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Abstract
Continual Learning (CL) is the research field addressing training settings where the data distri-

bution is not static. One of the core problems CL addresses is learning without forgetting. To solve
problems, continual learning algorithms need to learn robust and stable representations based only
on a subset of the data. Those representations are necessarily biased and should be revisited when
new data becomes available. This paper studies spurious features’ influence on continual learning
algorithms. We show that in continual learning, algorithms have to deal with local spurious fea-
tures that correlate well with labels within a task only but which are not good representations for
the concept to learn. One of the big challenges of continual learning algorithms is to discover causal
relationships between features and labels under distribution shifts.

1. Introduction

Feature selection is a standard machine learning problem. Its objective is notably to improve the
prediction performance (Guyon and Elisseeff, 2003). In the presence of spurious features, a learning
algorithm may overfit features and learn a solution that can not generalize to the test set. This
problem can notably be caused by a covariate shift between train and test data.

In continual learning (CL) French (1999); Parisi et al. (2019); Lesort et al. (2020), the training
data distribution changes through time. Hence, spurious features (SFs) in one time-step of the data
distribution should not last. A CL algorithm relying on a spurious feature could then be resilient
and learn better features later – given more data. Algorithms can also learn to ignore past spurious
features (Javed et al., 2020). An example of a task with spurious features could be a classification
task between cars and bikes. In the training data, all cars are red, and all bikes are white, while it test
data, both are in a unique blue not available in train data. A model could easily overfit the color to
solve the task while it is not discriminative in the test data. Addressing spurious features was one of
the major goals of the recent out-of-distribution (OOD) generalization community (Arjovsky et al.,
2019; Ahuja et al., 2021; Sagawa et al., 2019; Pezeshki et al., 2020).

On the other hand, in continual learning, the second type of spurious feature can be described:
local spurious features. Local features denote features that correlate well with labels within a task (a
state of the data distribution) but not in the full scenario. In opposite to the usual spurious features,
this problem is provoked by the unavailability of all data. An example of a classification scenario
would be: task 1, blue cars vs yellow bikes and task 2, yellow cars vs blue bikes. In both cases, the
tasks can be solved efficiently with the colour feature, but if the test data is composed of cars and
bikes of both yellow and blue, then the colour is not discriminative anymore, and the model can
not generalize. While there is no covariate shift between all train data and test data, the model can
not generalize because of the distribution shift through time. It is, therefore, a problem specific to
continual learning.

This paper investigates the problem of spurious features (with covariate shift) in continual learn-
ing and shows that the continual learning setup leads to a specific type of spurious features that we
call local spurious features (LSFs) (without covariate shift) in CL as shown in Fig. 1.
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(a) Train SF (b) Test SF (c) Train LSF (d) Test LSF

Figure 1: Spurious features and local spurious features. If the task is to distinguish the squares
from the circles. In Fig. 1(a) and 1(b), the color is a spurious feature because there is a
covariate shift between train and test data. In Fig. 1(c) and 1(d), we observe two tasks of
a domain-incremental scenario, the colors are locally spurious in tasks 1 and 2. Even if
there is no significant covariate shift between train and test full data distribution, colors
appear discriminative while looking at data within a task.

Table 1: Summary of characteristics of the types of features. For a feature z of a class c, we denote
if it verify (1) on different data setting, a single task Tt, the whole scenario CT , the test set
Dte.

Name Tt CT Dte

Good Feature (z+) ✓ ✓ ✓
Spurious Feature (zspur) ✓ ✓ ×
Local Feature (zloc) ✓ ? ?
Local Spurious Feature (zspur:t) ✓ × ×

2. Problem Formulation

This section introduces the spurious features problems in a sequence of tasks. The goal is to present
the key types of features, namely: general, local, and spurious features.

General Formalism: We consider a continual scenario of classification tasks. We study a func-
tion fθ(·), implemented as a neural network, parameterized by a vector of parameters θ ∈ Rp (where
p is is the number of parameters) representing the set of weight matrices and bias vectors of a deep
network. In continual learning, the goal is to find a solution θ∗ by minimizing a loss L on a stream
of data formalized as a sequence of tasks [T0, T1, ..., TT−1], such that ∀(xt, yt) ∼ Tt (t ∈ [0, T −1]),
fθ∗(x) = y. We do not use the task index for inferences (i.e. single head setting).

To describe the different types of features, let z be a feature and x ∼ D a datum point in dataset
D. We define w(.) a function which returns 1 if z is in x and 0 if not. w(.)’s output is binary
for simplicity. Then, for all data with a label y in the dataset D, we can compute the correlation
c(D, z, y) = correlation(w(z, x) = 1, Y = y), which estimates how a feature correlates with the
data of a given class. We can then define discriminative features as:
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z is discriminative for class y in D if:

∀y′ ∈ Y, y ̸= y′ c(D, z, y) ≫ c(D, z, y′) (1)

Y is the set of classes in D. In other words, z is discriminative for y if it correlates significantly
more to y’s data than to the data of any other class. Then a good feature z+ for a class y respects (1)
for training data Dtr and test data Dte.

Spurious Features vs Local Spurious Features
A spurious feature zspur for a class y respects (1) for training data Dtr but not for test data Dte.

A spurious feature is well correlated with labels in training data but not with testing data.
Hence, learning from zspur may offer a low training error but high test error. The presence

of zspur is due to a covariate shift between train and test distribution which changes the feature
distribution.

In continual learning, the covariate shift between train and test zspur may also lead to poor
generalization. Further, the features can be locally spurious, e.g., they correlate well with labels
within a task but not within the whole scenario. We name them local spurious features (LSF). We
illustrate the difference between spurious features and local spurious features in Figure 1.

At task t, A local spurious feature zspur;t respects (1) for a class yt in task Tt, but not for the
whole scenario CT . z is a LSF for a class y in Tt ∼ CT , with t ∈ J0, T − 1K:

if ∀ y′ ∈ Yt, y ̸= y′ c(Tt, z, y) ≫ c(Tt, z, y′)
and ∃ y′′ ∈ Y, y ̸= y′′ c(CT , z, y) ̸≫ c(CT , z, y′′)

(2)

Yt is the classes set in task Tt and Y is the classes set in the full scenario CT composed of T tasks.
A LSF zspur;t correlates well with a label on the current task but not on the whole scenario. zspur;t
can be extended from a single task Tt to all task seen so far T0:t without loss of generality.

Global vs Local Optimum: We assume that machine learning models solve tasks by learning to
detect/select features that correlate well with labels. Then, while learning on a task t, we distinguish
a local optimum θ∗t , satisfying for the current task Tt, from a global optimum θ∗0:T that is satisfying
for whole scenario CT (past, current, and future tasks).

Similarly, we can differentiate local and global features, leading to local and global optimum.
The global features are the good features z+ that are predictive for the full scenario. Unfortunately,
at time t, we can not know if a feature is part of z+ without access to the future data. Therefore,
algorithms should learn with their current data but update their knowledge afterwards, given new
data. For example, in classification, the discriminative features for a given class depend on all the
classes. Therefore, when new classes arrive, discriminative features can become outdated in class-
incremental scenarios.

To learn robust solution in CL, algorithms should them be able to deal both with spurious fea-
tures and local spurious features. One trivial solution to deal with local spurious features is the use
of replay. Replay can avoid and fix local spurious features’ influence by providing more context
on the full data distribution. Nevertheless, replay can be compute and data-intensive and a better
solution could be developed.

3. Conclusion

Continual learning algorithms are built to learn, accumulate and memorize knowledge through time
to reuse them later. Memorizing bad features can have catastrophic repercussions on future perfor-
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mance. Then, to learn general features, algorithms need to deal with spurious and local spurious
features.

This paper first investigates the question of spurious features on continual learning. Algorithms
easily overfit spurious features for one or several tasks, leading to poor generalization. Spurious
features are then problematic for them. Furthermore, we formalize another type of spurious feature
that we call local spurious feature and which can be problematic for continual learning algorithms.

Local spurious features are features that correlate well with labels when only a subset of data are
available but not when all the data is available. These types of features make harder the discovery
of robust features. From a causality perspective, local spurious features makes it harder to discover
the causal relationship between features and labels in continual learning. Causality algorithms could
help to find a solution to solve this issue.

In the continual learning literature, performance decrease is generally attributed to catastrophic
forgetting. Our results show that the problem of local spurious features also plays a major role.
More research is needed to understand better the impact of local spurious features along with catas-
trophic forgetting. Understanding this phenomenon is critical to better address forgetting and feature
selection and enable efficient continual learning.
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