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1. Introduction

A further understanding of cause and effect within observational data is critical across many
domains, such as economics, health care, public policy, web mining, online advertising, and
marketing campaigns. Although significant advances have been made to overcome the chal-
lenges in causal effect estimation with observational data, such as missing counterfactual
outcomes and selection bias between treatment and control groups, the existing methods
mainly focus on source-specific and stationary observational data. In particular, such learn-
ing strategies assume that all observational data are already available during the training
phase and from only one source.

Along with the fast-growing segments of industrial applications, this assumption is un-
substantial in practice. Taking Alipay as an example, which is one of the world’s largest
mobile payment platforms and offers financial services to billion-scale users, a tremendous
amount of data containing much privacy-related information is produced daily and collected
from different sources. In the following, we further elaborate on this problem by two points.
The first one is based on the characteristics of observational data, which are incrementally
available from non-stationary data distributions. For instance, electronic financial records
for one marketing campaign are growing every day, and they may be collected from different
cities or even other countries. This characteristic implies that one cannot have access to
all observational data at one time point and from one single source. The second reason is
based on the realistic consideration of accessibility. For example, when new observational
data are available, one may want to refine the previously trained model using both the new
data and original data. However, it is likely that the original training data are no longer
accessible due to a variety of reasons, e.g., legacy data may be unrecorded, proprietary, the
sensitivity of financial data, too large to store, or subject to privacy constraints of personal
information (Zhang et al., 2020). This practical concern of accessibility is ubiquitous in
various academic and industrial applications. That’s what it boiled down to in the era of big
data, we face new challenges in causal inference with observational data. We first presented
the continual causal effect estimation problem in (Chu et al., 2020a), in which we discussed
three desired properties of continual causal inference frameworks, i.e., the extensibility
for incrementally available observational data, the adaptability for various data sources
in new domains, and the accessibility for an enormous amount of data.

c© 2023 Z. Chu & S. Li.



Continual Causal Effect Estimation: Challenges and Opportunities

In this position paper, we formally define the problem of continual treatment effect
estimation, describe its research challenges, and then present possible solutions to this
problem. Moreover, we will discuss future research directions on this topic.

2. Related Work

Instead of randomized controlled trials, observational data is obtained by the researcher
simply observing the subjects without any interference. It means that the researchers have
no control over the treatment assignments, and they just observe the subjects and record
data based on observations (Yao et al., 2021; Chu et al., 2023a). Therefore, from the
observational data, directly estimating the treatment effect is challenging due to the miss-
ing counterfactual outcomes and the existence of confounders. Recently, powerful machine
learning methods such as tree-based methods (Athey and Imbens, 2016; Wager and Athey,
2018), representation learning (Li and Fu, 2017; Shalit et al., 2017; Yao et al., 2018; Chu
et al., 2022), meta-learning (Künzel et al., 2019; Nie and Wager, 2021), and generative mod-
els (Louizos et al., 2017; Yoon et al., 2018) have achieved prominent progress in treatment
effect estimation.

In addition, the combination of causal inference and other research fields also exhibits
complementary strengths, such as computer vision (Tang et al., 2020; Liu et al., 2022a),
graph learning (Ma et al., 2022; Chu et al., 2021), natural language processing (Feder
et al., 2022; Liu et al., 2022b), and so on. The involved causal analysis helps improve the
model’s capability of discovering and resolving the underlying system beyond the statistical
relationships learned from observational data.

3. Problem Definition

Suppose that the observational data contain n units collected from d different domains, and
Dd = {(x, y, t)|x ∈ X, y ∈ Y, t ∈ T} denotes the dataset collected from the d-th domain,
which contains nd units. Let X denote all observed variables, Y denote the outcomes in
the observational data, and T be a binary variable. Let D1:d = {D1, D2, ..., Dd} be the
combination of d datasets, separately collected from d different domains. For d datasets
{D1, D2, ..., Dd}, they have the commonly observed variables, but due to the fact that they
are collected from different domains, they usually have different distributions with respect
to X, Y , and T in each dataset. Each unit in the observational data received one of the two
or multiple treatments. Let ti denote the treatment assignment for unit i; i = 1, ..., n. For
binary treatments, ti = 1 is for the treatment group and ti = 0 for the control group. The
outcome for unit i is denoted by yit when treatment t is applied to unit i. For observational
data, only one of the potential outcomes is observed. The observed outcome is called the
factual outcome, and the remaining unobserved potential outcomes are called counterfactual
outcomes.

The potential outcome framework has been widely used for estimating treatment effects
(Rubin, 1974; Splawa-Neyman et al., 1990). The individual treatment effect (ITE) for unit
i is the difference between the potential treated and control outcomes and is defined as:

ITEi = yi1 − yi0. (1)
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The average treatment effect (ATE) is the difference between the mean potential treated
and control outcomes, which is defined as:

ATE =
1

n

n󰁛

i=1

(yi1 − yi0). (2)

The success of the potential outcome framework is based on the following assump-
tions (Imbens and Rubin, 2015), which ensure that the treatment effect can be identified.

Assumption 1 Stable Unit Treatment Value Assumption (SUTVA): The potential out-
comes for any unit do not vary with the treatments assigned to other units, and, for each
unit, there are no different forms or versions of each treatment level, which lead to different
potential outcomes.

Assumption 2 Consistency: The potential outcome of treatment t is equal to the observed
outcome if the actual treatment received is t.

Assumption 3 Positivity: For any value of x, treatment assignment is not deterministic,
i.e.,P (T = t|X = x) > 0, for all t and x.

Assumption 4 Ignorability: Given covariates, treatment assignment is independent of the
potential outcomes, i.e., (y1, y0) ⊥⊥ t|x.

The goal of continual treatment effect estimation is to estimate the causal effect
of treatments for all available data, including new data Dd and the previous data D1:(d−1),
without having access to previous data D1:(d−1).

4. Research Challenges

Existing causal effect inference methods, however, are unable to deal with the aforemen-
tioned new challenges in continual treatment effect estimation, i.e., extensibility, adaptabil-
ity, and accessibility. Although it is possible to adapt existing treatment effect estimation
methods to cater to these issues, these modified methods still have inevitable defects. Three
straightforward adaptation strategies are described as follows:

1. If we directly apply the model previously trained based on original data to new ob-
servational data, the performance on new tasks will be very poor due to the domain
shift issues among different data sources;

2. Suppose we utilize newly available data to re-train the previously learned model for
adapting changes in the data distribution. In that case, old knowledge will be com-
pletely or partially overwritten by the new one, which can result in severe performance
degradation on old tasks. This is the well-known catastrophic forgetting problem (Mc-
Closkey and Cohen, 1989; French, 1999);

3. To overcome the catastrophic forgetting problem, we may rely on the storage of old
data and combine the old and new data together, and then re-train the model from
scratch. However, this strategy is memory inefficient and time-consuming, and it
brings practical concerns such as copyright or privacy issues when storing data for a
long time (Samet et al., 2013).
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Any of these three strategies, in combination with the existing causal effect inference meth-
ods, is deficient.

5. Potential Solution

To address the continual treatment effect estimation problem, we propose a Continual
Causal Effect Representation Learning framework (CERL) for estimating causal effect with
incrementally available observational data. Instead of having access to all previous observa-
tional data, we only store a limited subset of feature representations learned from previous
data. Combining selective and balanced representation learning, feature representation dis-
tillation, and feature transformation, our framework preserves the knowledge learned from
previous data and updates the knowledge by leveraging new data so that it can achieve
the continual causal effect estimation for incrementally new data without compromising the
estimation capability for previous data. In the following, we will briefly describe the design
of our CERL framework. More technical details of CERL are presented in (Chu et al.,
2023b).

Framework Overview. To deal with the incrementally available observational data,
the framework of CERL is mainly composed of two components: (1) the baseline causal
effect learning model is only for the first available observational data, and thus we don’t
need to consider the domain shift issue among different data sources. This component
is equivalent to the traditional causal effect estimation problem; (2) the continual causal
effect learning model is for the sequentially available observational data, where we need
to handle more complex issues, such as knowledge transfer, catastrophic forgetting, global
representation balance, and memory constraint.

Baseline Causal Effect Learning Model. We first train the baseline causal effect
learning model for the initial observational dataset and then bring in subsequent datasets.
The task on the initial dataset can be converted to a traditional causal effect estimation
problem. Owing to the success of deep learning for counterfactual inference, we propose
to learn the selective and balanced feature representations (Shalit et al., 2017; Chu et al.,
2020b) for units in treatment and control groups and then infer the potential outcomes
based on learned representation space.

Sustainability of Model Learning. To avoid catastrophic forgetting when learning
new data, we propose to preserve a subset of lower-dimensional feature representations
rather than all original covariates. We can also adjust the number of preserved feature
representations according to the memory constraint.

Continual Causal Effect Learning. We have stored memory and the baseline model.
To continually estimate the causal effect for incrementally available observational data, we
incorporate feature representation distillation and feature representation transformation to
estimate the causal effect for all seen data based on a balanced global feature representation
space.

6. Research Opportunities

Although significant advances have been made to overcome the challenges in causal effect es-
timation, real-world applications based on observational data are always very complicated.
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Unlike source-specific and stationary observational data, most real-world data are incre-
mentally available and from non-stationary data distributions. Significantly, we also face
the realistic consideration of accessibility. Our work (Chu et al., 2020a) might be the first
attempt to investigate the continual causal inference problem, and we proposed the corre-
sponding evaluation criteria. However, constructing the comprehensive analytical tools and
the theoretical framework derived from this brand-new problem requires non-trivial efforts.
Specifically, there are several potential directions for continual causal inference:

• In addition to the distribution shift of the covariates among different domains, there
are other potential technical issues for continual effect estimation: for example, per-
haps we do not initially observe all the necessary confounding variables and may get
access to increasingly more confounders.

• Compared with homogeneous treatment effects (e.g., the magnitude and direction of
the treatment effect are the same for all patients, regardless of any other patient char-
acteristics), heterogeneous causal effects could differ for different individuals. This
could be another important aspect to consider for the continual treatment effect esti-
mation model.

• The basic assumptions for traditional causal effect estimation may not be completely
applicable. New assumptions may be supplemented, or previous assumptions need to
be relaxed.

• There exists a natural connection with continual domain adaptation among different
times or domains (“continual” causal inference) and between treatment and control
groups (continual “causal inference”).

• Compared to traditional causal effect estimation tasks based on relatively small datasets,
the continual causal inference method will embrace high-performance computing or
cloud computing due to its ambitious objective.

• With the increasing public concern over privacy leakage in data, federated learning,
which collaboratively trains the machine learning model without directly sharing the
raw data among the data holders, may become a potential solution for continual causal
inference.
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