highly ad-
vantageous. Attempts were made to also train the GRU-D
(joint) model on this dataset, but it failed to pick up on any
patterns and ended up only predicting a constant value for
all nodes and times.

4.5 Loss Weighting

To investigate the impact of the loss weighting function
w we trained four TGNN4I models on the subsampled

PEMS-BAY dataset with 25% observations. We used expo-
nential dynamics and considered the weighting functions

w1(∆t) = 1 (18a)

w2(∆t) = exp

(
− ∆t

0.04

)
(18b)

w3(∆t) = exp

(
−
(
∆t − 0.1

0.02

)2
)

(18c)

w4(∆t) = I{∆t∈[0.18,0.22]}. (18d)

Figure 3 shows the test MSE for the trained models at
different ∆t in the future, as well as plots of the weight-
ing functions. As an example, the prediction ŷm

i→j has
∆t = tj − ti.

We note that the choice of w can have substantial impact
on the error of the model at different time horizons. The
exponential weighting in w2 makes the model focus heav-
ily on short-term predictions. This results in better predic-
tions for low ∆t. At the shortest time horizon the exponen-
tial weighting yields an 11% improvement over the model
trained with constant w1, but this comes at the cost of far
higher errors for long-term predictions. Interestingly the
w1 model gives better predictions at all time horizons than
the models with w3 and w4, which focus on predictions
at some specific time ahead. We believe that there can be
a feedback effect benefiting the constant weighting, where
learning to make good short-term predictions also aid the
learning of long-term prediction, for example by finding
useful intermediate representations. A drawback of weight-
ing with w1 is however that since the loss never approaches
0 there is no properly motivated choice of Nmax for our loss
approximation. As the model trained with w4 still gives
good predictions in the interval [0.18, 0.22], there can still
be practical reasons to choose such a weighting. With this
choice we could reduce the innermost sum in Eq. 14 to only
those j:s that lie in the interval of interest.

5 DISCUSSION

We have proposed a temporal GNN model that can han-
dle both irregular time steps and partially observed graphs.
By defining latent states in continuous time our model can
make predictions for arbitrary time points in the future. In
this section we discuss some details and limitations of the
approach, and also give some pointers to interesting direc-
tions for future work.

5.1 Efficient Implementation

In order to efficiently implement the training and inference
of TGNN4I there is a key design choice between (1) storing
everything in dense matrices and utilizing massively paral-
lel GPU-computations, and (2) utilizing sparse representa-
tions in order to avoid computing values that will never be
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used. Which of these is to be preferred depends on the spar-
sity of observations in the data. Our implementation fol-
lows the massively parallel approach, using binary masks
for keeping track of Oi at each time point. In order to scale
TGNN4I to massive graphs in real world scenarios it could
be interesting to consider a version of the model distributed
over multiple machines, perhaps directly connected to sen-
sors producing the input data. A sparse implementation
would be strongly preferred for such an extension.

5.2 Linear and Neural ODEs

The dynamics of TGNN4I are defined by a linear ODE and
additionally restricted by the assumption of unique eigen-
values in A. This has the benefit of a closed form solu-
tion that is efficient to compute, but also limits the types of
dynamics that can be learned. Our approach can be con-
trasted with Neural ODEs (Chen et al., 2018), that allow
for learning more expressive dynamics. Neural ODEs do
however lack closed form solutions and require using nu-
merical solvers (Kidger, 2021). This incurs a trade-off be-
tween speed and numerical accuracy. In experiments we
have compared TGNN4I with the LG-ODE model (Huang
et al., 2020), which uses a Neural ODE decoder. The slow
training of the LG-ODE model can to a large extent be at-
tributed to the numerical ODE solver. While more complex
latent dynamics can be useful for some datasets, it can also
be argued that simpler dynamics can be compensated with
a high enough latent dimension dh and a flexible enough
predictive model g (Schirmer et al., 2022).

5.3 Societal and Sustainability Impact

While our contributions are purely methodological, many
applications of graph-based and spatio-temporal data anal-
ysis have a clear societal impact. Our example applica-
tions of traffic and climate modeling both have potential
to aid efforts of transforming society in more sustainable
directions, such as those described in the United Nations
sustainable development goals 11 and 13 (Rolnick et al.,
2022; United Nations, 2015). Traffic modeling allows us to
both understand travel behavior and predict future demand.
This can enable optimizations of transport systems, both
improving the experience of travelers and reducing the en-
vironmental impact. Integrating machine learning methods
with climate modeling has potential to speed up simula-
tions and increase our understanding of the climate around
us. However, it is surely also possible to find applications
of our method with a damaging impact on society, for ex-
ample through undesired mass-surveillance.

5.4 Future Work

We consider a setting where the graph structure is both
known and constant over time. In some practical applica-
tions it is not obvious how to construct the graph describ-

ing the system. To tackle this problem our model could
be combined with approaches for also learning the graph
structure (Stanković et al., 2020; Zhang et al., 2022). Ex-
tending our method to dynamic graphs, that evolve over
time, would not require any major changes and could be an
interesting direction for future experiments.

Our focus has been on forecasting, but the model could also
be trained for other tasks. The time-continuous latent state
in each node could be used for imputing missing obser-
vations or performing sequence segmentation. Also clas-
sification tasks are possible, either classifying each node
separately or the entire graph-structured time series.

While our model can produce predictions at arbitrary time
points, an extension would be to also predict the time un-
til the next observation occurs. One way to achieve this
would be to let the latent state parametrize the intensity
of a point process (Mei and Eisner, 2017; Jia and Benson,
2019). Building such point process models on graphs could
be an interesting future application of our model.
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A TABLE OF NOTATION

The notation used is listed in Table 4.

B IMPLEMENTATION AND TRAINING DETAILS FOR TGNN4I

The presentation of TGNN4I in Section 3 describes how the model processes a single graph-structured time-series. In
practice we use batches of multiple such time series during training and inference. When working on batches there is an
additional sum in the definition of Lℓ, computing the mean over all samples in the batch. While we assume that all time
series in a batch share the same Nt, the exact time points {ti}Nt

i=1 can differ. In all experiments we use Ninit = 5 and
minimize the loss using the Adam optimizer (Kingma and Ba, 2015).

Both GNNU and GNNW contain only GNN layers, while the predictive model g contains a sequence of GNN layers
followed by a sequence of fully connected layers. We use ReLU activation functions in between all layers.

The input x̃m
i to GNNW is 0 for neighbors that are not observed at time ti. However, there could be an observation of

neighbor m where the observed value and input features are exactly 0. To help the model differentiate between these two
cases we additionally include an indicator variable I{m∈Oi} in x̃m

i .

C BASELINE MODELS

C.1 Predict Previous

The Predict Previous baseline does not require any training. Predictions are computed as ŷm
i→j = ym

prev(i) ∀j, where
prev(i) = max{k : k ≤ i ∧m ∈ Ok}. If there is no earlier observation of node m the predictions is just 0.

C.2 GRU-D (node)

GRU-D (node) is essentially a version of TGNN4I without the GNN components. The GNNs GNNU and GNNW in
the GRU update are replaced by matrix multiplications and the predictive model g includes only fully connected layers.
Because of this no information can flow between nodes, and time-series in different nodes are treated as independent. The
GRU-D (node) model uses the exponential dynamics for the latent state. To stay consistent with the other models we still
process all nodes in the graph concurrently. This means that a batch size of B for GRU-D (node) means that we process
B ×N independent node time-series.

C.3 GRU-D (joint)

The GRU-D (joint) model is defined similar to GRU-D (node), but modeling all nodes jointly. All node observa-

tions are concatenated into one long vector yi =
[
y1
i , . . . ,y

|V |
i

]⊺
and similarly the features are concatenated as

xi =
[
x1
i , . . . ,x

|V |
i

]⊺
. This time series is then modeled using a single latent state, also based on the exponential dy-

namics. In GRU-D (joint) there is however a GRU update at each ti, as at least one of the nodes is observed at each time
point. We can think of this setup as a graph with a single node, for which the observations are high-dimensional. The
high-dimensional predictions are split up and re-assigned to the original nodes in the graph for computing the loss. Note
also that many entries in each yi and xi will be zero, corresponding to the nodes that are not observed. We again include
indicators I{m∈Oi} as input to the GRU, but here for all nodes.

C.4 LG-ODE

For the LG-ODE model we use the code provided by the authors (Huang et al., 2020)3, making only small modifications to
the data loading in order to correctly handle our datasets. The original code does not use a validation set, instead evaluating
the model on the test set after each training epoch. We change this step to use validation data and save the model from the
epoch with the lowest validation error. That model is then loaded and evaluated on the test data. Due to the high training
time we have not been able to perform exhaustive hyperparameter tuning for the LG-ODE model. We have mainly used

3https://github.com/ZijieH/LG-ODE

https://github.com/ZijieH/LG-ODE
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Table 4: List of notation

Notation Description Defined in

diag(v) Diagonal matrix with entries of vector v on the diagonal
[v]j:j+1 Entries j and j + 1 of vector v
I{·} Indicator function

G The underlying graph of the time series

Section 3.1

V,E Node and edge set of G
ti Time point where at least one node is observed
Nt Number of time points in one graph-structured time series
Oi Set of nodes observed at ti
yn
i Observed value in node n at time point ti. Equal to 0 if node n is not observed at time ti.

xn
i Features of node n at time point ti. Equal to 0 if node n is not observed at time ti.

dx, dy, dh Dimensionality of xn
i , yn

i and hn(t)
hn(t) Time-continuous latent state of node n

h̄n
i Static part of hn(t) after time ti

Section 3.2

h̃n(t) Dynamic part of hn(t) defined by a linear ODE
A Coefficient matrix in the ODE defining h̃n(t)

ĥn
i Initial value of h̃n(ti) in the ODE from time ti onward
δt Elapsed time since ti
Q Matrix containing the eigenvectors of A
Λ Diagonal matrix containing the eigenvalues of A
ωn

i Parameters defining the dynamics of h̃n(t) after ti
Cj 2× 2 block matrix in real Jordan form of A

aj ± bji Complex conjugate eigenvalue pair of A

N (n) Neighbors (parents) of node n

Section 3.3

W1,W2 Matrices used in GNN
em,n Edge weight associated with the edge (m,n)

GNNU GNN combining latent states in neighborhood of node n

un
i,1 – un

i,7 Output of GNNU for node n at time ti. Intermediate representations used in GRU update.
x̃n
i Concatenation of yn

i and xn
i

GNNW GNN combining features and observations in neighborhood of node n

vn
i,1 – vn

i,7 Output of GNNW for node n at time ti. Intermediate representations used in GRU update.
rni , z

n
i , q

n
i Intermediate representations in GRU update for hn(t)

σ Sigmoid function
b1–b7 Bias parameters in GRU cell

r̄ni , z̄
n
i , q̄

n
i Intermediate representations in GRU update for h̄n

i

g Predictive model
Section 3.4ŷn

j Predicted value of node n at time tj
GNNg GNN used as predictive model g

ŷm
i→j Predicted value of node m at time tj based on observations before or at time ti

Section 3.5

w Loss weighting function
τm,i Set of indices of all times after ti where node m is observed
Ninit Length of warm-up phase where predictions are not included in loss
Lℓ Loss function for one whole graph-structured time-series
ℓ General loss function for a single observation

LMSE Lℓ with Mean Squared Error as loss for each observation
Nobs Number of node observations in time-series
∆t Time difference between last observation and prediction time
Nmax Maximum number of time steps to predict ahead in approximation of Lℓ
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the default parameters of Huang et al. (2020) or a slightly smaller version of the model. The smaller version has halved
dimensions for hidden layers in the GNN (from 128 to 64) and augmentation (from 64 to 32) used in the ODE decoder.

For computing LMSE using the LG-ODE model we need to compute each necessary ŷm
i→j . This is done by encoding all

observations up to time ti and then decoding Nmax time steps into the future. It should be noted that the model is still
trained as proposed by Huang et al. (2020), by encoding the first half of each time series and predicting the second half.
During training each encoded time series is Nt/2 long, but when computing LMSE on the test set the length of the sequence
being encoded varies. We have however not noticed any higher errors for time steps with a shorter or longer encoded
sequence than that used during training.

C.5 Transformers

The Transformer (Vaswani et al., 2017) baselines use an encoder-decoder approach similar to LG-ODE. During training a
prediction time ti is however randomly sampled as i ∼ U({Ninit, . . . , Nt −Nmax}). Each sequence is then encoded up to
time ti and decoded over the next Nmax time steps to produce predictions. The LMSE loss is used also for the Transformer
models, but only based on this one prediction per time series.

The irregular time steps are handled by sinusoidal encodings concatenated to the input of both the encoder and decoder.
Instead of basing these on the sequence index i, the exact timestamp ti is used in

θi =
ti

0.12i/dh
(19)

to then compute the full encoding vector
[
sin(θ1), . . . , sin(θ⌊dh/2⌋), cos(θ1), . . . , cos(θ⌊dh/2⌋)

]⊺
.

Unobserved nodes are in Transformer (node) handled by masking the attention mechanism. For each node n, this prevents
the model from attending to encoded time steps j s.t. n /∈ Oj . In Transformer (joint) the same approach as in GRU-D
(joint) is instead used, where indicator variables are included as input.

The hyperparameters defining the Transformer architectures differ somewhat from the other models. We still let dh repre-
sent the dimensionality of hidden representations, but here also tune the number of transformer layers stacked together.

D DATASETS

D.1 Traffic Data

For the PEMS-BAY and METR-LA datasets we use the versions pre-processed by Li et al. (2018), where weighted
graphs are created based on thresholded road-network distances. We additionally remove edges from any node to itself
and drop nodes not connected to the rest of the graph. The original time series is then split into sequences of length
288, corresponding to one day of observations at 5 minute intervals. In each such sequence we uniformly sample only
Nt = 72 time points to keep, introducing irregularity between the time steps. Next we create the set {(n, i)}n∈V,i=1,...,Nt

with indices of all single node observations. We uniformly sample a fraction of this set as the observations to keep,
independently for each sequence. The percentages in Table 1 refer to the percentage of observations kept from this set.
This step introduces further irregularity as all nodes will generally not be observed at each time step. The METR-LA
dataset has some observations missing initially, meaning that we can never get to exactly 100% observations for that
dataset. From this pre-processing we end up with 180 time series in the PEMS-BAY dataset and 119 time series in the
METR-LA dataset. We randomly assign 70% of these to the training set, 10% to the validation set and 20% to the test set.

D.2 USHCN Climate Data

The USHCN daily data is openly available4 together with the positions of all sensor stations. We use the pre-processing
of De Brouwer et al. (2019) to clean and subsample the data5. We choose the longer version of the time series, with
observations between the years 1950 and 2000, but split this into multiple sequences of 100 days.

In order to build the spatial graph we perform an equirectangular map projection of the sensor station coordinates and
then connect each station to its 10 nearest neighbors based on euclidean distance. While there are many options for how

4https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/
5A script for pre-processing the USHCN data is available together with their code at https://github.com/edebrouwer/

gru_ode_bayes.

https://cdiac.ess-dive.lbl.gov/ftp/ushcn_daily/
https://github.com/edebrouwer/gru_ode_bayes
https://github.com/edebrouwer/gru_ode_bayes
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to create this type of spatial graph, we have found the 10-nearest-neighbor approach to work sufficiently well in practice.
Further investigating different methods for building spatial graphs is outside the scope of this paper. We additionally add
edge weights to this graph following a similar method as Li et al. (2018) did for the traffic data. For sensor stations m and
n at a distance dm,n we assign the edge (m,n) the weight

em,n = exp

(
−
(
dm,n

4σe

)2
)

(20)

where σe is the standard deviation of all distances associated with edges. The constant 4 is chosen such that the furthest
distance gets a weight close to 0 and the nearest distance a weight close to 1. For the USHCN data the only input feature
is elapsed time since the node was last observed. We use the same 70%/10%/20% training/validation/test split as for the
traffic data.

We build two datasets from the USHCN data, one with the daily minimum temperature Tmin as target variable and one
with the daily maximum temperature Tmax. The reason for separating these target variables, instead of using dy = 2, is
that the pre-processed data contains time points where only one of these is observed. Our model is not designed for such
a setting where we do not observe all dimensions of yn

i . Extending TGNN4I to handle this is left as future work. The
USHCN data also contains other climate variables, related to precipitation and snow coverage. These time series are less
interesting to directly evaluate our model on, as many entries are just 0. Properly modeling these would require designing
a suitable likelihood function and taking into account that some sensor stations never get any snow. As this would shift the
focus from the core problem we choose to restrict our attention to Tmin and Tmax.

D.3 Synthetic Periodic Data

To create the graph for the synthetic data we first sample 20 node positions uniformly over [0, 1]2. We then create an
undirected graph using a Delaunay triangulation (De Loera et al., 2010) based on these positions. This undirected graph
is turned into a directed acyclic graph by choosing a random ordering of the nodes and removing edges going from nodes
later in the ordering to those earlier.

Based on this graph 200 irregular time series are sampled according to Eq. 16 and 17. An example is shown in Figure 4. The
irregular time steps are created by first discretizing [0, 1] into 1000 time steps and then sampling 70 of these independently
for each time series. Out of all node observations we keep 50%, sampled in the same way as for the traffic data. The
parameters of the periodic signals are sampled according to ϕn ∼ U([20, 100]) and ηn ∼ U([0, 2π]). We resample all ηn

for each sequence, but sample the node frequencies ϕn only once, treating these as underlying properties of the nodes. Out
of the 200 sampled sequences we use 100 for training, 50 for validation and 50 for testing.

E DETAILS ON EXPERIMENT SETUPS

We perform hyperparameter tuning by exhaustive grid search over combinations of parameter values. The configuration
that achieves the lowest validation LMSE is then used for the final experiment. An overview of hyperparameter values
considered and the final configurations for all experiments is given in Table 5. All hyperparamter tuning for GRU-D and
TGNN4I is done on the versions of the models with exponential dynamics. For these models we generally observe that
larger architectures perform better, but the memory usage limits how much we can increase the model size. While the exact
model architecture of TGNN4I does impact the results, the model does not seem particularly sensitive to learning rate or
batch size.

We evaluate LMSE on the validation set after each training epoch, stopping the training early if the validation error does not
improve for 20 epochs. Except for LG-ODE we train all models until this early stopping occurs, which typically takes less
than 150 epochs.

E.1 Traffic Data

For the traffic data we perform hyperparameter tuning on the versions of the datasets with 25% observations. The same
hyperparameter configuration, shown in Table 5, performed the best for both PEMS-BAY and METR-LA.

We used the slightly downscaled version of the LG-ODE model for the traffic data. We tried also the default hyperparam-
eters on the METR-LA dataset, but this did not improve the results. LG-ODE was trained for 50 epochs with a batch size
of 8 and we observed no further improvements when trying to train the model for longer.
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Figure 4: Examples of signals in the synthetic periodic data for 5 of the 20 nodes. The lines show clean signals κn(t) and
each dot a (noisy) observation yn(ti). Note that the time steps are irregular and that not all signals are observed at each
observation time.

E.2 USHCN Climate Data

For the USHCN data we perform the hyperparameter tuning on the Tmin dataset. Since the USHCN graph contains many
nodes we are somewhat more restricted in how large we can scale up the models.

E.3 Synthetic Periodic Data

On the periodic data we tried the same hyperparameters for GRU-D (joint) as for the other models, but no options gave any
useful results. Because of this we exclude the model from this experiment. The number of iterations until the validation
LMSE stops decreasing is higher for the periodic data, with models training up to 500 epochs.

We used default hyperparameters for the LG-ODE model on the periodic data, but with a batch size of 16. As this graph
only contains 20 nodes we were here able to train 5 LG-ODE models with different random seeds.

E.4 Loss Weighting

For the loss weighting experiment we do not perform any new hyperparameter tuning, but use the best configuration from
the traffic data experiment. One TGNN4I model was trained for each weighting function. We here use a batch size of 4
and Ninit = 25, which allows us to study predictions to higher ∆t in the future.

Appendix References

De Loera, J. A., Rambau, J., and Santos, F. (2010). Triangulations, volume 25 of Algorithms and Computation in Mathe-
matics. Springer.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In International Conference on Learning
Representations (ICLR).
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Table 5: Values considered in hyperparameter tuning for the different datasets. Bold numbers represent the best performing
configuration, that was then used in the final experiment.

Learning rate dh
Fully connected

layers in g
GNN layers

in g
GNN layers

in GRU Batch size

Traffic Data

GRU-D (joint) 0.001, 0.0005 64, 128, 256, 512 1, 2 - - 16
GRU-D (node) 0.001, 0.0005 64, 128, 256 1, 2 - - 8
TGNN4I 0.001, 0.0005 64, 128, 256 1, 2 1, 2 1, 2 8
Transformer (joint) 0.001 64, 256, 512, 2048 2, 4 (Transformer layers) 8
Transformer (node) 0.001 64, 128, 256 2, 4 (Transformer layers) 8

USHCN Data

GRU-D (joint) 0.001 64, 128, 256, 512 2 - - 16
GRU-D (node) 0.001 32, 64, 128 2 - - 4
TGNN4I 0.001 32, 64, 128 2 1, 2 1, 2 4
Transformer (joint) 0.001 64, 256, 512, 2048 2, 4 (Transformer layers) 8
Transformer (node) 0.001 64, 128 2, 4 (Transformer layers) 8

Periodic Data

GRU-D (node) 0.001 64, 128, 256 2 - - 16
TGNN4I 0.001 64, 128, 256 2 2 2 16
Transformer (joint) 0.001 64, 256, 512, 2048 2, 4 (Transformer layers) 8
Transformer (node) 0.001 64, 128, 256 2, 4 (Transformer layers) 8


	INTRODUCTION
	RELATED WORK
	A TEMPORAL GNN FOR IRREGULAR OBSERVATIONS
	Setting
	Time-continuous Latent Dynamics
	Incorporating Observations from the Graph
	Predictions
	Loss Function

	EXPERIMENTS
	Baselines
	Traffic Data
	USHCN Climate Data
	Synthetic Periodic Data
	Loss Weighting

	DISCUSSION
	Efficient Implementation
	Linear and Neural ODEs
	Societal and Sustainability Impact
	Future Work

	TABLE OF NOTATION
	IMPLEMENTATION AND TRAINING DETAILS FOR TGNN4I
	BASELINE MODELS
	Predict Previous
	GRU-D (node)
	GRU-D (joint)
	LG-ODE
	Transformers

	DATASETS
	Traffic Data
	USHCN Climate Data
	Synthetic Periodic Data

	DETAILS ON EXPERIMENT SETUPS
	Traffic Data
	USHCN Climate Data
	Synthetic Periodic Data
	Loss Weighting


