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Abstract

Reconstructing accurate causal models of dynamic systems from time-series of sensor data
is a key problem in many real-world scenarios. In this paper, we present an overview based
on our experience about practical challenges that the causal analysis encounters when
applied to autonomous robots and how Continual Learning (CL) could help to overcome
them. We propose a possible way to leverage the CL paradigm to make causal discovery
feasible for robotics applications where the computational resources are limited, while at
the same time exploiting the robot as an active agent that helps to increase the quality of
the reconstructed causal models.

1. Introduction

Causal discovery approaches generally build the causal model of the observed scenario from
static or time-series data collected and processed in advance. However, in many real-
world robotics applications, this approach could result inefficient or even unfeasible. The
link between Continual Learning (CL) Lesort et al. (2020) and Causality might represent
a stepping stone towards the exploitation of causal discovery algorithms Glymour et al.
(2019) that currently suffer many limitations in autonomous robots.

Causal inference is an active research area in different fields, including robotics and
autonomous systems Hellstrom (2021); Brawer et al. (2020); Cao et al. (2021); Katz et al.
(2018); Angelov et al. (2019). However, most of these works overlooked some key features
that are important for real-world application, i.e. the computational cost and the memory
needed by causal analysis when long time-series are processed to reconstruct a causal model
of the observed scenario. To this end, the CL’s ability to enable the acquisition of more
knowledge by trained models without forgetting previous information, and without using
previous data recordings, might help to address these problems and to achieve better result
in terms of quality of the causal analysis. For instance, a robot in an automated warehouse
with humans and various objects (e.g. see Fig. 1) could observe and intervene in the inter-
actions among them (e.g. worker and shelf) in order to build a causal model and therefore
a deep understanding of the situation. Since the limited hardware resources though, the
robot’s causal analysis might be slow and based on a limited amount of data, leading to
a low quality causal model. The solutions suggested in this paper would allow the robot
to overcome its hardware limitations and, moreover, to improve the quality of the causal
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models by continually feeding new data for causal analysis, discarding the old collected one.
This would enable a more efficient use of the robot’s memory and computing’s resources
compared to existing causal discovery’s approaches. To summarise, this paper proposes a
Causal Robot Discovery (CRD) approach to overcome current limitations in causal analysis
for real-world robotics applications, addressing in particular:

e the computing and memory hardware resources of the robot, which may hinder its
capability to perform meaningful causal analysis;

e the update of previous causal models with new observational and interventional data
from the robot to generate more accurate ones.

The paper is structured as follows: related work about continual learning and causal
discovery are presented in Section 2; Section 3 introduces our CRD approach and explains
how the integration of continual learning could help to overcome the challenges of causal
discovery in robotics; finally, we conclude the paper in Section 4 discussing our current and
future work in this area.

2. Related Work

Causal discovery: Several methods have been developed over the last few decades to
derive causal relationships from observational data, which can be categorized into two main
classes (Glymour et al., 2019). The first one includes constraint-based methods, such as Peter
and Clark (PC) and Fast Causal Inference (FCI), which rely on conditional independence
tests as constraint-satisfaction to recover the causal graph. The second one includes score-
based methods, such as Greedy Equivalence Search (GES), which assign a score to each
Directed Acyclic Graph (DAG) and perform a search in this score space. More recently,
reinforcement learning-based methods have also been used to discover causal structure (Zhu
et al., 2020). However, many of these algorithms work only with static data (i.e. no
temporal information) and are not applicable to time-series of sensor data in many robotics
applications, for which time-dependent causal discovery methods are instead necessary. To
this end, a variation of the PC algorithm, called PCMCI, was adapted and applied to
time-series data Runge (2018); Runge et al. (2019); Saetia et al. (2021).

Causal robotics: Causal inference has been recently considered in robotics, for example
to build and learn a Structural Causal Model (SCM) from a mix of observation and self-
supervised trials for tool affordance with a humanoid robot (Brawer et al., 2020). Other
applications include the use of PCMCI to derive the causal model of an underwater robot
trying to reach a target position (Cao et al., 2021) or to predict human spatial interactions
in a social robotics context (Castri et al., 2022). Further causality-based approaches can
be found in the robot imitation learning and manipulation area (Katz et al., 2018; Angelov
et al., 2019; Lee et al., 2021). However, all these solutions rely on a fixed set of time-series
for causal analysis and do not consider the computational cost and complexity for online
update of the robot’s causal models.

Continual learning: The concept of learning continually from experience has been present
in artificial intelligence since early days Weng et al. (2001). Recently this has been explored
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more systematically in machine learning Hadsell et al. (2020); Parisi et al. (2019) and
robotics Lungarella et al. (2003); Lesort et al. (2020); Churamani et al. (2020). To our
knowledge though, few applications of the continual learning paradigm can be found in the
causality field. Javed et al. (2020) incorporate causality and continual learning with an on-
line algorithm that continually detects and removes spurious features from a causal model.
In Kummerfeld and Danks (2012, 2013); Kocacoban and Cussens (2019, 2020), instead, al-
gorithms for online causal structure learning are presented to deal with non-stationary data.
This is a key feature of data from real-world environments, which is still under-investigated
in robotics and therefore motivates our approach proposed next.

3. Causal Robot Discovery

A review of the literature revealed that the possible limitations of autonomous robots doing
causal discovery with their own on-board sensors have not been taken into account. Indeed,
the computational and memory requirements for long time-series of sensor data are often
very demanding, making the use of previous algorithms for causal inference unfeasible on
such platforms.

Our approach is partially inspired by the works of Kocacoban and Cussens (2019) for
handling non-stationary data, but differs from it in two ways. First of all, we adopt the
current state-of-the-art PCMCI method for causal discovery from time-series data; second,
we propose to re-learn the causal model not only when the observed scenario changes,
but also at each new robot’s set of observations/interventions (periodically, e.g. every few
minutes). In particular, the introduction of the CL paradigm could help the robot to
overcome the challenge of limited hardware resources and to improve the quality of the
causal analysis even with non-stationary data. In addition, a CRD approach could benefit
from the fact that robots are physically embodied in the environment and can actively
influence its dynamic processes (i.e. by performing interventions). That is, CRD could
improve the accuracy of the causal model by enriching “passive” observational data from
the sensors with “active” interventional data from robot’s actions aimed at collecting specific
time-series for causal discovery.

Therefore, our goal is to decrease the need of hardware resources — often scarce in
autonomous systems — and to increase the quality of the causal analysis by using the robot
as an active agent in the learning process. The use of CRD would allow the creation of
high quality causal models by continually updating them with new sensor data from robot’s
observations and interventions, without the need to re-process the whole time-series but
only new information in an incremental fashion. The CRD system envisaged in this paper
is thought to limit the demand for hardware resources and allow the robot to perform high
quality causal discovery in a reasonable time by using its own on-board sensor data.

The proposed approach is depicted in Fig. 1: (7) starting from a prefixed set of variables,
the robot collects meaningful data by observing and intervening in the target scenario; (i)
based on this data, a causal model is estimated using PCMCI Runge (2018), which computes
test statistics and p-values as causal strengths of the DAG’s links. At this stage, differently
from Kocacoban and Cussens (2019), to increase the accuracy of the causal discovery, the
robot keeps on collecting data by observing and intervening in the scenario to create new
causal models. Periodically then, the robot compares the new causal models with the old
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Figure 1: CRD approach: the robot provides observational and interventional data about
human-object interactions to the CRD block. The latter generates a causal model,
which is stored and used to compare the next one built on subsequent robot’s
observations and interventions. Based on the p-values of the previous causal
graph’s links, the CRD could suggest the robot which links need to be better
tested by future interventions.

ones, inheriting from the latter only the links that minimise the p-values of the DAG’s
causal relations. By repeating this process until the observed scenario changes, a stable
version of the causal model with minimum un-
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The operations performed by our CRD ap-
proach are represented by the flowchart in Fig. 2 Figure 2: CRD flowchart.
and described next.
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1. The process starts with a first set of observational data (i.e. sensors’ time-series)
collected by the robot. An inference matriz is estimated by performing conditional
independence tests (e.g. correlation, transfer entropy) on the time-series, producing
an initial causal model.

2. Afterwards, since at the first attempt there are no stored causal models, the “Inter-
ventions Strategy” (red block in Fig. 2) is initially neglected and the “Causal Model
Optimisation” (blue block) is used only to estimate and save the causal model (CM),
together with its test statistics and p-values matrices.

3. Once the causal model of the observed scenario is obtained, the robot can improve
its quality by providing new data to the CRD. In practice, the robot collects new
time-series of sensor data from the scenario so that a new inference matrix can be
estimated. At this stage, two parallel processes are executed.

- The first one, “Interventions Strategy”, compares the CM obtained at the previ-
ous iteration with the inference matrix just estimated. If the stored CM still fits
the estimated inference matrix, it means we are in a stationary-data case and
the robot is observing the same scenario of the previous iteration. Therefore,
based on the p-values matrix of the stored CM, the CRD might suggest the most
“unrelaible” links that need to be re-checked. These are used by the robot to
plan the next interventions.

- The second process, “Causal Model Optimisation”, performs a fresh causal dis-
covery on the new data and compare the obtained CM with the one previously
stored. From this comparison, a new CM is derived that inherits only the links
minimising the p-values of the causal graph. The result is then stored to be used
at the next iteration.

In case of stationary data, by repeating this procedure, a stable version of the causal
model with minimum uncertainty can be reached. In case of non-stationary data, new
time-series will be provided to the CRD, which will detect any significant variations by
comparing the newly estimated inference matrix with the one of the stored CM. In this case
there is no Interventions Strategy; instead, the Causal Model Optimisation reconstructs
the new model exploiting the similarities with the stored CM to speed up the analysis. In
particular, the last step is performed by comparing the new inference matrix with the old
CM’s one in order to identify previous causal links that are still valid for the new model.

4. Conclusion

In this paper we considered the hardware resource limitations of autonomous robots, which
are crucial to perform causal inference, and proposed a new approach for causal robot
discovery to overcome some of the main challenges. This includes improving the quality of
the causal models by using the robot as an active agent in the learning process.

To summarise, in both stationary and non-stationary data cases, the CRD discards the
time-series data after each new CM reconstruction, allowing the robot to perform causal
discovery within reasonable time. Moreover, as already explained, in case of non-stationary

89



CASTRI MGHAMES BELLOTTO

data the old CM can be partially exploited to speed up the reconstruction of the new one.
This favors not only the execution time of the causal analysis but also the handling of
catastrophic-forgetting phenomena. Indeed, in case of non-stationary data, assuming small
and incremental variations of the observed scenario, the new causal model is reconstructed
by partially exploiting the old one, thus reducing the possibility of completely forgetting
what was previously learnt.

Future work will be devoted to the implementation and application of this approach to
real-wold robotics problems, with a special interest in industrial scenarios involving human-
robot interaction and collaboration.
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