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Abstract

We suggest a novel procedure for online change
point detection. Our approach expands an idea
of maximizing a discrepancy measure between
points from pre-change and post-change distribu-
tions. This leads to a flexible procedure suitable
for both parametric and nonparametric scenarios.
We prove non-asymptotic bounds on the average
running length of the procedure and its expected
detection delay. The efficiency of the algorithm
is illustrated with numerical experiments on syn-
thetic and real-world data sets.

1 INTRODUCTION

The problem of change point detection is familiar to statis-
ticians and machine learners since the pioneering works
of Page (1954, 1955), Shiryaev (1961, 1963) and Roberts
(1966) but, nevertheless, it still attracts attention of many
researchers due to its practical importance. In our paper,
we assume that a learner observes independent random el-
ements X1, . . . , Xt, . . . arriving successively. There exists
a moment τ∗ ∈ N (not accessible to the statistician), such
that X1, . . . , Xτ∗ are drawn from a distribution, which has
a density p with respect to a dominating measure m, while
Xτ∗+1, . . . , Xt, . . . have a density q (with respect to the
same measure), which differs from p. The measure m is
not restricted to be the Lebesgue measure, it can be equal
to the counting measure (in the discrete case) or the Haus-
dorff measure on a low-dimensional manifold as well. The
learner is interested in reporting about the occurrence of
τ∗ as fast as possible while keeping the false alarm rate
at an acceptable level. This problem is called online (also
referred to as sequential or quickest) change point detec-
tion. Such a setup is quite different from another major
research direction, offline change point detection (Dümb-
gen and Spokoiny, 2001; Zou et al., 2014; Matteson and
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James, 2014; Dalang and Shiryaev, 2015; Biau et al., 2016;
Korkas and Fryzlewicz, 2017; Garreau and Arlot, 2018; Ar-
lot et al., 2019; Madrid Padilla et al., 2021; Corradin et al.,
2022; Londschien et al., 2022), where the statistician has
an access to the whole time series at once, and, instead of
taking decisions on the fly, he is mostly interested in a ret-
rospective analysis and change point localization.

The complexity of a change point detection problem
severely depends on the data generating mechanism. The
most popular one is a mean shift, that is, EXτ∗ ̸= EXτ∗+1.
Plenty of papers are devoted to a mean shift detection in a
univariate or multivariate Gaussian sequence (see, for in-
stance, (Enikeeva and Harchaoui, 2019; Pein et al., 2017;
Rinaldo et al., 2021; Chen et al., 2022; Sun et al., 2022)),
but the recent research (Eichinger and Kirch, 2018; Wang
et al., 2020; Yu et al., 2020b,a) also considers a more gen-
eral sub-Gaussian noise. One usually exploits CUSUM-
type or likelihood-ratio-type test statistics to perform this
task. A broader problem of parametric change point de-
tection (see, for example, (Cao et al., 2018; Dette and
Gösmann, 2020; Yu et al., 2020b; Corradin et al., 2022; Sun
et al., 2022; Titsias et al., 2022)) admits that p and q belong
to a parametric family of densities P = {pθ : θ ∈ Θ}.
In this setup, the distribution change detection is reduced
to detection of a shift in the underlying parameter θ ∈ Θ.
Both the mean shift model and the parametric change point
detection require strong modelling assumptions which are
likely to be violated in practical applications. In our paper,
we are mostly interested in a nonparametric change point
detection problem (Hero, 2006; Harchaoui et al., 2008; Zou
et al., 2014; Li et al., 2015; Biau et al., 2016; Garreau and
Arlot, 2018; Arlot et al., 2019; Kurt et al., 2021; Shin et al.,
2022). We do not impose restrictive conditions on the den-
sities p and q. However, the procedure we propose is quite
universal in a sense that it is suitable for different setups, in-
cluding, for instance, the nonparametric one and the mean
shift detection in a multivariate Gaussian sequence model.

Though the number of papers on change point detection is
huge and many of them are devoted to theoretical analysis
of the procedures (see, e.g., (Pollak and Tartakovsky, 2009;
Tartakovsky et al., 2012; Li et al., 2015; Cao et al., 2018; Yu
et al., 2020a; Liang et al., 2021; Chen et al., 2022; Chu and
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Chen, 2022; Dehling et al., 2022; Shin et al., 2022)), non-
parametric change point detection is studied not so well.
Some papers provide rigorous guarantees on the average
running length of the procedures (i.e. the expected num-
ber of iterations the algorithm makes in a stationary regime
until a false alarm) but, to our knowledge, there are no non-
asymptotic high probability bounds on the detection delay.

Let us describe the idea of our algorithm. In the sequential
change point detection, at the moment t, one usually tests
the hypothesis

H0 : X1, . . . , Xt have the same distribution (1)

against the composite alternative
H1 : there exists τ ∈ {1, . . . , t− 1}, such that τ∗ = τ ,

(2)
which can be considered as the union of the alternatives
of the form Hτ

1 : τ∗ = τ , τ ∈ {1, . . . , t − 1}. If the
change occurred at some τ ∈ {1, . . . , t − 1} (that is, Hτ

1

takes place), then the distribution of X1, . . . , Xτ must dif-
fer from the one ofXτ+1, . . . , Xt. To detect such a discrep-
ancy, we introduce an auxiliary function D : X → (0, 1)
that should distinguish between the pre-change and post-
change distributions. The higher values of D(X) reflect
a larger confidence that X was drawn from the density
p, rather than from q. Such an approach of reducing an
unsupervised learning problem to a supervised one is not
new (see, e.g., (Hastie et al., 2009, Section 14.2.4)) and
was used in the problems of density estimation (Gutmann
and Hyvärinen, 2012), generative modelling (Goodfellow
et al., 2014; Grover et al., 2019), and density ratio estima-
tion (Grover et al., 2019). Based on this idea, Hushchyn
et al. designed an algorithm for change point detection.
However, the sliding window technique the authors used
leads to significant detection delays. Besides, Hushchyn
et al. do not provide any theoretical guarantees on the run-
ning length and the detection delay of their procedure.

Let us fix t ∈ N and a change point candidate τ ∈
{1, . . . , t − 1}. In order to find a good auxiliary classifier
D, distinguishing betweenX1, . . . , Xτ andXτ+1, . . . , Xt,
we fix a family D of functions taking their values in (0, 1)
and choose a maximizer of the cross-entropy

τ(t− τ)

t

[
1

τ

τ∑
s=1

ln(2D(Xs))

+
1

t− τ

t∑
s=τ+1

ln(2− 2D(Xs))

]
(3)

over D. A similar approach was introduced in (Gutmann
and Hyvärinen, 2012; Goodfellow et al., 2014) but for the
purposes of density estimation and generative modelling,
respectively. In the context of sequential change point de-
tection, Li et al. and Chang et al. used a different diver-
gence measure, the squared maximum mean discrepancy,
to derive a kernel change point detection method. In our

paper, we adapt the technique of (Goodfellow et al., 2014)
for the quickest change point detection. Following (Gut-
mann and Hyvärinen, 2012; Goodfellow et al., 2014), we
call our approach contrastive and refer to the function D as
discriminator.

We show in Section 2.1 that our algorithm needs to approx-
imate ln(p/q) with a reasonable accuracy to be sensitive
to distribution changes. This makes it similar to change
point detection methods based on the density ratio estima-
tion (Liu et al., 2013; Hushchyn et al., 2020; Hushchyn and
Ustyuzhanin, 2021). For instance, Liu et al. uses KLIEP
(Sugiyama et al., 2008), uLSIF (Kanamori et al., 2009)
and RuLSIF (Yamada et al., 2013) for online change point
detection. In (Hushchyn and Ustyuzhanin, 2021), the au-
thors use the α-relative chi-squared divergence, the same
functional as in RuLSIF (Yamada et al., 2013), to con-
struct a change point detection procedure. The advantage
of such methods is that the estimation of the ratio p/q can
be a much easier task than estimation of the densities p
and q themselves. However, in the density-ratio based al-
gorithms the authors usually use a sliding window tech-
nique and compare the distributions between two large non-
overlapping segments of the time series. This approach
shows a good performance in the offline setup, when the
learner is interested in change point estimation, but leads
to large detection delays in the online case. In our paper,
we adjust the test statistic in order to make it suitable for
the sequential detection problem. Besides, in contrast to
(Liu et al., 2013; Hushchyn et al., 2020; Hushchyn and
Ustyuzhanin, 2021), we study the detection delay of our
procedure and the behaviour of the test statistic under the
null hypothesis.

Contribution. We suggest a procedure for sequential
change point detection based on the contrastive approach.
We provide non-asymptotic large deviation bounds on the
running length and the detection delay of our procedure
(Theorems 2.7 and 2.9) for general classes of discrimina-
tors. We also specify the results of these theorems for par-
ticular cases, including nonparametric change point detec-
tion via neural networks. To our knowledge, Corollary 3.1
is the first theoretical guarantee for such a setup. Finally,
we illustrate the performance of our procedure with numer-
ical experiments on synthetic and real-world data sets.

Organization of the paper. The rest of the paper is orga-
nized as follows. In Section 2, we introduce our algorithm
and discuss its theoretical properties. In particular, we de-
rive non-asymptotic large deviation bounds on the running
length and the detection delay of our procedure (Theorems
2.7 and 2.9). In Section 3, we specify the result of Theorem
2.7 for the case when ln(p/q) is a smooth function. We also
show how the result of Theorem 2.9 yields an almost op-
timal mean shift detection in a Gaussian sequence model.
Section 4 is devoted to numerical experiments. Proofs of
the theoretical results are deferred to the supplemental ma-



Nikita Puchkin, Valeriia Shcherbakova

terial.

Notation. We use the following notations throughout the
paper. The notation f ≲ g or g ≳ f means that f ⩽ cg
for an absolute constant c. We also use the standard O(·)
notation. To avoid problems with the logarithmic func-
tion, we use the convention log x = (1 ∨ lnx). We set
a ∧ b = min{a, b}, a ∨ b = max{a, b}, and a+ =
max{a, 0}. For s ⩾ 1 and a measure with the density p, we
define the Ls(p)-norm as ∥f∥Ls(p) = (Eξ∼p|f(ξ)|s)1/s,
L∞(p)-norm as ∥f∥L∞(p) = esssup|f(ξ)|, where ξ ∼
p, and the ψs(p)-norm as ∥f∥ψs(p) = inf{u > 0 :
Eξ∼p exp(|f(ξ)|s/us) ⩽ 2}. We use the notation ψs(p)
for the Orlicz norm, instead of the conventional ψs, to
specify a probability measure and avoid ambiguity, since
we deal with different pre-change and post-change dis-
tributions. For a class of functions F , equipped with a
norm ∥ · ∥, we denote its diameter (with respect to ∥ · ∥)
by D(F , ∥ · ∥). Given two probability measures with the
densities p ≪ q, KL(p, q) =

∫
p(x) ln(p(x)/q(x))dm

stands for the Kullback-Leibler divergence between p and
q. For any two densities p and q, JS(p, q) = KL(p, (p +
q)/2)/2+KL(q, (p+q)/2)/2 denotes the Jensen-Shannon
divergence between p and q.

2 THE ALGORITHM AND ITS
THEORETICAL PROPERTIES

In this section, we present our procedure, given in Algo-
rithm 1, and then discuss its theoretical properties. On
each iteration t ∈ N and for each change point candidate
τ ∈ {1, . . . , t − 1}, the algorithm tries to maximize the
discrepancy measure (3). The requirement that the classi-
fier D in (3) must take its values in (0, 1) is inconvenient
in practical tasks. To avoid this issue, we use the standard
reparametrization D(x) = ef(x)/(1 + ef(x)), f ∈ F , ob-
tain the functional Tτ,t(f) of the form (4) and find its max-
imizer f̂τ,t. After that, we compute a test statistic St as the
maximum of Tτ,t(f̂τ,t) with respect to τ .

At the round t, Algorithm 1 solves t−1 optimization prob-
lems. If the class F is convex, then, using the standard
gradient ascent, one can find an ε-maximizer of the func-
tional Tτ,t(f) in justO(log(1/ε)) iterations, because of the
strong convexity of Tτ,t. Unfortunately, it requires O(t)
operations to compute the gradient of Tτ,t(f). As an alter-
native, one may use the stochastic gradient ascent to reduce
the computational cost of the gradient to O(1). However,
such an improvement is not for free, since the stochastic
gradient algorithm requires O(1/ε) iterations to get an ε-
maximizer. To sum up, for any ε ∈ (0, 1), the procedure
requires O(t2 log(1/ε) ∧ t/ε) operations to compute St
within the accuracy ε. This may become prohibitive with
the growth of t, and we suggest restarting the procedure
from time to time. The good news is that the changes one

Algorithm 1 Contrastive online change point detection
Require: a class of functions F and a threshold z > 0.

1: for t = 1, 2, . . . do the following
2: Receive an observation Xt.
3: For each τ ∈ {1, . . . , t−1}, compute the estimates
f̂τ,t ∈ argmax

f∈F
Tτ,t(f), where

Tτ,t(f) =
t− τ

t

τ∑
s=1

[
f(Xs)− ln

(
1 + ef(Xs)

2

)]

− τ

t

t∑
s=τ+1

ln

(
1 + ef(Xs)

2

)
. (4)

4: Compute the test statistic

St = max
1⩽τ⩽t−1

Tτ,t(f̂τ,t). (5)

5: If St > z, terminate the procedure, and report the
change point occurrence.
return

needs to detect are quite steep in many real-life scenarios,
so one does not have to take ε too small nor the class F too
broad. We show in Section 4 that it is enough to take a class
F of simple structure for consistent change point detection.

2.1 Behaviour of the test statistic in the presence of a
change point

We start with an analysis of the behaviour of the statistic
Tτ,t(f) in the presence of a change point.

Lemma 2.1. Fix t ∈ N and let f∗(x) = ln(p(x)/q(x)).
Assume that the change point occurred at some τ ∈
{1, 2, . . . , t−1}, that is, τ∗ = τ . Then, for any measurable
function f , it holds that

ETτ,t(f)

⩾
2τ(t− τ)

t

(
JS(p, q)− 1

16
∥f − f∗∥2L2(p+q)

)
. (6)

where JS(p, q) is the Jensen-Shannon divergence between
p and q.

Lemma 2.1 illustrates two important properties of Tτ,t(f).
First, if a change point occurred, then, for any f ∈ F the
expectation of Tτ∗,t(f) (and, as consequence, the expecta-
tion of St) grows as the detection delay (t− τ∗) increases.
We show in the proofs of Theorems 2.7 and 2.9 that the
actual value of St will not be much smaller than its ex-
pectation with high probability due to the concentration of
measure phenomenon. On the other hand, Lemma 2.1 re-
veals a relation of our procedure with change point detec-
tion methods based on density ratio estimation. As one can
conclude from (6), the class F must be chosen in a way
to approximate ln(p(x)/q(x)) with a reasonable accuracy.
At the same time, as a reader will see in the next section,
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a broader class F yields larger values of the test statistics
under the null hypothesis. A practitioner must keep this
trade-off in mind while choosing F .

2.2 Behaviour of the test statistic under the null
hypothesis

In this section, we study the behaviour of the test statistic
Tτ,t(f̂) in two scenarios. The first one, considered in The-
orem 2.3, concerns the case when F is a class of functions
taking their values in [−B,B] for some B > 0. A possible
extension for unbounded classes is discussed in Theorem
2.6.

Before we formulate the theoretical results rigorously, let
us remind a reader some preliminaries on covering and
bracketing numbers. Given a normed space (F , ∥ · ∥L2(p))
and u > 0, the covering number N (F , L2(p), u) is the
minimal number of balls of radius u needed to cover F .
Further, for any f1, f2 ∈ F , such that f1 ⩽ f2 almost
surely, a bracket [f1, f2] is a set of all such g ∈ F that
f1 ⩽ g ⩽ f2 with probability one. The size of the
bracket [f1, f2] is ∥f1 − f2∥L2(p). The bracketing num-
ber N[ ](F , L2(p), u) is the minimal number of brackets of
size u needed to cover F .

In the bounded case, we require the class F to have a poly-
nomial bracketing number. In Section 3, we give an exam-
ple that, if p is supported on a unit cube in Rp, then a class
of neural networks with ReLU activations satisfies this as-
sumption.

Assumption 2.2. There exist positive constants A,B, and
d, such that D(F , L∞(p)) ⩽ B, and the bracketing num-
ber of the class F with respect to the L2(p)-norm satisfies
the inequality

N[ ](F , L2(p), u) ⩽

(
A

u

)d
, for all 0 < u ⩽ 2B.

We are in position to formulate a result about the large de-
viations of Tτ,t(f̂τ,t).
Theorem 2.3. Grant Assumption 2.2. Fix any t ∈ N,
any τ ∈ {1, . . . , t − 1} and assume that X1, . . . Xt are
i.i.d. random elements with the density p. Let f̂ ∈
argmaxf∈F Tτ,t(f). Then, for any δ ∈ (0, 1), with proba-
bility at least 1− δ, it holds that

Tτ,t(f̂) ≲ deB
[
B + log

(
Aτ(t− τ)

td

)]
+ eB log(1/δ). (7)

Note that if 0 ∈ F (which is a very mild requirement),
then the statistic Tτ,t(f̂) is non-negative. Theorem 2.3 also
shows that we use a proper scaling for Tτ,t(f̂) in a sense
that the high probability upper bound for Tτ,t(f̂) has only
a logarithmic dependence on τ .

Unfortunately, the boundedness of F with respect to the
L∞(p)-norm may be restrictive, especially if p has an un-
bounded support. In the rest of this section, we consider
the case when D(F , L∞(p)) is allowed to be infinite.

Definition 2.4. A class of functions F is called L-sub-
Gaussian (with respect to a density p) if ∥f∥ψ2(p) ⩽
L∥f∥L2(p) for all f ∈ F .

A simple example of a sub-Gaussian class is the class of
linear functions (with respect to a Gaussian measure). In
Section 3, we show that Algorithm 1 with the linear class
F can efficiently detect a mean shift in a multivariate Gaus-
sian sequence model. We also relax the bracketing number
assumption and replace it by the next one.

Assumption 2.5. The class F is L-sub-Gaussian for some
constant L > 0. Besides, there exist positive constants A
and d, such that the covering number of the class F with
respect to the L2(p)-norm satisfies the inequality

N (F , L2(p), u) ⩽
(
A
u

)d
, for all 0 < u ⩽ D(F , L2(p)).

We are ready to formulate our main result concerning the
behaviour of the statistic Tτ,t(f̂τ,t) in the stationary regime
in the unbounded case.

Theorem 2.6. Grant Assumption 2.5. Fix any t ∈ N,
any τ ∈ {1, . . . , t − 1} and assume that X1, . . . Xt are
i.i.d. random elements with the density p. Let f̂ ∈
argmaxf∈F Tτ,t(f). Then, for any δ ∈ (0, 1), with proba-
bility at least 1− δ, it holds that

Tτ,t(f̂) ≲ L2deD(F,ψ2(p))
√

2 log(4L
√
2) log(1/δ)

·
[
D(F , ψ2(p))

√
logL+ log

(
Aτ(t− τ)

L2td

)]
.

To sum up the results of Sections 2.1 and 2.2, the test statis-
tic St, defined in (5), is expected to grow steeply after
the change point. On the other hand, it will be not too
large in the stationary regime, when no change point oc-
curs. Let us illustrate this point with a simple example. Let
X1, . . . , XT , T = 100, be a sequence of i.i.d. observations
drawn according to the Gaussian distribution N (0, 0.01).
Let τ∗ = 75 and define a sequence Y1, . . . , YT according
to the formula

Yt =

{
Xt, if t ⩽ τ∗,

0.2 +Xt, otherwise.

In other words, the sequences {Xt : 1 ⩽ t ⩽ T} and
{Yt : 1 ⩽ t ⩽ T} coincide before the change point
τ∗ and differ by the shift µ = 0.2 after it. A realiza-
tion of the sequences is displayed in Figure 1. Let F =
{f(x) = wx+ b : w, b ∈ R} be a class of linear functions
and apply Algorithm 1 to the sequences described above.
We observe that the test statistic St, computed for the se-
quence Y1, . . . , YT (the solid red line in Figure 1), rises
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sharply after the change point (see Figure 1, bottom line)
and achieves the value 17.5 in the end but, on the other
hand, it does not exceed 2.5 in the stationary regime (see
the dotted blue line in Figure 1).

Figure 1: An example of behaviour of the test statistic St
(defined in (5)) in the presence of a change point and in the
stationary regime. Top line: a stationary sequence (blue)
and a sequence of observations with a change point (red).
Bottom line: corresponding values of the test statistic St
with a linear class. The dashed vertical line corresponds to
the true change point τ∗.

2.3 Bounds on the average running length and the
expected detection delay

In this section, we provide lower bounds on the average
running length and the expected detection delay of Algo-
rithm 1, based on our findings presented in Sections 2.1
and 2.2. All the bounds hold with high probability.

Let us introduce ρ(F) = inff∈F ∥ ln(p/q) − f∥L2(p+q).
We have the following result for the case of F with
bounded diameter with respect to the L∞(p)-norm.

Theorem 2.7. Grant Assumption 2.2 and assume that
∥f∥L∞(q) ⩽ B for all f ∈ F . Fix any δ ∈ (0, 1) and
T ∈ N. There exists such a choice of z in Algorithm 1
(specified in the proof) that the following holds:

• if τ∗ = ∞, then Algorithm 1 makes at least T steps
until the false alarm with probability at least 1− δ;

• otherwise, if τ∗ is sufficiently large, so that it fulfils

τ∗ ⩾
B2 log(1/δ)

(JS(p, q)− ρ2(F)/16)2
+

6B log(1/δ) + 2z

(JS(p, q)− ρ2(F)/16)
,

then the stopping time t̂ of Algorithm 1 satisfies the

inequality

t̂− τ∗ ≲
B2 log(1/δ)

(JS(p, q)− ρ2(F)/16)2

+
deB [B + log (AT/d)] + eB log(T/δ)

(JS(p, q)− ρ2(F)/16)

with probability at least 1− δ.

Remark 2.8. We emphasize that t̂ is the stopping time of
the procedure, it should not be confused with an estimate
of τ∗. A natural way to estimate the change point is to
consider

τ̂ = argmax
τ∈{1,...,t̂}

Sτ,t̂.

However, in the present paper, we focus on the running
length and the detection delay only. We do not tackle the
problem of estimation of τ∗. The study of theoretical prop-
erties of τ̂ is left for the future research.

Using a similar technique as in the proof of Theorem 2.7
and Theorem 2.6, we obtain large deviation bounds on the
detection delay of Algorithm 1 in the sub-Gaussian case.
Theorem 2.9. Grant Assumption 2.5 and fix any δ ∈ (0, 1),
T ∈ N. There exists such a choice of z in Algorithm 1
(specified in the proof) that the following holds:

• if τ∗ = ∞, then Algorithm 1 makes at least T steps
until the false alarm with probability at least 1− δ;

• otherwise, if τ∗ is sufficiently large, then the stopping
time t̂ of Algorithm 1 satisfies the inequality

t̂− τ∗ ≲
L2d log(T/δ)eD(F,ψ2(p))

√
2 log(4L

√
2)

(JS(p, q)− ρ2(F)/16)

·
[
D(F , ψ2(p))

√
logL+ log

(
AT

Ld

)]
+

[D(F , ψ2(p)) ∨ D(F , ψ2(q))]
2
log(1/δ)

(JS(p, q)− ρ2(F)/16)2

with probability at least 1− δ.

Remark 2.10. The results of Theorems 2.7 and 2.9 can
be easily extended to the case of multiple change points.
We just have to restart the procedure after a structural
break was detected. The only additional requirement will
be that the distance between two subsequent change points
is Ω(log T ), which is quite standard for the offline setup.

We elaborate on the results of Theorems 2.7 and 2.9 in the
next section.

3 EXAMPLES

In this section, we specify the results of Theorem 2.7 and
Theorem 2.9 for particular cases. Our examples include
nonparametric change point detection via feed-forward
neural networks and the classical problem of mean shift
detection in a Gaussian sequence model.
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3.1 Nonparametric online change point detection via
neural networks

Consider the following nonparametric change point detec-
tion setup. Let X1, . . . , Xt, . . . be independent random
elements and assume that X1, . . . , Xτ∗ have a density p
supported on [0, 1]p while the other elements of the time
series are drawn from the density q (also supported on the
unit cube [0, 1]p). Assume that ln(p/q) belongs to a Hölder
class Hβ([0, 1]p, H) for some smoothness parameter β > 0
and some H > 0. Recall that the class Hβ([0, 1]p, H) is
defined as

Hβ([0, 1]p, H) =

{
f : [0, 1]p → R :

∑
α∈Zp+:

∥α∥1<β

∥∂αf∥L∞([0,1]p)

+
∑
α∈Zp+:

∥α∥1=⌊β⌋

sup
x,y∈[0,1]p

x ̸=y

|∂αf(x)− ∂αf(y)|
∥x− y∥β−⌊β⌋

∞
⩽ H

}
,

where, for any multi-index α = (α1, . . . , αp),
∂αf(x) stands for the partial derivative
∂α1 . . . ∂αpf(x)/(∂xα1

1 . . . ∂x
αp
p ) and, for any β ∈ R, ⌊β⌋

denotes the largest integer strictly less than β. We use a
class of feed-forward neural networks to detect a change
in the distribution of the observed sequence. Introduce the
ReLU activation function σ(u) = (u ∨ 0), u ∈ R, and,
for any v ∈ Rp, define the shifted activation function σv
as σv(x) = (σ(x1 − v1), . . . , σ(xp − vp))

⊤, x ∈ Rp. A
neural network is a composition of linear and nonlinear
maps. Let us fix a number of hidden layers L ∈ N,
an architecture A = (a0, . . . , aL+1) ∈ NL+2, matrices
W1 ∈ Ra1×a0 , . . . ,WL+1 ∈ RaL+1×aL , and shift vectors
v1 ∈ Ra1 , . . . , vL ∈ RaL . Then a neural network with
ReLU activations, L hidden layers and the architecture A
is a function f : Ra0 → RaL+1 of the form

f =WL ◦σvL ◦WL−1 ◦σvL−1
◦ · · · ◦W1 ◦σv1 ◦W0. (8)

Given L ∈ N,A = (p, a1, . . . , aL, 1) ∈ NL+2, and s ∈ N,
we consider a class of sparsely connected neural networks

NN(L,A, s) =

{
f of the form (8) :

max
i,j

|Wij | ∨max
i

|vi| ⩽ 1,

∥W0∥0 +
L∑
j=1

(∥Wj∥0 + ∥vj∥0) ⩽ s

}
.

To our knowledge, this class of neural networks was first
studied in (Schmidt-Hieber, 2020). The sparsity parame-
ter s is introduced to reflect the fact that, in practice, one
rarely uses fully connected neural networks, and the num-
ber of active neurons is usually much smaller than the to-
tal number of parameters

∑L
j=1 aj +

∑L+1
j=1 aj−1aj . In

(Schmidt-Hieber, 2020), the author proves two important
results, concerning approximation properties (Theorem 5)
and the covering number of the class NN(L,A, s) (Lemma
5). We provide their statements in Appendix B to make the
paper self-contained. Combining these results with Theo-
rem 2.7, we get the following corollary.
Corollary 3.1. Assume that ln(p/q) ∈ Hβ([0, 1]p, H). Fix
any δ ∈ (0, 1) and T ∈ N. There exist C > 0, τ◦ ∈ N,
L ∈ Z+,A ∈ NL+2, s ∈ N, and z > 0 (specified in the
proof) such that the following holds. Run Algorithm 1 with
the class of truncated neural networks

NNB(L,A, s) =
{
g(x) = −B ∨ (f(x) ∧B) :

f ∈ NN(L,A, s)
}
, (9)

where B any number greater than H +
√
JS(p, q). If

τ∗ = ∞, then Algorithm 1 stops after at least T steps with
probability at least 1 − δ. Otherwise, if τ∗ is sufficiently
large, then, with probability at least 1 − δ, the stopping
time t̂ of Algorithm 1 fulfils

t̂− τ∗ ≲
eB log(1/ JS(p, q)) [B + log(1/ JS(p, q)) log T ]

JS(p, q)
2β+p
2β

+ eB log(T/δ) +
B2 log(1/δ)

JS(p, q)2
,

where the hidden constant depends on H,β, and p.

To our knowledge, this is the first non-asymptotic high
probability bound on the detection delay for an online
change point detection procedure exploiting neural net-
works.

3.2 Online detection of a mean shift in a Gaussian
sequence model

In this section, we show how the result of Theorem 2.9
applies to the classical problem of mean shift detection
in a Gaussian sequence. Assume that X1, . . . , Xτ∗ are
i.i.d. random vectors in Rp with the Gaussian distribution
N (0,Σ) while Xτ∗+1, . . . , Xt, . . . have the Gaussian dis-
tribution N (µ,Σ), µ ̸= 0. In this case, ln(p/q) is linear, so
it is reasonable to consider the following class of functions:

Flin =
{
fw,b(x) = w⊤x+ b :

∥Σ1/2w∥ ⩽ ∥Σ−1/2µ∥, |b| ⩽ µ⊤Σ−1µ
}
. (10)

With this choice, f∗ ∈ Flin, that is, the approxima-
tion error is equal to zero. At the same time, the
class Flin is sub-Gaussian, its ψ2-diameter is of order
(µ⊤Σ−1µ)1/2, and its metric entropy satisfies the inequal-
ity logN (Flin, L2(p), ε) ≲ p log(µ⊤Σ−1µ/ε) for any ε >
0. Substituting these bounds into the statement of Theorem
2.9, we get the following corollary.
Corollary 3.2. Assume that ∥Σ−1/2µ∥ ⩽ ln(4/3). Fix
any δ ∈ (0, 1) and T ∈ N. There exists such z > 0 that the
following holds:
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• if τ∗ = ∞, then the running length of Algorithm 1
(with the class Flin given by (10)) is at least T on an
event with probability 1− δ;

• otherwise, if τ∗ is sufficiently large, then the stopping
time t̂ of Algorithm 1 (with the class Flin) satisfies the
inequality

t̂− τ∗ ≲
p log

(
∥Σ−1/2µ∥T/p

)
log(T/δ)

µ⊤Σ−1µ

with probability at least 1− δ.

The number ∥Σ−1/2µ∥ is sometimes referred to as signal-
to-noise ratio (SNR) in the change point detection litera-
ture. For the ease of presentation, we consider only the case
of low SNR. Corollary 3.2 shows that our approach cap-
tures the dependence on ∥Σ−1/2µ∥ correctly (cf. (Yu et al.,
2020a, Theorem 1) and (Chen et al., 2022, Theorem 2)).
However,it has an additional logarithmic term compared to
the worst-case detection delay of the CUSUM-type proce-
dure (Yu et al., 2020a). This artefact appears because of
universality of our algorithm: it tries to learn a an optimal
discriminatorD without any prior knowledge about p and q
nor about the kind of change, while the CUSUM-type pro-
cedure (Yu et al., 2020a) exploits the difference in means
of the pre-change and post-change distributions.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate the performance of our proce-
dure on synthetic and real-world data sets. The code for all
the experiments, described below, is available at Github1.
We consider three variants of the class F used in Algo-
rithm 1. The first one is the class of polynomials of degree
p. The second is the linear span of the first q elements of the
Fourier basis 1, sin(2πx), cos(2πx), sin(4πx), etc. Finally,
the third class is the class of fully connected feed-forward
neural networks with architecture (1, 2, 3, 1) and ReLU ac-
tivations. The neural network architecture was the same
in all the experiments. We truncate the function values if
their absolute value exceeds 10 to avoid numerical issues.
Though the class F 1 can be arbitrary in general, Theo-
rems 2.7 and 2.9 imply that it should be expressive enough
to approximate the log-ratio ln(p/q) with an adequate ac-
curacy. Our choice is motivated by the fact that polyno-
mials, trigonometric Fourier series and feed-forward neu-
ral networks with ReLU activations are known to have the
universal approximation property. One can consider other
variants of the class F .

The performance of our method (with three aforemen-
tioned variants of the class F) is compared with two popu-
lar nonparametric change point detection methods: KLIEP
(Sugiyama et al., 2008; Liu et al., 2013) and kernel change

1https://github.com/npuchkin/contrastive change point detection

point detection with M-statistic (Li et al., 2015). We also
added the comparison with CUSUM (see, e.g., (Wang et al.,
2020, Definition 1)) in the experiment with a shift in expec-
tation. KLIEP is a density-ratio-based change point detec-
tion method, estimating of the KL-divergence between the
pre-change and post-change distributions. As we discussed
in Section 2.1, our approach is somehow related to density-
ratio-based methods, so it is reasonable to compare our al-
gorithm with one of them. In Li et al. (2015), the authors
use kernel methods to approximate the squared maximum
mean discrepancy (MMD) between the pre-change and
post change distributions. We use a different divergence
measure, based on the maximum cross-entropy, but the
core idea of maximizing discrepancy between pre-change
and post change observations is quite similar.

4.1 Synthetic data sets

The experiments with synthetic data check the ability
of the procedure to detect changes in mean, vari-
ance, and the density of the distribution. Before we
move to description of our results, let us elaborate on
how we tune the thresholds. We sample T = 150
i.i.d. samples according to p and compute the max-
imal value of the corresponding test statistic S(1)

t ,
1 ⩽ t ⩽ 150. We repeat the procedure several times and
obtain the values max1⩽y⩽T S(2)

t , . . . ,max1⩽y⩽T S(J)
t ,

where J is the number of repetitions. Then we put
z = max1⩽j⩽J max1⩽t⩽T S(j)

t . Such a choice ensures
that the running length of our procedure is not smaller
than T = 150 with probability at least 1 − 1/(J + 1).
Indeed, if we run the procedure in the stationary regime
and compute the corresponding values of the test statistic
St, then the probability that max1⩽t⩽T St exceeds z =

max1⩽j⩽J max1⩽t⩽T S(j)
t is the same as max1⩽t⩽T S(j)

t

exceeds max{max1⩽t⩽T St,maxk ̸=j max1⩽t⩽T S(k)
t }.

Since all such probabilities sum to one, we conclude that
P(max1⩽t⩽T St > z) = 1/(J +1), provided that there are
no change points. We took J = 9 in the experiments with
changes in mean and in variance. In the third experiment,
where distribution change of observations transforms but
the first two moments remain unchanged, we took J = 4.
The thresholds of other algorithms were tuned in a similar
fashion. In other words, the running length of all the
algorithms was at least 150 with probability 0.9 in the
experiments on the first and the second data sets and with
probability 0.8 in the experiments on the third data set.

The setup was as follows. In each example, we sampled
an artificial sequence 10 times and computed the detection
delays for Algorithm 1 with different classes F and for the
competitors (CUSUM, KLIEP and kernel change point de-
tection with M-statistic) for each realization. Table 1 dis-
plays the average detection delay for each method. In all
the synthetic experiments, the weights of the neural net-

https://github.com/npuchkin/contrastive_change_point_detection
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work were optimized via the PyTorch implementation of
the Adam method (Kingma and Ba, 2015) with 50 epochs
and the learning rate 0.1. During the first 20 iterations, we
collected the observations for further training, and the test
statistic was not computed. We also slightly adjusted the
test statistic St: instead of maximizing Tτ,t(f̂τ,t) over the
whole set {1, . . . , t − 1}, we took the maximum with re-
spect to τ ∈ {10, 11, . . . , t− 10}. This simple trick helped
us to reduce the detection delay. The hyperparameters of
KLIEP and M-statistic-based kernel change point methods
were tuned in a way to minimize the average detection de-
lay while keeping the running length at least 150 with high
probability. The information about the thresholds and hy-
perparameters is collected in Table 4 (see Section E in the
appendix).

Example 1: mean shift detection in a Gaussian sequence
model. We generated a univariate Gaussian sequence of
length 150. The first 75 observations had the Gaussian dis-
tribution N (0, σ2) with σ = 0.1 and the other 75 were i.i.d.
N (µ, σ2) with µ = 0.2 and the same σ. Besides the class
of neural networks, we considered the class of polynomials
of degree p = 1 and the linear span of {1, sin(2πx)} (that
is, the linear span of the first q = 2 elements of the Fourier
basis).

Example 2: variance change detection in a Gaussian se-
quence model. In the second example, we sampled 75 in-
dependent Gaussian random variables N (0, σ2

0) with σ0 =
0.1 and 75 random variables with the distribution N (0, σ2),
σ = 0.3, so the expectation of all the random variables was
the same. CUSUM is not applicable in this case. The pa-
rameters p and q were set to 2 and 3, respectively.

Example 3: distributional change. Finally, we checked
the ability of our procedure to adapt to distributional
changes. For this purpose, we generated a sequence of
150 independent random variables where the first 75 had
the uniform distribution on [−σ/

√
3, σ/

√
3] with σ = 0.1

and the other 75 were drawn from the Gaussian distribu-
tion N (0, σ2). The parameters of the uniform distribution
were chosen in a way to match the first two moments of the
Gaussian distribution. In this case, CUSUM is not appli-
cable. The parameters p and q were set to 5 and 6, respec-
tively.

According to Table 1, Algorithm 1 with F equal to poly-
nomials is the most efficient method to detect a change
point amongst competitors. KLIEP takes the third place
in the first experiment and the second place in two others.
CUSUM detects the shift in mean extremely fast but it is
not applicable to more comlicated scenarios. We would
like to note that Algorithm 1 with F equal to neural net-
works performs almost as good as KLIEP.

Table 1: Detection delays of Algorithm 1 (with three vari-
ants of the class F : polynomials (poly), linear span of the
Fourier basis (Fourier) and neural networks (NN)), KLIEP,
kernel change point with M-statistic, and CUSUM on syn-
thetic data sets. Two best results are boldfaced.

METHOD EX. 1 EX. 2 EX. 3
Alg. 1
+ poly 6.7± 2.0 16.4± 8.1 41.2± 28.3
Alg. 1
+ Fourier 7.6± 2.1 44.1± 16.8 62.0± 22.1
Alg. 1
+ NN 9.4± 1.6 19.8± 8.4 59.1± 19.0
KLIEP 9.0± 3.5 19.6± 18.9 43.0± 32.1
M-statistic 10.4± 3.4 51.1± 27.3 65.3± 18.1
CUSUM 5.0± 2.0 – –

4.2 Speech records analysis

We used CENSREC-1-C2 data in the Speech Resource
Consortium (SRC) corpora provided by National Institute
of Informatics (NII) to test the algorithm in practical tasks.
The data set contains a clean speech record (MAH clean)
and the same record corrupted with noise of different mag-
nitude (MAH N1 SNR20, MAH N1 SNR15). We prepro-
cessed the data as follows. First, we normalized the data.
Next, the audio track was split into 5 segments with a single
change from silence/noise to speech, and then each 10-th
observation was taken. The true change point values were
set on the MAH clean data set and used in the noisy ver-
sions of the record. Examples of behaviour of test statistics
for different methods are exposed in Figure 4 (see Section
E in the appendix).

Table 2: Detection delays of Algorithm 1 (with three vari-
ants of the class F), KLIEP, kernel change point detec-
tor with M-statistic, and CUSUM on the CENSREC-1-C
speech records (the clean one and two corrupted with noise
with SNR 20 and SNR 15). Two best results are boldfaced.

METHOD CLEAN SNR 20 SNR 15
Algorithm 1
+ polynomials 3.2± 4.0 3.8± 2.6 6.5± 7.8
Algorithm 1
+ Fourier basis 8.2± 6.2 8.2± 2.2 11.0± 6.9
Algorithm 1
+ neural networks 7.5± 6.8 3.0± 1.2 9.0± 5.9
KLIEP 7.8± 9.7 17.0± 13.7 10.2± 8.8
M-statistic 3.2± 3.1 10.5± 7.9 4.2± 4.3

As in the experiments with the artificial data sets, we con-
sidered Algorithm 1 with three variants of the class F :

2http://research.nii.ac.jp/src/en/CENSREC-1-C.html
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polynomials of degree 9, the linear span of the first 10 ele-
ments of the Fourier basis, and the class of fully connected
feed-forward neural networks with architecture (1, 2, 3, 1)
and ReLU activations. We used the Adam optimizer with
200 epochs and the learning rate 0.1 to tune the parame-
ters of the neural network. We computed detection delays
for each algorithm on each of 5 segments. The results are
reported in Table 2, the corresponding thresholds and the
values of hyperparameters are shown in Table 5 (see Sec-
tion E in the appendix).

Similarly to the experiments with artificial data, Algorithm
1 with polynomial F proved its efficiency being amongst
two best methods in all the cases. The main difference with
the artificial experiments is that kernel change point detec-
tion method with M-statistic behaves much better, while
KLIEP shows poor performance, compared to Algorithm 1
with polynomials and neural networks and the M-statistic-
based method.

4.3 Activity change recognition

In this section, we apply Algorithm 1 to detect changes in
a user’s physical activity. In our experiments, we took a
part of the data set WISDM (Weiss et al., 2019), containing
3-dimensional measurements of a smartphone accelerom-
eter, measured at a rate 20Hz. We preprocessed the data
set, taking only each 20-th observation. Nevertheless, even
after such a reduction the length of the time series was over
3000. The observations are displayed in Figure 2. During
the measurement period, the user changed a kind of activ-
ity 17 times, i.e. the time series contained 17 change points.
Our goal was to detect them as soon as possible.

Figure 2: Three-dimensional time series from the WISDM
data set.

We applied Algorithm 1 with two variants of the class
F : a linear class and a class of three-layered fully-
connected feed-forward neural networks with an architec-

ture (1, 2, 3, 1). As before, we compared our procedure
with KLIEP and the kernel change point detector with M-
statistic. After the parameter tuning, we chose the band-
width in KLIEP and M-statistic equal to 0.5. We took the
thresholds to be equal to z = 22, z = 20, z = 75, and
z = 7.5 in Algorithm 1 with a linear class F , Algorithm 1
with neural networks, the kernel change point detector, and
KLIEP, respectively. After that, we computed the number
of false alarms and the average detection delay. The results
are presented in Table 3. The plots of the test statistics are
shown in Figure 5. We would like to note that the kernel
change point detector missed the second change point. The
average detection delay for M-statistic is computed based
on all the change points, except for the second one. Ac-
cording to Table 3, Algorithm 1 makes less false alarms
while having a smaller average detection delay.

Table 3: The number of false alarms (FA) and the average
detection delays (DD) of Algorithm 1 (with two variants of
the class F), KLIEP, and the kernel change point detector
with M-statistic on the WISDM data set. Best results are
boldfaced.

METHOD FA DD
Algorithm 1 + linear class 4 23.1± 12.3
Algorithm 1 + neural networks 4 16.4± 5.7
KLIEP 5 35.2± 49.6
M-statistic 7 30.2± 44.4

5 CONCLUSION AND FUTURE
DIRECTIONS

We suggested a novel online change point detection proce-
dure which is suitable for both parametric and nonparamet-
ric scenarios. We derived high probability bounds on the
running length and the detection delay of the algorithm.
As a consequence, we obtained the first non-asymptotic
bound for online change point detection via neural net-
works. We also conducted numerical experiments on arti-
ficial and real-world data illustrating efficiency of the pro-
posed method.

Further research in this direction may include considera-
tion of nonstationary post-change observations as in (Liang
et al., 2021). Besides, one may try to improve the de-
pendence on B in the upper bound (7) using improper
estimators instead of f̂ . In (Foster et al., 2018), the au-
thors showed that a proper regularization leads to a doubly-
exponential improvement in the dependence on B in the
problem of logistic regression.

Note on societal impacts The paper is mostly of theo-
retical nature. The presented results and the change point
detection algorithm itself have no negative societal impact.



A Contrastive Approach to Online Change Point Detection

Acknowledgements

The publication was supported by the grant for re-
search centers in the field of AI provided by the Ana-
lytical Center for the Government of the Russian Fed-
eration (ACRF) in accordance with the agreement on
the provision of subsidies (identifier of the agreement
000000D730321P5Q0002) and the agreement with HSE
University №70-2021-00139. Nikita Puchkin is a Young
Russian Mathematics award winner and would like to thank
its sponsors and jury. The authors are grateful to the anony-
mous referees for careful reading of the paper and for their
valuable and constructive remarks that improved the qual-
ity of this work.

References

S. Arlot, A. Celisse, and Z. Harchaoui. A kernel multiple
change-point algorithm via model selection. Journal of
Machine Learning Research, 20(162):1–56, 2019.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local
Rademacher complexities. The Annals of Statistics, 33
(4):1497–1537, 2005.

D. Belomestny, L. Iosipoi, Q. Paris, and N. Zhivotovskiy.
Empirical variance minimization with applications in
variance reduction and optimal control. Bernoulli, 28
(2):1382–1407, 2022.

G. Biau, K. Bleakley, and D. M. Mason. Long signal
change-point detection. Electronic Journal of Statistics,
10(2):2097–2123, 2016.

Y. Cao, L. Xie, Y. Xie, and H. Xu. Sequential change-point
detection via online convex optimization. Entropy, 20
(2):108, 2018.

W.-C. Chang, C.-L. Li, Y. Yang, and B. Póczos. Ker-
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A SOME PROPERTIES OF SUB-GAUSSIAN RANDOM VARIABLES

In this section, we provide some useful properties of sub-Gaussian random variables. For any random variable ξ, its Orlicz
norm ψ2 is defined as

∥ξ∥ψ2
= inf

{
t > 0 : Eeξ

2/t2 ⩽ 2
}
.

Random variables with a finite ψ2-norm are usually called sub-Gaussian, because the tails of their distributions decay as
O
(
e−t

2/∥ξ∥2
ψ2

)
. Indeed, by the definition of the Orlicz norm, we have

P (|ξ| > t) ⩽
Ee|ξ|/∥ξ∥

2
ψ2

et
2/∥ξ∥2

ψ2

⩽ 2e
− t2

∥ξ∥2
ψ2 , for all t > 0. (11)

In its turn, the inequality (11) yields an upper bound on the Lp-norm of ξ. For any p ⩾ 1, it holds that

E|ξ|p =
+∞∫
0

P (|ξ|p ⩾ u) du ⩽ 2

+∞∫
0

e
− u2/p

∥ξ∥2
ψ2 du

= p∥ξ∥pψ2

+∞∫
0

vp/2−1e−vdv = p∥ξ∥pψ2
Γ
(p
2

)
= 2∥ξ∥pψ2

Γ
(p
2
+ 1
)
, (12)

where Γ(·) is the gamma function. There are several equivalent definitions of sub-Gaussian variables. A reader can find
them, for instance, in (Vershynin, 2018, Proposition 2.5.2). In our proofs, we deal with sums of independent sub-Gaussian
random variables and use the following property.

Proposition A.1 (Vershynin (2018), Proposition 2.6.1). Let ξ1, . . . , ξn be independent centered sub-Gaussian random
variables. Then their sum Sn = ξ1 + . . .+ ξn is also sub-Gaussian, and its Orlicz norm satisfies the inequality

∥Sn∥2ψ2
≲

n∑
i=1

∥ξi∥2ψ2
.

It is also worth mentioning that, according to (Vershynin, 2018, Lemma 2.6.8), the centering does not increase the ψ2-norm
too much. That is, for any sub-Gaussian random variable ξ, it holds that

∥ξ − Eξ∥ψ2 ≲ ∥ξ∥ψ2 . (13)

B SOME PROPERTIES OF NEURAL NETWORKS

This section collects some useful properties of feed-forward neural networks with ReLU activations. Let us recall that
NN(L,A, s) denotes the class of neural networks with L hidden layers, architecture A, and at most s non-zero weights.
The next theorem from Schmidt-Hieber (2020) concerns approximation properties of neural networks.

Theorem B.1 (Schmidt-Hieber (2020), Theorem 5). For any f∗ ∈ Hβ([0, 1]p, H) and anyN,m ∈ N, there exists a neural
network f ∈ NN(L,A, s) with

L = 8 + (m+ 5) (1 + ⌈log2(p ∨ β)⌉)
hidden layers, the architecture

A = (p, 6(⌈β⌉+ p)N, . . . , 6(⌈β⌉+ p)N, 1),

and the number of non-zero parameters

s ⩽ 141(p+ β + 1)3+pN(m+ 6),

such that
∥f − f∗∥L∞([0,1]p) ⩽ (1 + p2 + β2)6p(2H + 1)N2−m + 3βHN−β/p.

Taking a sufficiently deep and wide enough neural network, one can approximate any function from Hβ([0, 1]p, H) with
the desired accuracy. On the other hand, Schmidt-Hieber established the following upper bound on the covering number
of NN(L,A, s).
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Lemma B.2 (Schmidt-Hieber (2020), Lemma 5). For any L ∈ Z+,A ∈ NL+2, s ∈ N, the covering number of the class
NN(L,A, s) with respect to the L∞([0, 1]p)-norm satisfies the inequality

logN (NN(L,A, s), L∞([0, 1]p), ε) ⩽ (s+ 1) log

(
2(L+ 1)V 2

ε

)
, for all ε > 0,

where V =
∏L+1
j=0 (1 + aj).

C PROOFS OF THE MAIN RESULTS

C.1 Proof of Lemma 2.1

Let

D∗(x) =
ef

∗(x)

1 + ef∗(x)
=

p(x)

p(x) + q(x)
.

With the introduced notation, it holds that

f∗(x)− ln

(
1 + ef

∗(x)

2

)
= ln(2D∗(x)) and − ln

(
1 + ef

∗(x)

2

)
= ln(2− 2D∗(x)).

If τ∗ = τ , then we obtain that

ETτ,t(f∗) =
τ(t− τ)

t

[∫
ln(2D∗(x))p(x)dm+

∫
ln(2− 2D∗(x))q(x)dm

]
=
τ(t− τ)

t

[∫
ln

(
2p(x)

p(x) + q(x)

)
p(x)dm+

∫
ln

(
2q(x)

p(x) + q(x)

)
q(x)dm

]
=

2τ(t− τ)

t

[
KL

(
p,

p+ q

2

)
+KL

(
q,

p+ q

2

)]
≡ 2τ(t− τ) JS(p, q)

t
.

Fix a function f , introduce D(x) = ef(x)/(1 + ef(x)) and note that

ETτ,t(f∗)− ETτ,t(f) =
τ(t− τ)

t

[∫
ln

(
D∗(x)

D(x)

)
p(x)dm+

∫
ln

(
1−D∗(x)

1−D(x)

)
q(x)dm

]
=
τ(t− τ)

t

[∫
D∗(x) ln

(
D∗(x)

D(x)

)
(p(x) + q(x))dm

+

∫
(1−D∗(x)) ln

(
1−D∗(x)

1−D(x)

)
(p(x) + q(x))dm

]
.

Substituting D∗(x) and D(x) by ef
∗(x)/(1 + ef

∗(x)) and 1/(1 + ef
∗(x)), respectively, we obtain that

ETτ,t(f∗)− ETτ,t(f) =
τ(t− τ)

t

[∫
ef

∗(x)

1 + ef∗(x)
(f∗(x)− f(x))(p(x) + q(x))dm

]
− τ(t− τ)

t

[∫
ef

∗(x)

1 + ef∗(x)
ln

(
1 + ef

∗(x)

1 + ef(x)

)
(p(x) + q(x))dm

]
− τ(t− τ)

t

[∫
1

1 + ef∗(x)
ln

(
1 + ef

∗(x)

1 + ef(x)

)
(p(x) + q(x))dm

]
(14)

=
τ(t− τ)

t

[∫
ef

∗(x)

1 + ef∗(x)
(f∗(x)− f(x))(p(x) + q(x))dm

]
− τ(t− τ)

t

[∫
ln

(
1 + ef

∗(x)

1 + ef(x)

)
(p(x) + q(x))dm

]
.
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Consider a function g : R2 → R, defined as

g(u, v) =
(u− v)eu

1 + eu
− ln

(
1 + eu

1 + ev

)
.

Note that, for any u, v ∈ R, we have g(u, u) = 0,

∂g(u, v)

∂v

∣∣∣∣
v=u

=

[
− eu

1 + eu
+

ev

1 + ev

]∣∣∣∣
v=u

= 0, and
∂2g(u, v)

∂v2
=

ev

(1 + ev)2
⩽

1

4
.

Hence, for any u, v ∈ R, it holds that

g(u, v) ⩽
(u− v)2

8
.

Applying this inequality to the right-hand side of (14), we obtain that

ETτ,t(f∗)− ETτ,t(f) ⩽
τ(t− τ)

8t

[∫
(f∗(x)− f(x))

2
(p(x) + q(x))dm

]
⩽
τ(t− τ)

8t

(
∥f∗ − f∥2L2(p)

+ ∥f∗ − f∥2L2(q)

)
.

Taking into account that ETτ,t(f∗) = 2τ(t− τ) JS(p, q)/t, we finally get

ETτ,t(f) ⩾
2τ(t− τ)

t

(
JS(p, q)− 1

16
∥f − f∗∥2L2(p)

− 1

16
∥f − f∗∥2L2(q)

)
.

C.2 Proof of Theorem 2.3

Lemma C.1. Let a function f take its values in [−B,B]. Assume that X1, . . . , Xt are independent and identically
distributed. Then, for any τ ∈ {1, . . . , t− 1}, it holds that

τ(t− τ)Ef2(X1)

t
⩽

−ETτ,t(f)
κ

.

where Tτ,t(f) is defined in (4) and

κ = min

{
eB

(1 + eB)2
,

e−B

(1 + e−B)2

}
.

Moreover, we have Var(Tτ,t(f)) ⩽ τ(t− τ)Ef2(X1)/t ⩽ −ETτ,t(f)/κ.

In the proof of Theorem 2.3, we use an approach based on local Rademacher complexities (see, for instance, Bartlett et al.
(2005)). The inequality Var(Tτ,t(f)) ⩽ −ETτ,t(f)/κ will allow us to get the so-called fast rates of convergence. However,
note that

t− τ

t

τ∑
s=1

[
f(Xs)− ln

(
1 + ef(Xs)

2

)]
nor

τ

t

t∑
s=τ+1

ln

(
1 + ef(Xs)

2

)
do not have the properties of Tτ,t(f), discussed in Lemma C.1. This means that, in order to exploit the curvature of
ETτ,t(f) with respect to f , we must study both terms in (4) simultaneously. The problem is that the terms in the right-hand
side of (4) are not identically distributed (though independent). We must slightly modify the argument of Bartlett et al.
(2005) to overcome this issue.

Introduce a parameter r > 0 to be specified later. For any f ∈ F , define

k(f) = min

{
m ∈ Z+ : 4mr ⩾

τ(t− τ)

t
Ef2(X1)

}
and consider the empirical process 4−k(f)Tτ,t(f), f ∈ F . The next lemma allows us to bound the expectation of

sup
f∈F

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
.
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Lemma C.2. Grant Assumption 2.2. Then there exists an absolute constant C > 0 such that

E sup
f∈F

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
⩽ C

(√
rd log

(
Aτ(t− τ)

rt

)
+Bd log

(
Aτ(t− τ)

rt

))
(15)

The proof of Lemma C.2 is based on the bracketing entropy chaining argument (Han et al., 2019, Lemma 7). Denote the
right-hand side of (15) by Φ(r). Talagrand’s concentration inequality (Klein and Rio, 2005, Theorem 1.1), combined with
the result of Lemma C.2, yields that

sup
f∈F

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
⩽ 2Φ(r) +

√
2r log(1/δ) + 4B log(1/δ)

on an event E1, such that P(E1) ⩾ 1− δ. Here we used the fact that, for any f ∈ F , it holds that

Var
(
4−k(f)Tτ,t(f)

)
=

1

16k(f)
Var (Tτ,t(f)) ⩽

τ(t− τ)

4k(f)t
Ef2(X1) ⩽ r.

Take

r = max

{
128Cd

κ

(
4Cd

κ
∨B

)
log

(
Aτ(t− τ)κ

16Ctd(B ∧ 4Cd/κ)

)
,

(
8

κ
∨B

)
16 log(1/δ)

κ

}
(16)

and consider two cases. For all functions f ∈ F , satisfying the inequality τ(t− τ)Ef2(X1) ⩽ rt, we have k(f) = 0 and
then, on the event E1, it holds that

Tτ,t(f) ⩽ ETτ,t(f) + 2Φ(r) +
√

2r log(1/δ) + 4B log(1/δ)

⩽ 2Φ(r) +
√
2r log(1/δ) + 4B log(1/δ)

≲
d

κ
log

(
Aκ2τ(t− τ)

td

)
+Bd log

(
Aκτ(t− τ)

tBd

)
+

(
1

κ
∨B

)
log(1/δ).

Here we used the fact that ETτ,t(f) ⩽ 0 for all f ∈ F (follows from Lemma C.1). Otherwise, due to the definition of
k(f), it holds that

−ETτ,t(f)
κ

⩾
τ(t− τ)Ef2(X1)

t
⩾ 4k(f)−1r

and, hence,

Tτ,t(f) ⩽ 4k(f)
(
−κr

4
+ 2Φ(r) +

√
2r log(1/δ) + 4B log(1/δ)

)
on E1. For r given by (16), we have

−κr
16

⩾ max
{
Φ(r),

√
2r log(1/δ), 4B log(1/δ)

}
.

Thus, we obtain that Tτ,t(f) ⩽ 0 on E1 for all f ∈ F such that k(f) ⩾ 1. Hence, with probability at least 1− δ,

sup
f∈F

Tτ,t(f) ≲
d

κ
log

(
Aκ2τ(t− τ)

td

)
+Bd log

(
Aκτ(t− τ)

tBd

)
+

(
1

κ
∨B

)
log(1/δ).

The expression in the right-hand side can be simplified if one takes into account that κ ⩾ 0.5e−B :

sup
f∈F

Tτ,t(f) ≲ deB
[
B + log

(
Aτ(t− τ)

td

)]
+ eB log(1/δ).
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C.3 Proof of Theorem 2.6

As in the proof of Theorem 2.3, we use the peeling and reweighting argument. Introduce a parameter r > 0 to be specified
later. Recall that, for any f ∈ F ,

k(f) = min

{
m ∈ Z+ : 4mr ⩾

τ(t− τ)

t
Ef2(X1)

}
,

and, for any b ⩾ a > 0, define

F(a, b) =

{
f ∈ F :

at

τ(t− τ)
⩽ Ef2(X1) ⩽

bt

τ(t− τ)

}
.

Then it holds that

sup
f∈F

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
⩽ max

{
sup

f∈F(0,r)

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
,

max
j∈Z+

sup
f∈F(4j−1r,4jr)

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]}

⩽ max
j∈Z+

{
4−j+1 sup

f∈F(0,4jr)

[Tτ,t(f)− ETτ,t(f)]

}
.

Fix any f, g ∈ F . Due to the centering lemma (Vershynin, 2018, Lemma 2.6.8) (see also the inequality (13)), it holds that

∥Tτ,t(f)− ETτ,t(f)− Tτ,t(g) + ETτ,t(g)∥ψ2
≲ ∥Tτ,t(f)− Tτ,t(g)∥ψ2

.

since the probability measure is clear from context, we write ψ2, instead of ψ2(p), in this proof to avoid the abuse of
notation. For any f ∈ F , let us represent

Tτ,t(f) =
τ(t− τ)

t
Pτ,t(f) +

τ(t− τ)

t
Qτ,t(f),

where

Pτ,t(f) =
1

τ

τ∑
s=1

[
f(Xs)− ln

(
1 + ef(Xs)

2

)]
and

Qτ,t(f) = − 1

t− τ

t∑
s=τ+1

ln

(
1 + ef(Xs)

2

)
.

The triangle inequality yields that

∥Tτ,t(f)− Tτ,t(g)∥ψ2
⩽
τ(t− τ)

t
∥Pτ,t(f)− Pτ,t(g)∥ψ2

+
τ(t− τ)

t
∥Qτ,t(f)−Qτ,t(g)∥ψ2

.

Applying Proposition A.1 to Pτ,t(f)− Pτ,t(g) and Qτ,t(f)−Qτ,t(g), we obtain that

∥Pτ,t(f)− Pτ,t(g)∥ψ2
≲

1√
τ

∥∥∥∥ln( ef(X1)

1 + ef(X1)

)
− ln

(
eg(X1)

1 + eg(X1)

)∥∥∥∥
ψ2

and
∥Qτ,t(f)−Qτ,t(g)∥ψ2

≲
1√
t− τ

∥∥∥ln(1 + ef(X1)
)
− ln

(
1 + eg(X1)

)∥∥∥
ψ2

.

Moreover, since the maps y 7→ (y − log(1 + ey)) and y 7→ log(1 + ey) are 1-Lipschitz, we have∥∥∥∥ln( ef(X1)

1 + ef(X1)

)
− ln

(
eg(X1)

1 + eg(X1)

)∥∥∥∥
ψ2

⩽ ∥f − g∥ψ2
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and, similarly, ∥∥∥ln(1 + ef(X1)
)
− ln

(
1 + eg(X1)

)∥∥∥
ψ2

⩽ ∥f − g∥ψ2
.

Hence,

∥Tτ,t(f)− Tτ,t(g)∥ψ2
≲

(
(t− τ)

√
τ

t
+
τ
√
t− τ

t

)
∥f − g∥ψ2

≲

√
t

τ(t− τ)
∥f − g∥ψ2

⩽ L

√
t

τ(t− τ)
∥f − g∥L2(p)

,

and we can apply a corollary of (Ledoux and Talagrand, 2011, Theorem 11.2 and eq. (11.3)) (see the discussion in (Ledoux
and Talagrand, 2011, Theorem p. 302)): for any j ∈ Z+, it holds that∥∥∥∥∥ sup

f∈F(0,4jr)

[Tτ,t(f)− ETτ,t(f)]

∥∥∥∥∥
ψ2

≲ L

√
t

τ(t− τ)

D(F(0,4jr),L2(p))∫
0

√
logN (F(0, 4jr), L2(p), u)du

⩽ L

√
t

τ(t− τ)

4jrt/τ/(t−τ)∫
0

√
d log

(
A

ε

)
du

≲ L

√
4jrd log

(
Aτ(t− τ)

4jrt

)
.

This and (11) imply that, for any δ ∈ (0, 1) and for any j ∈ Z+, with probability at least 1− 2−j−1δ, it holds that

sup
f∈F(0,4jr)

[Tτ,t(f)− ETτ,t(f)] ≲ L

√
4jrd log

(
Aτ(t− τ)

4jrt

)
log

(
2j+2

δ

)
.

Applying the union bound, we obtain that, for any δ ∈ (0, 1), with probability at least 1− δ,

sup
f∈F

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
⩽ max
j∈Z+

{
4−j+1 sup

f∈F(0,4jr)

[Tτ,t(f)− ETτ,t(f)]

}

≲ max
j∈Z+

{
2−jL

√
rd log

(
Aτ(t− τ)

4jrt

)
log

(
2j+2

δ

)}

≲ L

√
rd log

(
Aτ(t− τ)

rt

)
log(1/δ). (17)

Let C be a hidden constant in (17) and take

r =
16C2L2d

κ2
log

(
Aκ2τ(t− τ)

16C2L2td

)
log(1/δ).

From now on, we restrict our attention on an event E2, where (17) holds. As in the proof of Theorem 2.3, consider two
cases. First, if a function f ∈ F satisfies τ(t− τ)Ef2(X1) ⩽ rt, then k(f) = 0 and, hence,

Tτ,t(f) ⩽ Tτ,t(f)− ETτ,t(f) ≲ L

√
rd log

(
Aτ(t− τ)

rt

)
log(1/δ)

≲
L2d

κ
log

(
Aκ2τ(t− τ)

L2td

)
log(1/δ).
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On the other hand, the inequality k(f) ⩾ 1 means that τ(t − τ)Ef2(X1) ⩾ 4k(f)−1rt. The next lemma relates the
expectations of f2(X1) and Tτ,t(f).
Lemma C.3. Assume that a function class F is L-sub-Gaussian with respect toX1 ∼ p. Fix any t ∈ N, τ ∈ {1, . . . , t−1}
and let X2, . . . , Xt be i.i.d. copies of X1. Then, for any f ∈ F , it holds that

τ(t− τ)

t
Ef2(X1) ⩽

−ETτ,t
κ

, where κ =
1

2
exp

{
−D(F , ψ2)

√
2 ln(4L

√
2)

}
.

Lemma C.3 immediately implies that
4−k(f)ETτ,t

κ
⩽ −r/4,

and then

Tτ,t(f) ⩽ −κr
4

+ CL

√
rd log

(
Aτ(t− τ)

rt

)
log(1/δ) ⩽ 0.

Thus, on the event E2, it holds that

sup
f∈F

Tτ,t(f) ≲
L2d

κ
log

(
Aκ2τ(t− τ)

L2td

)
log(1/δ)

≲ L2deD(F,ψ2)
√

2 log(4L
√
2)

[
D(F , ψ2)

√
logL+ log

(
Aτ(t− τ)

L2td

)]
log(1/δ).

C.4 Proof of Theorem 2.7

Theorem 2.3 and the union bound yield that, in the stationary regime, with probability at least 1− δ

max
1⩽t⩽T

St ⩽ CdeB
[
B + log

(
AT

d

)]
+ CeB log(T/δ),

where C is an absolute positive constant. Hence, if X1, . . . , XT are i.i.d. random elements and

z = CdeB
[
B + log

(
AT

d

)]
+ CeB log(T/δ),

then Algorithm 1 does not stop on the first T iterations with probability at least 1− δ.

On the other hand, let f◦ ∈ argminf∈F ∥f − log(p/q)∥L2(p+q). Bernstein’s inequality implies that, for any fixed t ∈ N,
with probability at least 1− δ,

Tτ∗,t(f
◦) > ETτ∗,t(f

◦)−
√

2Var(Tτ∗,t(f◦)) log(1/δ)− 3B log(1/δ)

>
2τ∗(t− τ∗)

t

(
JS(p, q)− ρ2(F)

16

)
−B

(√
2(t− τ∗)τ∗ log(1/δ)

t
+ 3 log(1/δ)

)
.

Here we used the fact that log((1 + eu)/2) ⩽ |u| for all u ∈ R, which yields

Var(Tτ∗,t(f
◦)) ⩽

(t− τ∗)2τ∗

t
E log2

(
2ef

◦(X1)

1 + ef◦(X1)

)
+

(t− τ∗)τ∗2

t
E log2

(
2

1 + ef◦(Xt)

)
⩽

(t− τ∗)2τ∗

t
E (f◦(X1))

2
+

(t− τ∗)τ∗2

t
E (f◦(X1))

2

⩽
B2(t− τ∗)τ∗

t
.

Let t◦ be the smallest positive integer, satisfying the inequality

τ∗(t− τ∗)

t
⩾
τmin

2
,
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where
τmin

2
=

⌈
B2 log(1/δ)

2(JS(p, q)− ρ2(F)/16)2
+

3B log(1/δ) + z

2(JS(p, q)− ρ2(F)/16
)

⌉
+ 1.

Then, with probability at least 1− δ, we have

St◦ ⩾ Tτ,t◦(f◦)

>
2τ(t− τ)

t

(
JS(p, q)− ρ2(F)

16

)
−B

(√
2(t− τ)τ log(1/δ)

t
+ 3 log(1/δ)

)
⩾ z.

Thus, on this event, the stopping time of Algorithm 1 does not exceed t◦. This implies that

τ∗(t̂− τ∗)

t̂
⩽
τ∗(t◦ + 1− τ∗)

t◦ + 1
<
τmin

2
.

Note that, due to the conditions of Theorem 2.7, it holds that τ∗ ⩾ τmin. Hence, with probability at least 1− δ,

t̂− τ∗ ⩽
τminτ

∗

2(τ∗ − τmin/2)
⩽ τmin ≲

B2 log(1/δ)

(JS(p, q)− ρ2(F)/16)2
+

B log(1/δ) + z

JS(p, q)− ρ2(F)/16
.

C.5 Proof of Theorem 2.9

The proof of Theorem 2.9 is similar to the one of Theorem 2.7 but relies on 2.6, rather than on 2.3. Theorem 2.6 and the
union bound imply that, in the stationary regime, the exists such C > 0 that, with probability at least 1− δ,

max
1⩽t⩽T

St ⩽ CL2deD(F,ψ2(p))
√

2 log(4L
√
2)

[
D(F , ψ2(p))

√
logL+ log

(
Aτ(t− τ)

L2td

)]
log(T/δ).

Hence, if

z = CL2deD(F,ψ2(p))
√

2 log(4L
√
2)

[
D(F , ψ2(p))

√
logL+ log

(
Aτ(t− τ)

L2td

)]
log(T/δ),

then the running length of Algorithm 1 exceeds T with probability at least 1− δ.

On the other hand, due to (11), for f◦ ∈ argminf∈F ∥f − log(p/q)∥L2(p+q) and any t ∈ N, with probability at least 1− δ,
it holds that

Tτ∗,t(f
◦)− ETτ∗,t(f

◦) > −∥Tτ∗,t(f
◦)− ETτ∗,t(f

◦)∥ψ2

√
log

2

δ
.

According to Proposition A.1 and (13),

∥Tτ∗,t(f
◦)− ETτ∗,t(f

◦)∥ψ2
≲ ∥Tτ∗,t(f

◦)∥ψ2

≲
(t− τ∗)τ∗

t

 1√
τ∗

∥∥∥∥∥ln
(

2ef
◦

1 + ef◦

)∥∥∥∥∥
ψ2(p)

+
1√
t− τ∗

∥∥∥∥∥ln
(
1 + ef

◦

2

)∥∥∥∥∥
ψ2(q)


≲

√
(t− τ∗)τ∗

t

(
D(F , ψ2(p)) ∨ D(F , ψ2(q))

)
.

Hence, there exists an absolute constant c > 0 such that, for any t ∈ N, with probability at least 1− δ,

St ⩾ Tτ∗,t(f
◦) > ETτ∗,t(f

◦)− c

√
(t− τ∗)τ∗ log(1/δ)

t

(
D(F , ψ2(p)) ∨ D(F , ψ2(q))

)
⩾

2τ∗(t− τ∗)

t

(
JS(p, q)− ρ2(F)

16

)
− c

√
(t− τ∗)τ∗ log(1/δ)

t

(
D(F , ψ2(p)) ∨ D(F , ψ2(q))

)
Let t◦ be the smallest positive integer, satisfying the inequality

τ∗(t− τ∗)

t
⩾
τmin

2
,
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where
τmin

2
=

⌈
c2 [D(F , ψ2(p)) ∨ D(F , ψ2(q))]

2
log(1/δ)

(JS(p, q)− ρ2(F)/16)2
+

z

JS(p, q)− ρ2(F)/16

⌉
+ 1.

Then, with probability at least 1− δ, we have

St◦ ⩾ Tτ,t◦(f◦)

>
2τ(t− τ)

t

(
JS(p, q)− ρ2(F)

16

)
− c

√
(t− τ∗)τ∗

t
log(1/δ)

(
D(F , ψ2(p)) ∨ D(F , ψ2(q))

)
⩾ z.

Thus, on this event, the stopping time of Algorithm 1 does not exceed t◦. This implies that

τ∗(t̂− τ∗)

t̂
⩽
τ∗(t◦ + 1− τ∗)

t◦ + 1
<
τmin

2
.

Note that, due to the conditions of Theorem 2.9, it holds that τ∗ ⩾ τmin. Hence, with probability at least 1− δ,

t̂− τ∗ ⩽
τminτ

∗

2(τ∗ − τmin/2)
⩽ τmin

≲
[D(F , ψ2(p)) ∨ D(F , ψ2(q))]

2
log(1/δ)

(JS(p, q)− ρ2(F)/16)2
+

z

JS(p, q)− ρ2(F)/16
.

C.6 Proof of Corollary 3.1

Take the smallest positive integers m,N , satisfying the inequalities

3βHN−β/p ⩽
√
JS(p, q)/2 and (1 + p2 + β2)6p(2H + 1)N2−m ⩽

√
JS(p, q)/2,

and consider the class NN(L,A, s) with

L = 8 + (m+ 5) (1 + ⌈log2(p ∨ β)⌉) (18)

hidden layers, the architecture
A = (p, 6(⌈β⌉+ p)N, . . . , 6(⌈β⌉+ p)N, 1), (19)

and the number of non-zero parameters

s = 141(p+ β + 1)3+pN(m+ 6). (20)

According to Theorem B.1, there exists f ∈ NN(L,A, s) such that

∥f − ln(p/q)∥L∞([0,1]p) ⩽
√
JS(p, q).

Note that, since log(p/q) ∈ Hβ([0, 1]p, H) the L∞-norm of such f does not exceed H +
√

JS(p, q). Thus, f ∈
NNB(L,A, s) for L,A, and s, given by (18), (19), (5), respectively, and for any B > H +

√
JS(p, q).

On the other hand, due to Lemma B.2, for any ε > 0, the covering number of NNB(L,A, s) with respect to the L∞-norm
fulfils

logN (NNB(L,A, s), L∞([0, 1]p), ε) ⩽ (s+ 1) log

(
2(L+ 1)p(6⌈β⌉+ 6p)LNL

ε

)
.

Hence, NNB(L,A, s) satisfies (2.2) with d = s+ 1 and A = 2(L+ 1)p(6⌈β⌉+ 6p)LNL. Taking into account that

L ≲ log(1/ JS(p, q)), N ≲ JS(p, q)−p/(2β), s ≲ JS(p, q)−p/(2β) log(1/ JS(p, q)),

and substituting these bounds into Theorem 2.7, we obtain that if one chooses z according to

z =
CeB log(1/ JS(p, q) [B + log(1/ JS(p, q)) log T ]

JS(p, q)p/(2β)
+ CeB log(T/δ)



A Contrastive Approach to Online Change Point Detection

with a proper constant C > 0 and runs Algorithm 1 is run with F = NNB(L,A, s), where L,A, and s are defined in (18),
(19), and (5), respectively, then, with probability at least 1 − δ, its running length in the stationary regime is at least T .
Otherwise, if τ∗ <∞, then, with probability at least 1− δ, the stopping time t̂ of Algorithm 1 satisfies

t̂− τ∗ ≲
eB log(1/ JS(p, q) [B + log(1/ JS(p, q)) log T ]

JS(p, q)
2β+p
2β

+ eB log(T/δ) +
B2 log(1/δ)

JS(p, q)2
.

This finishes the proof of Corollary 3.1.

C.7 Proof of Corollary 3.2

First, show that D(Flin, ψ2(p)) ∨ D(Flin, ψ2(q)) ≲ ∥Σ−1/2µ∥. Let X1 be a Gaussian random vector with zero mean and
the covariance Σ. Then, for any w ∈ Rp, such that ∥Σ1/2w∥ ⩽ ∥Σ−1/2µ∥, we have w⊤X1 ∼ N (0, w⊤Σw) and

∥w⊤X1∥ψ2(p) ≲
√
w⊤Σw ⩽ ∥Σ−1/2µ∥.

At the same time, for any b ∈ R, such that |b| ⩽ µ⊤Σ−1µ, it holds that

∥b∥ψ2(p) ≲ µ⊤Σ−1µ ≲ ∥Σ−1/2µ∥,

where the last inequality is due to the fact ∥Σ−1/2µ∥ ⩽ ln(4/3). Hence, by the triangle inequality,

∥w⊤X1 + b∥ψ2(p) ⩽ ∥w⊤X1∥ψ2(p) + ∥b∥ψ2(p) ≲ ∥Σ−1/2µ∥

for all w ∈ Rp, b ∈ R, such that ∥Σ1/2w∥ ⩽ ∥Σ−1/2µ∥, |b| ⩽ µ⊤Σ−1µ. Thus, D(Flin, ψ2(p)) ≲ ∥Σ−1/2µ∥. Similarly,
D(Flin, ψ2(q)) ≲ ∥Σ−1/2µ∥.

Second, show that Flin satisfies Assumption 2.5. For any w1, w2 ∈ Rp and b1, b2 ∈ R, it holds that

∥w⊤
1 X1 + b1 − w⊤

2 X1 − b2∥2L2(p)
= (w1 − w2)

⊤Σ(w1 − w2) + ∥b1 − b2∥2.

This yields that, if W is an ε-net of the ellipsoid {w : ∥Σ1/2w∥ ⩽ ∥Σ−1/2µ∥} and B is an ε-net of the segment
[−µ⊤Σ−1µ, µ⊤Σ−1µ], then the set {

fw,b(x) = w⊤x+ b : w ∈ W, b ∈ B
}

is an (ε
√
2)-net of Flin. Thus, we conclude that logN (Flin, L2(p), ε) ≲ p log(µ⊤Σ−1µ/ε) for any ε > 0.

It only remains to show that JS(p, q) ≳ µ⊤Σ−1µ. Then, substituting the obtained bounds on D(Flin, ψ2(p)) ∨
D(Flin, ψ2(q)), N (Flin, L2(p), ε), and JS(p, q) into the statement of Theorem 2.9, we get the assertion of Corollary 3.2.

The rest of this section is devoted to the proof of the inequality JS(p, q) ≳ µ⊤Σ−1µ. By the definition of JS(p, q),

JS(p, q) =
KL(p, (p+ q)/2) + KL(q, (p+ q)/2)

2
.

Consider the first term:

KL

(
p,

p+ q

2

)
= Eξ∼p log

2p

p+ q
= −Eξ∼p log

1 + eµ
⊤Σ−1ξ−µ⊤Σ−1µ/2

2

Let us introduce η = µ⊤Σ−1ξ − µ⊤Σ−1µ/2 ∼ N (−µ⊤Σ−1µ/2, µ⊤Σ−1µ). Since the second derivative of the map
u 7→ log((1 + eu)/2) does not exceed 1/4, Jensen’s inequality implies that

KL

(
p,

p+ q

2

)
= −E ln

1 + eη

2

⩾ − ln
1 + eEη

2
− Var(η)

8

= − ln
1 + e−µ

⊤Σ−1µ/2

2
− µ⊤Σ−1µ

8
.
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Consider the function g(u) = − ln((1 + e−u)/2). Note that g(0) = 0, g(1) > 1/3, and g is concave on [0, 1]. This yields
that g(u) ⩾ u/3 for all u ∈ [0, 1]. Hence,

KL

(
p,

p+ q

2

)
⩾ − ln

1 + e−µ
⊤Σ−1µ/2

2
− µ⊤Σ−1µ

8
⩾
µ⊤Σ−1µ

6
− µ⊤Σ−1µ

8
=
µ⊤Σ−1µ

24
.

Similarly, one can prove that

KL

(
q,

p+ q

2

)
≳ µ⊤Σ−1µ,

and, therefore, JS(p, q) ≳ µ⊤Σ−1µ.

D PROOFS OF AUXILIARY RESULTS

D.1 Proof of Lemma C.1

It holds that

−ETτ,t(f) =
τ(t− τ)

t
E
[
−f(X1) + 2 ln

(
1 + ef(X1)

2

)]
.

Consider a function G : [−B,B] → R, defined as

G(u) = −u+ 2 ln

(
1 + eu

2

)
.

Direct calculations show that G(0) = G′(0) = 0 and

G′′(u) =
2eu

(1 + eu)2
⩾ 2κ, for all u ∈ [−B,B],

where

κ = min

{
eB

(1 + eB)2
,

e−B

(1 + e−B)2

}
.

Hence, using Taylor’s expansion, we obtain that G(u) ⩾ κu2 for all u ∈ [−B,B]. This yields that

κτ(t− τ)Ef2(X1)

t
⩽ −ETτ,t(f). (21)

To prove the second part of the lemma, note that

Var(Tτ,t) =
τ(t− τ)2

t2
Var
[
f(X1)− ln

(
1 + ef(X1)

2

)]
+
τ2(t− τ)

t2
Var
[
ln

(
1 + ef(X1)

2

)]
⩽
τ(t− τ)2

t2
E
[
f(X1)− ln

(
1 + ef(X1)

2

)]2
+
τ2(t− τ)

t2
E
[
ln

(
1 + ef(X1)

2

)]2
.

Since the functions G1(u) = u − ln[(1 + eu)/2] and G2(u) = ln[(1 + eu)/2] are 1-Lipschitz and G1(0) = G2(0) = 0,
we have

Var(Tτ,t) ⩽
τ(t− τ)2

t2
Ef2(X1) +

τ2(t− τ)

t2
Ef2(X1) =

τ(t− τ)

t
Ef2(X1) ⩽

−ETτ,t(f)
κ

,

where the last inequality is due to (21).

D.2 Proof of Lemma C.2

Let us recall that, for any b ⩾ a > 0, F(a, b) is defined as

F(a, b) =

{
f ∈ F :

at

τ(t− τ)
⩽ Ef2(X1) ⩽

bt

τ(t− τ)

}
.
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Then it holds that

E sup
f∈F

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
⩽ E sup

f∈F(0,r)

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
+

∞∑
j=0

E sup
f∈F(4jr,4j+1r)

[
4−k(f)Tτ,t(f)− E4−k(f)Tτ,t(f)

]
(22)

⩽ E sup
f∈F(0,r)

[Tτ,t(f)− ETτ,t(f)] +
∞∑
j=0

4−j E sup
f∈F(0,4j+1r)

[Tτ,t(f)− ETτ,t(f)] .

For any f ∈ F , let us represent Tτ,t(f) as a sum of two terms:

Tτ,t(f) =
τ(t− τ)

t
Pτ,t(f) +

τ(t− τ)

t
Qτ,t(f),

where

Pτ,t(f) =
1

τ

τ∑
s=1

[
f(Xs)− ln

(
1 + ef(Xs)

2

)]
and

Qτ,t(f) = − 1

t− τ

t∑
s=τ+1

ln

(
1 + ef(Xs)

2

)
.

Then, for any r > 0, it holds that

E sup
f∈F(0,r)

[Tτ,t(f)− ETτ,t(f)] ⩽
τ(t− τ)

t
E sup
f∈F(0,r)

[Pτ,t(f)− EPτ,t(f)]

+
τ(t− τ)

t
E sup
f∈F(0,r)

[Qτ,t(f)− EQτ,t(f)] .

We apply the following lemma to bound the expectations of the suprema in the right-hand side.

Lemma D.1 (Han et al. (2019), Lemma 7; in this form, Belomestny et al. (2022), Lemma A.6). Let ξ1, . . . , ξn, n ∈ N, be
independent copies of a random variable ξ ∼ P, and let H be a class of functions taking its values in [−B,B]. Suppose
that, for all 0 < u ⩽ B,

N[ ](H, L2(P), u) ⩽

(
A

ε

)d
for some positive constants A and d. Then

E sup
h∈H

[
1

n

n∑
i=1

h(ξi)− Eh(ξ)

]
≲

√
dσ2

n
log

(
A

σ

)
+
Bd

n
log

(
A

σ

)
,

where σ2 = sup
h∈H

Eh2(ξ).

Note that the maps y 7→ (y− log(1+ ey)) and y 7→ log(1+ ey) are monotonously increasing and 1-Lipschitz. This yields
that if f belongs to a bracket [f1, f2] of size ε, then (f− log(1+ef )) is in the bracket [f1− log(1+ef1), f2− log(1+ef2)]
of size at most ε and, similarly, log(1 + ef ) belongs to the bracket [log(1 + ef1), log(1 + ef2)] of size at most ε. In other
words, a monotonous 1-Lipschitz map does not change the bracketing number. Thus, it holds that

E sup
f∈F(0,r)

[Pτ,t(f)− EPτ,t(f)] ≲

√
rtd

τ2(t− τ)
log

(
Aτ(t− τ)

rt

)
+
Bd

τ
log

(
Aτ(t− τ)

rt

)
and

E sup
f∈F(0,r)

[Qτ,t(f)− EQτ,t(f)] ≲

√
rtd

τ(t− τ)2
log

(
Aτ(t− τ)

rt

)
+

Bd

t− τ
log

(
Aτ(t− τ)

rt

)
.
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Therefore, due to the definitions of Tτ,t(f), Pτ,t(f), and Qτ,t(f),

E sup
f∈F(0,r)

[Tτ,t(f)− ETτ,t(f)] ≲

√
rd(t− τ)

t
log

(
Aτ(t− τ)

rt

)
+

√
rdτ

t
log

(
Aτ(t− τ)

rt

)
+Bd log

(
Aτ(t− τ)

rt

)
.

Using the inequality
√
a+

√
b ⩽

√
2(a+ b), which holds for all non-negative a and b, we obtain that

E sup
f∈F(0,r)

[Tτ,t(f)− ETτ,t(f)] ≲

√
rd log

(
Aτ(t− τ)

rt

)
+Bd log

(
Aτ(t− τ)

rt

)
. (23)

Similarly, we can prove that

E sup
f∈F(0,4j+1r)

[Tτ,t(f)− ETτ,t(f)] ≲

√
4j+1rd log

(
Aτ(t− τ)

4j+1rt

)
+Bd log

(
Aτ(t− τ)

4j+1rt

)
. (24)

Substituting the bounds (23) and (24) into the inequality (22), we get that

E sup
f∈F

[Tτ,t(f)− ETτ,t(f)] ≲
∞∑
j=0

4−j

[√
4jrd log

(
Aτ(t− τ)

4jrt

)
+Bd log

(
Aτ(t− τ)

4jrt

)]

≲

√
rd log

(
Aτ(t− τ)

rt

)
+Bd log

(
Aτ(t− τ)

rt

)
.

D.3 Proof of Lemma C.3

Similarly to Lemma C.1, we have

−ETτ,t(f) =
τ(t− τ)

t
E
[
−f(X1) + 2 ln

(
1 + ef(X1)

2

)]
.

Consider a function G : R → R, defined as

G(u) = −u+ 2 ln

(
1 + eu

2

)
.

Direct calculations show that G(0) = G′(0) = 0 and

G′′(u) =
2eu

(1 + eu)2
⩾

eu

2(1 ∨ eu)2
=
eu ∧ e−u

2
=
e−|u|

2
.

Using Taylor’s expansion with an integral remainder, we obtain that

G(u) ⩾ u2
1∫

0

G′′(yu)(1− y)dy ⩾
u2

2

1∫
0

e−y|u|(1− y)dy ⩾
u2e−|u|

4
.

This yields

E
[
−f(X1) + 2 ln

(
1 + ef(X1)

2

)]
⩾

Ef2(X1)e
−|f(X1)|

4
.

Denote ξ = |f(X1)| and note that ∥ξ∥ψ2
= ∥f(X1)∥ψ2

. Then it holds that

E
[
ξ2e−ξ

]
⩾ E

[
ξ2e−ξI(ξ ⩽ a)

]
⩾ e−aE

[
ξ2I(ξ ⩽ a)

]
= e−aEξ2 − e−aE

[
ξ2I(ξ > a)

]
.
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Consider the second term in the right-hand side. Due to the Cauchy-Schwarz inequality, it holds that

E
[
ξ2I(ξ > a)

]
⩽
√

Eξ4P(ξ > a).

Applying the inequality (12) for Lp-norms of sub-Gaussian random variables, we obtain that Eξ4 ⩽ 4∥ξ∥4ψ2
and, thus,

E
[
ξ2I(ξ > a)

]
⩽ 2

√
2∥ξ∥2ψ2

exp

{
− a2

2∥ξ∥2ψ2

}
.

Taking a = ∥ξ∥ψ2

√
2 ln(4L

√
2), we finally obtain that

E
[
ξ2I(ξ > a)

]
⩽

∥ξ∥ψ2

L
⩽ Eξ2,

where the last inequality is due to the sub-Gaussianity of the class F . Hence,

E
[
ξ2e−ξ

]
⩾
e−a

2
Eξ2 =

Eξ2

2
exp

{
−∥ξ∥ψ2

√
2 ln(4L

√
2)

}
= κξ Eξ2,

where we introduced

κξ =
1

2
exp

{
−∥ξ∥ψ2

√
2 ln(4L

√
2)

}
.

In other words, for any f ∈ F , it holds that

κf(X1)Ef
2(X1) ⩽ Ef2(X1)e

−|f(X1)|

⩽ E
[
−f(X1) + 2 ln

(
1 + ef(X1)

2

)]
= −τ(t− τ)

t
ETτ,t(f).

This yields the desired result.

E NUMERICAL EXPERIMENTS

This section contains additional information about numerical experiments, described in Section 4. We made all the cal-
culations using a desktop computer with 16 GB RAM and CPU Intel Core i5-4690, 3.5 GHz and a laptop with 16 GB
RAM and CPU Apple M1. Figure 3 shows an example of change point detection on three synthetic data sets, introduced in
Section 4. The plots with observations are presented in the top line of Figure 3. The bottom line shows the corresponding
values of the test statistic with different choices of the base class F . The experiments show that Algorithm 1 with the class
F , corresponding to polynomials (solid red line) and neural networks (solid blue line) detects a structural change better
than if one takes F equal to the linear span of several elements of the Fourier basis. Note that the classes of polynomials
and neural networks ensure a better behaviour of the test statistic St in the stationary regime, yielding lower values of the
threshold z. The same remarks are also true in the experiments on the CENSREC-1-C data set. One can find some exam-
ples of change point detection on this data set in Figure 4. Tables 4 and 5 contain the information about the thresholds and
the parameters of algorithms in the experiments on the synthetic data and CENSREC-1-C. The thresholds and the values
of hyperparameters in the experiments with the WISDM data set were already specified in Section 4. The plots of the test
statistics in the experiments on this data set are displayed in Figure 5.
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(a) (b) (c)

Figure 3: Examples of change point detection on synthetic data sets. Top line: the sequence of observations. Bottom line:
corresponding values of the test statistic St with three variants of the base class F : class of polynomials (red), linear span
of several elements of Fourier basis (green) and class of neural networks (blue). Also, the bottom graph shows the statistics
for the methods: CUSUM for mean shift detection (yellow), KLIEP (magenta) and M-statistics (cyan). The dashed vertical
line corresponds to the true change point τ∗. The circle markers on solid lines correspond to the detection moments.
Column (a): mean shift detection in a Gaussian sequence model (Example 1). Column (b): variance change detection in a
Gaussian sequence model (Example 2). Column (c): distributional change from uniform distribution on [−σ

√
3, σ

√
3], to

the N (0, σ2), σ = 0.1.

Table 4: The thresholds z and the values of hyperparameters of Algorithm 1 with different classes F , the kernel change
point detector, and KLIEP on synthetic data sets.

METHOD EXAMPLE 1 EXAMPLE 2 EXAMPLE 3
z PARAMETER z PARAMETER z PARAMETER

Algorithm 1
+ polynomials 2.46 p = 1 3.98 p = 2 4.04 p = 5
Algorithm 1

+ Fourier basis 2.49 q = 2 3.95 q = 3 6.84 q = 6
Algorithm 1

+ neural networks 4.69 - 4.69 - 4.33 -
KLIEP 6.09 b = 0.2 4.19 b = 0.33 0.93 b = 0.5

M-statistic 9.59 b = 0.5 36.75 b = 0.1 17.65 b = 0.25
CUSUM 0.45 - - - - -

(a) (b) (c)

Figure 4: Examples of change point detection on the CENSREC-1-C data set. Top line: the sequence of observations.
Bottom line: corresponding values of the test statistic St with three variants of the base class F : class of polynomials (red),
linear span of Fourier basis (green) and class of neural networks (blue). Also, the bottom graph shows the statistics for the
methods: KLIEP (magenta) and M-statistics (cyan). The dashed vertical line corresponds to the true change point τ∗. The
circle markers on solid lines correspond to the detection moments. Column (a): clean speech record. Column (b): speech
record corrupted with noise, SNR = 20. Column (c): speech record corrupted with noise, SNR = 15.
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Table 5: The thresholds z and the values of hyperparameters of Algorithm 1 with different classes F , the kernel change
point detector, and KLIEP on the CENSREC-1-C data set.

MAH clean MAH N1 SNR20 MAH N1 SNR15
z PARAMETER z PARAMETER z PARAMETER

Algorithm 1
+ polynomials 1.18 p = 9 1.75 p = 9 2.47 p = 9
Algorithm 1

+ Fourier basis 10.83 q = 10 5.27 q = 10 5.26 q = 10
Algorithm 1

+ neural networks 0.83 - 1.80 - 2.44 -
KLIEP 0.04 b = 0.13 0.32 b = 0.19 0.12 b = 0.2

M-statistic 1.20 b = 0.04 2.34 b = 0.15 0.86 b = 0.1

Figure 5: Three-dimensional time series from the WISDM data set and the corresponding values of the test statistics for
Algorithm 1 (with two variants of the class F , red and blue), the kernel change point detector with M-statistic (cyan) and
KLIEP (magenta). The dotted vertical lines correspond to the moments of change points.
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