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Abstract

While most continual learning algorithms have focused on tackling the stability-plasticity
dilemma, they have overlooked the effects of the knowledge transfer when the dataset
is biased — namely, when some unintended spurious correlations, not the true causal
structures, of the tasks are learned from the biased dataset. In that case, how would
they affect learning future tasks or the knowledge already learned from the past tasks?
In this work, we design systematic experiments with a synthetic biased dataset and try
to answer the above question from our empirical findings. Namely, we first show that
standard continual learning methods that are unaware of dataset bias can transfer biases
from one task to another, both forward and backward. In addition, we find that naively
using existing debiasing methods after each continual learning step can lead to significant
forgetting of past tasks and reduced overall continual learning performance. These findings
highlight the need for a causality-aware design of continual learning algorithms to prevent
both bias transfers and catastrophic forgetting.

1. Introduction

Continual learning (CL) is essential for a system that needs to learn (potentially increasing
number of) tasks from sequentially arriving data. The main challenge of CL is to overcome
the stability-plasticity dilemma (Mermillod et al., 2013). Namely, when a CL model focuses
too much on the stability, it would suffer from low plasticity for learning a new task (and
vice versa). Recent deep neural networks (DNNs) based CL methods (Kirkpatrick et al.,
2017; Jung et al., 2020; Li and Hoiem, 2017) attempted to address the dilemma by devising
mechanisms to attain stability while improving plasticity thanks to the knowledge trans-
ferability (Tan et al., 2018), which is one of standout properties of DNNs. Namely, while
maintaining the learned knowledge, the performance on a new task (resp. past tasks) is
improved by transferring of knowledge of past tasks (resp. a new task). Such phenomena
are called the forward and backward transfer, respectively.

While such DNNs based approaches for CL have been successful to some extent, they
have not explicitly considered a more realistic and challenging setting in which the dataset
bias (Torralba and Efros, 2011) exists; i.e., a distribution of test dataset could be different
from that of training dataset for each task. In such a case, it is widely known that DNNs

∗ equal contribution
† corresponding author

© 2023 D. Lee, S. Jung & T. Moon.



Issues for CL in the Presence of Dataset Bias

often dramatically fail to generalize to the out-of-distribution test data due to learning some
unintended spurious correlations, not the true causal relations (Sagawa et al., 2020; Bahng
et al., 2020). For instance, a DNN that classifies birds in the sky perfectly may fail on
classifying images in which birds are outside the typical sky background when the model
has learned a shortcut strategy relying on the background (Geirhos et al., 2020). There
have been many attempts to address this issue, with earlier approaches (Nam et al., 2020;
Liu et al., 2021) often based on empirical findings about DNNs, resulting in suboptimal
results. More recently, there have been efforts to address the bias issue in a more principled
way by using a structural causal model (SCM) to clarify the causal relationship between
input, label, bias, and context priors (Liu et al., 2022; Seo et al., 2022). By obtaining direct
causal effects from inputs without the confounding influence of bias, these approaches have
shown improved performance on various vision tasks, including object classification (Liu
et al., 2022), semantic segmentation (Zhang et al., 2020) and few-shot learning (Yue et al.,
2020), highlighting the importance of causal learning in solving the bias problem.

Now, we claim that the issue of learning spurious correlations, not the true causal
relations, in the context of CL can be a significant problem because it can lead to the
transfer of bias from one task to another. In a recent study (Salman et al., 2022), it
is shown that the transfer of bias can even occur when fine-tuning pre-trained models on
downstream tasks. In CL, this issue can be potentially exacerbated since it involves learning
a sequence of tasks, and the transferred bias can affect not only the future tasks, but also
the past tasks. Additionally, the severity of bias transfer in CL may be greater depending
on how the learned knowledge is utilized. However, to the best of our knowledge, there is
a lack of research that is carefully investigating this issue for CL.

To that end, we show that when a certain task in a CL scenario contains a dataset
bias, applying naive CL methods to learn such a task would be problematic since they can
maintain unwarranted knowledge (e.g., background bias) and transfer it to future or past
tasks. To test this, we construct a synthetic dataset with color bias, and systematically
conduct extensive experiments on various two task scenarios with varying levels of bias.
We quantitatively identify that the forward and backward transfer of bias indeed exist
when naive CL methods are applied. More specifically, we show that a typical CL method
preserves the knowledge such that the bias of the knowledge learned from the past task is
reused to train on a new task (i.e., forward transfer of bias), resulting in severer bias for the
new task. Furthermore, it is shown that the biased knowledge learned from the current task
also affects the decision rules for the past tasks to be biased (i.e., backward transfer of bias),
and a naive debiasing for the current task could also cause the catastrophic forgetting of
the past task. Our results clearly call for a principled, novel approach for taking the causal
learning into account while continual learning from potentially biased datasets, in order to
prevent both bias transfers and forgetting.
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2. Case Studies of Bias Transfer in CL

2.1. Experimental Settings

2.1.1. Dataset

We use Split CIFAR-100 (Zenke et al., 2017; Chaudhry et al., 2019; van de Ven et al., 2020),
which divides CIFAR-100 into 10 tasks with 10 distinct classes. To study bias transfer, we
modify Split CIFAR-100, such that half of the classes in each task are skewed toward the
grayscale domain and the other half toward the color domain. Namely, given a skew-ratio
α ≥ 0.5, the training images of each class are split into α and 1−α ratios for each domain.
We set 6 bias levels by dividing the range from 0.5 to 0.99 evenly on a log scale for systematic
control of the degree of bias.

2.1.2. CL Scenario

We consider a task-incremental learning scenario (Van de Ven and Tolias, 2019) in which
a task identifier t ∈ T ≜ {1, 2, 3, · · · } is given during inference time and further assumes
the domain of an input image is known. For simplicity, we only considered the scenario
of incrementally learning two tasks; we randomly chose 2 out of 10 tasks in every run and
reported the averaged results over 4 different runs. We denote the t-th task as Tt with
t ∈ {1, 2}.

2.1.3. Baselines

We adopt fine-tuning without any consideration of CL and three representative CL methods:
LWF (Li and Hoiem, 2017), EWC (Kirkpatrick et al., 2017), and ER (Chaudhry et al.,
2019). LWF and EWC add regularization terms in their training objectives to penalize
deviation from the past model and balance the stability-plasticity trade-off by controlling
the regularization hyperparameter. On the other hand, ER stores some data from past
tasks in a small exemplar memory and replays them while learning current task. For
ER, we store 500 samples, which are 10% of a task data. Finally, as a model debiasing
technique, we employ MFD (Jung et al., 2021), a state-of-the-art method that trains a
domain-independent model using a MMD-based feature distillation method.

2.1.4. Metrics

We consider two metrics, average accuracy and the difference of classwise accuracy (DCA)
(?), as evaluation metrics for CL performance and bias for each task, respectively. The

concrete definition of DCA is given below. Let Dt = {(x(i)t , a
(i)
t , y

(i)
t )}Nt

i=1 be a test dataset

for task Tt, where a
(i)
t ∈ A is the color domain of the input x

(i)
t ∈ X , and y

(i)
t ∈ Yt is the

class label where Yt is the set of classes of Tt. Given a classifier h and a dataset Dt for task
Tt, DCA is defined as below:
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DCA(h,Dt) =
1

|Yt|
∑
y∈Yt

max
a,a′∈A

|A(h,Dy,a
t )−A(h,Dy,a′

t )|,

where A(h,Dy,a
t ) =

1

Ny,a
t

Ny,a
t∑

i=1

1[h(x(i)t , t) = y]

in which Dy,a
t is the subset of Dt that is confined to the samples with class-domain label

pair (y, a). We note that A(h,Dy,a
t ) is the accuracy of samples with class y and domain a,

and DCA means the average (over class) of per-class maximum accuracy difference between
domains. Thus, a large DCA corresponds to h possessing large bias between different
domains.

In addition, we compute forgetting (F) and intransigence (I) measures (Chaudhry et al.,
2018; Cha et al., 2021) for evaluating stability and plasticity of a CL method, respectively,
and use Normalized F − I as a metric for the relative weight on plasticity and stability.
To be specific, let ht and h∗t be the classifiers learned up to Tt tasks which are trained by
a CL method and the fine-tuning method, respectively. In our two task learning scenario,
the forgetting and intransigence measures are defined as follows:

F = A(h1,D1)−A(h2,D1) (1)

I = A(h∗2,D2)−A(h2,D2). (2)

Then, for each CL scenario, the differences between two measures are normalized by the
maximum and minimum possible values of F − I, which are obtained by A(h1,D1) −
A(h∗2,D2) + 1 and A(h1,D1) − 1 − A(h∗2,D2), respectively. We note that this Normalized
F − I indicates the model focuses more on stability as the value becomes lower and on
plasticity as it becomes higher.

2.2. Study 1: Forward Transfer of Bias

To investigate the influence of bias captured from T1 in a CL scenario, we evaluated baseline
methods by varying the bias level of T1, while that of T2 is fixed to level 2. Figure 1 shows
DCA of T2 along with Normalized F−I after learning T2 with two different bias levels of T1,
i.e., level 0 & 6. The figure plots the results of LWF and EWC with various regularization
strengths; namely, the upper the point is, the lower the regularization strength is. From the
gap of blue triangles in the figure, we first observe that bias of T1 adversely affects the bias
of T2, i.e., forward transfer of bias exists, even with simple fine-tuning, which is consistent
with Salman et al. (2022). Second, we observe that when applying CL methods, the gaps
between connected points get larger than fine-tuning. Moreover, when the bias level of T1

is 6, DCA of T2 for EWC and LWF increases more drastically as the focus on stability is
larger. Thus, these results imply that CL methods promote the forward transfer of bias
since they tend to remember the knowledge of past tasks for stability. Finally, we clearly
observe that DCA of T2 is always better when learned after T1 with bias level 0 than with
bias level 6, for similar Normalized F − I. Therefore, we argue that whenever a given task
has a bias in CL scenario, its bias should be mitigated for learning future tasks.
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Plasticity↑

Stability↓

Figure 1: Forward transfer of bias. The higher DCA indicates a model is more biased. The
y-axis shows the level of focus on plasticity or stability. Dashed lines connect the points
with the same learning strategy (hyperparameters).

Figure 2: Backward transfer of bias. Blue arrows indicate the sequence of stages. Since all
baselines are trained in the same way on T1, we report the results with one cross marker.
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2.3. Study 2: Backward Transfer of Bias

Here, we set the bias level of T1 and T2 as 0 and 6 and assume a scenario that a bias is
detected after learning T1 (stage 1) and continually learning T2 (stage 2) by a CL method.
In this situation, one may naively consider applying a debiasing method (stage 3), e.g.,
MFD, to the model obtained after learning T2 to remove the bias.

Figure 2 shows the accuracy and DCA of T1 and T2 on each stage for each baseline. In
the right plot, we observe that points shift to the bottom left as they progress from stage 1
to stage 2. This means that as the stability gets less focus, the bias obtained from T2 is more
transferred to T1, i.e., the backward transfer of bias occurs. Moreover, from the results of
stage 3 in the left plot, we show that DCA of T2 can be successfully reduced by employing
a debiasing technique of a model with similar accuracy. However, we also identify that the
accuracy of T1 significantly drops after stage 3, which suggests that serious forgetting of T1

happens when naively debiasing the model for T2. This result suggests that just applying
canonical debiasing of the model after learning each task, in order not to forward transfer
the bias to the future tasks (as seen in Study 1), can cause serious forgetting of the past
task. Hence, we argue that it is necessary to develop a novel continual learning method
that takes causal learning into account to prevent the bias transfer while maintaining the
stability of the model to mitigate forgetting.

3. Concluding Remark

With systematical analyses for two task CL scenarios using a synthetic dataset containing
the color bias, we showed the bias can be transferred both forward and backward by typical
CL methods that are oblivious to the dataset bias. Furthermore, we also showed that naively
applying the existing debiasing technique inevitably leads to catastrophic forgetting, which
strongly appeals for devising a new method that achieves objectives of CL and causal
learning simultaneously. For future work, we will investigate the bias transfer in a more
realistic scenario with natural biases such as gender bias or with a longer sequence of tasks.
It would also be interesting research direction how the bias transfer matters when there is
multiple sources of, possibly unknown, bias.
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