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Abstract

Continual Learning systems are faced with a potentially large numbers of tasks to be learned
while the models employed have only limited capacity available, which makes it potentially
impossible to learn all required tasks within a single model. In order to detect on when a
model might break we propose to use treatment effect estimation techniques to estimate
the effect of training a model on a new task w.r.t. some suitable performance measure.

1. Motivation

Continually learning new concepts and solving new tasks is one key element of human
intelligence which accompanies us throughout our entire lifespan and seems to be more
important than ever in these accelerated times of technological progress. For instance, the
rising dynamics of the job market demands employees for continually learning, e.g. using a
new software being introduced in a company, while not forgetting how to solve problems we
face all the time during work, e.g. communicating properly with new customers. Continual
Learning (CL) aims to transfer this ability to Machine Learning (ML) to obtain models
which are capable of adapting to new tasks without losing the ability to solve tasks seen
earlier. Among others, this comes with a set of benefits: (1) existing knowledge gathered
by learning a sequence of tasks can be exploited for reaching better performances and
making models more robust by leveraging similarities among tasks and (2) continually
updating models avoids the need to fully re-train once a new task is faced, thus CL helps
making ML more resource-efficient Delange et al. (2021); Parisi et al. (2019); Mundt et al.
(2023). In CL, a task can correspond to one of the widespread problem-definitions used
in ML, i.e. supervised learning, unsupervised learning or combinations thereof. One of the
most prominent problems in CL is catastrophic forgetting which describes the observation
that ML-models (especially Neural Networks) tend to forget about tasks they have learned
previously once they are trained to solve a different task McCloskey and Cohen (1989);
Delange et al. (2021); Parisi et al. (2019); Mundt et al. (2023). Methods aiming to overcome
this issue either train expert-models for each task, replay old data while training on new
tasks or fix certain parameters in the models which are considered to be important to solve
tasks that can be solved already. Expert-models suffer from high resource consumption and
they are not able to exploit old knowledge due to isolated parameter-sets per expert. Though
replay-based approaches also suffer from high memory consumption, they are widely used
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because such approaches have shown good performance. Kirkpatrick et al. (2017); Rebuffi
et al. (2016); Mundt et al. (2023); Delange et al. (2021). Fixing parameters which are deemed
important to solve former tasks is less resource-intensive, thus being a reasonable approach
as well. However, for all approaches which share parameters across tasks, questions like
the following arise: “Does the model have enough capacity to learn a new task?” Given
a paramerterized model, which effect will training on a new task have w.r.t. the overall
model performance? Given that we have trained our model on a sequence of tasks, what
would be the state and performance of our model if we had not trained on the last k tasks?
Answering such questions is crucial in order to have guarantees w.r.t. model performance
and robustness. Also it increases flexibility of CL-systems since answering such questions
allows to determine when model-complexity has to be increased. Estimating effects in
counterfactual settings enables CL-systems to find proper trade-offs, e.g. when we have
to learn a new task, but there is not enough capacity, i.e. we are sure that the overall
model-performance will decrease. Then, with counterfactual reasoning, one could identify
knowledge in the model which causes the lowest decrease in performance once this knowledge
is discarded to make space for the new task to be learned. To see why estimating the effect
of training on a new, unseen task has, consider the following example: Assume a robot
that already has learned to walk in an environment and to jump over obstacles. Now, it
is confronted with learning to collect certain items while moving through the environment.
However, it does not have enough capacity to learn all three tasks. Being able to predict
that learning to collect items will lead to bad performance in e.g. jumping over obstacles
(that might harm the robot itself), allows the robot to decide to not learn the new task and
stay safe instead.
A robust and well known framework to compute the effect (here: model performance) that
causes (here: training on a task) have in some given system is treatment effect estimation
(TEE). Since TEE is theoretically well understood and widely used (e.g. for assessing the
causal effect of new drugs in medicine Bica et al. (2021)), we want to make use of its
robustness and employ it to reason about the effects of continual training on ML models.

2. Treatment Effect Estimation

TEE has its grounding in Causal Inference. The goal is to estimate the effect of an in-
tervention in a system on some variable Becker and Ichino (2002); Imbens (2004); Rubin
(2005). Besides the Potential Outcome framework of Rubin (2005), the do-calculus pro-
posed by Pearl (2009) is a strong framework which can be used to compute entities required
for TEE. The do-calculus is able to capture asymmetries rendered by causal structures (i.e.
if A is the cause of B, changing A changes B but not vice versa). Following this rationale,
the average treatment effect (ATE) of a binary variable X on a variable Y can be defined
as follows:

ATE = E[Y |do(X = 1)]− E[Y |do(X = 0)] (1)

ATE is just one of many treatment effect quantities one can estimate/compute, another im-
portant quantity is the individual treatment effect (ITE) where one focuses on the outcome
of an individual system configuration instead of taking an expectation Tabib and Larocque
(2019). However, we will focus on ATE here. It is also possible to consider counterfactual
scenarios: Instead of asking how the system will behave under an intervention, we ask how
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Figure 1: Continual Learning represented as a causal graph. The decision τi−1 if the cur-
rent model parameters θi−1 are updated using task ti depend on θi−1 (which is
obtained) and ti only. The model-parameters θi at timestep i influence the overall
model-performance li across all i tasks.

the system would have behaved if an intervention was performed Hsu et al. (2022); Yao
et al. (2021).

3. Connecting TEE and CL

In order to perform TEE, we have to know which variable is caused by which other vari-
able(s). We assume that a causal graph is known or can be designed by hand. For example,
Figure 1 shows a causal graph of one “step” in a CL-system: ti denotes a task we obtain
at step i, τi is a binary decision variable indicating whether we update our model based on
ti, θi−1 and θi are the model-parameters at step i − 1 and i respectively, li is the model-
performance w.r.t. all tasks at step i and Ti−1 refers to the set of all tasks we have trained
on until step i (excluding task i). Note that all variables except for li are independent
of Ti−1 since we observe θi−1 which represents the accumulated knowledge over Ti−1, thus
older tasks are not needed to estimate these variables.

TEE in Factual Settings Sticking with the example in Figure 1, a natural question
to be answered is: Obtaining a new task ti, will the average model performance li signifi-
cantly decrease when updating the current parameters θi−1 on ti? Formally this question
corresponds to estimating the conditional average treatment effect (CATE) E[li|do(τi =
1), ti, θi−1] − E[li|do(τi = 0), ti, θi−1]. Estimating this quantity requires us to estimate the
case where do(τi = 1) only since do(τi = 0) can be approximated by evaluating the current
model on all tasks and average the performance. Estimation of do(τi = 1) case can be done
with a 2-step-procedure: First, estimate a distribution over θi s.t. the parameters that
would result from training on ti have high probability, denoted by p(θi|ti, θi−1). Once this
distribution is estimated, the expectation of li can be computed by:∫

li

∫
θi

li · p(li|θi) · p(θi|ti, θi−1) (2)
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Estimating distributions p(θi|ti, θi−1) and p(li|θi) comes with the advantage of being able to
quantify the uncertainty in the parameter-prediction. However, since especially p(θi|ti, θi−1)
is likely to be a complex distribution, computing moments of this distribution is probably
resource-intensive because approaches like Monte Carlo have to be used. Instead one could
perform point estimates of θi. For this a promising starting point could be to utilize Influence
Functions Koh and Liang (2017). These measure the effect of a single sample of a dataset
on the model-parameters. In our setting Influence Functions would measure how θi would
differ if we would have trained on task t′i instead of ti where t′i is a version of ti with one
sample dropped and parameters being initialized to θi−1 before training. To estimate the
effect of an entire task on θi, one would have to extend Influence Functions to estimate the
effect of an entire dataset on the parameters. Once the effect of ti on the parameters can be
computed, evaluating the effect of task ti on some performance metric is straightforward.
Knowing the effect of training on a task ti w.r.t. some performance measure allows to
determine when the model should be equipped with additional capacity, e.g. by adding
more parameters. Additionally, the estimated change in parameters can be used to warm-
start the next training-stage.

TEE in Counterfactual Settings Another issue we are confronted with in CL-settings
is the following: Assume we have a fixed resource-constraint (i.e. our model has a max-
imum possible capacity) and we obtain a new task which will decrease the overall model
performance. Then we have to identify those parts of knowledge represented by our model
which will cause the lowest decrease in performance. This can be considered as identifying
the task that contributes the lowest amount of knowledge to our model, which in turn can
be formulated as a counterfactual question: “What would the model performance be if we
had not trained on ti−k but on ti?” This question can be answered by estimating a series
of ATEs in counterfactual settings s.t.

E[li|do(τi = 1), ti, θi−1]− E[li|do(τi = 1), ti, θi−1] (3)

is maximized where li and θi−1 corresponds to the value of li and θi−1 respectively if τi−k

had been 0, i.e. if we had not trained on ti−k. Having such a method to estimate li and θi−1

would not only allow for assessing which knowledge does not contribute much to the overall
model-performance, it also can be used to warm-start the model once the knowledge causing
the lowest performance-drop if discarded was identified. Again, as in the factual setting,
one could aim to estimate a distribution over model parameters and performance-measures.
Of course, one faces the same challenges as in the factual setting when estimating complex
distributions and their moments. As above, an alternative approach is to use point-estimates
in the form of Influence Functions. However, instead of only extending them to capture
the change in model parameters θi−1 of a task ti, another extension would be necessary to
capture the change of a sequence of tasks. For example, say we have continually trained a
model on 4 tasks and obtain a 5th task. To estimate the parameters’ values if we would
not have trained on e.g. task 3, we first would have to ”undo“ the changes of task 3 and 4.
Then θ5 has to be estimated based on θ̂2 where θ̂2 is an estimation of θ2 based on rolling
back changes made by task 3 and 4. Assuming we are allowed to save θi at each step i
and have access to each ti or a representative thereof (as in pseudo-rehearsal), the above
problem simplifies to estimating the effect of a sequence of tasks, i.e. it reduces to solving
a sequence of the same problem as in the factual setting.
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Robot-Example To show that CL can benefit from estimating the effect of training a
model on a certain task, we return to the motivational example from above: Assume t1
corresponds to the task walking, t2 corresponds to the task jumping over obstacles and t3
corresponds to the task collect items. In the factual case, given that the robot learned to
solve t1 and t2, we can estimate the overall effect of learning t3:

e(t3) = E[l3|do(τ3 = 1), t3, θ2]− E[l3|do(τ3 = 0), t3, θ2]

Since l3 denotes the performance across all tasks, a simple decision rule could be to train on
t3 if e(t3) > 0, i.e. the overall gain when training on t3 is higher than possible performance
drops in single tasks. Since walking and jumping are substantially different than collecting
items, it is likely that e(t3) > 0, thus the robot would decide to learn t3 if it has enough
capacity for t3.
For counterfactual cases assume that the robot had the capacity to also learn t3 from above
and we obtain yet another task t4 in which the robot should learn to search for an energy
supply-station once its battery is low. Assume the robot’s model driving its decisions has
not enough capacity to learn t4. However, it is forced to learn t4 since without solving it
the robot will stop working once its battery is empty. Further assume a task ti does not
carry information about a different task tk, i.e. learning ti does not help us solving tk. Now
the robot has to identify the task creating the least harm to its overall performance which
can be done by estimating:

E[li|do(τi = 1), ti, θi−1]− E[li|do(τi = 1), ti, θi−1]

Here, θi−1 denotes an estimation of the model-parameters had the robot not learned ti. Do-
ing this for each task allows us to sort the tasks by their impact on the overall performance.
If, for instance, the robot uses rehearsal-methods for continuously updating its model, it
then can ignore the task that leads to least harm if the task-related knowledge was dropped
from the model-parameters.

4. Conclusion & Further Work

This vision paper looked at the benefits of using the TEE-framework to increase the ro-
bustness and flexibility of CL-systems. We propose a starting point that can be used
to answer (counter-)factual questions about CL-systems to guide the optimization behav-
ior. Answering such questions is crucial in productive systems in order to give guarantees
w.r.t. model-performance and to minimize computational costs (e.g. by using parameter-
estimations as a warm-start). Additionally, viewing at CL-systems from a causal lens allows
us to make models more transparent, e.g. by identifying knowledge that has low positive
effect on the model-performance.
Further work should start with solving the factual case, followed by the counterfactual case.
We already have sketched a possible approach using Influence Functions which estimate the
effect of samples from a dataset on the model parameters. An extension to estimate the ef-
fect of entire datasets/tasks could be employed to answer factual and counterfactual queries
as shown above. Another approach could be to employ representation learning techniques
which have been shown to compactly represent complex high-dimensional data in relatively
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low-dimensional spaces. This effectiveness could be exploited to encode parameters and
tasks in compact representations. Then, the NCM framework proposed by Xia et al. (2021)
could be employed to estimate CATE to answer the questions mentioned above. Also, in-
stead of ATE other quantities such as ITE can be considered, e.g. to answer questions
about specific tasks.
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