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Abstract

Missing values are a fundamental problem in
data science. Many datasets have missing val-
ues that must be properly handled because
the way missing values are treated can have
large impact on the resulting machine learn-
ing model. In medical applications, the conse-
quences may affect healthcare decisions. There
are many methods in the literature for dealing
with missing values, including state-of-the-art
methods which often depend on black-box mod-
els for imputation. In this work, we show how
recent advances in interpretable machine learn-
ing provide a new perspective for understand-
ing and tackling the missing value problem. We
propose methods based on high-accuracy glass-
box Explainable Boosting Machines (EBMs)
that can help users (1) gain new insights on
missingness mechanisms and better understand
the causes of missingness, and (2) detect – or
even alleviate – potential risks introduced by
imputation algorithms. Experiments on real-
world medical datasets illustrate the effective-
ness of the proposed methods.

Data and Code Availability: This paper uses
two publicly available datasets: MIMIC-II (Saeed
et al., 2002) and CDC Birth Cohort Linked Birth -
Infant Death Data Files (United States Department
of Health and Human Services (US DHHS) et al.,
2021), and a proprietary pneumonia mortality predic-
tion dataset (Cooper et al., 2005). The experiments
leverage InterpretML open source (Nori et al., 2019)

software package, and experiment code is provided in
the supplementary materials.

Institutional Review Board (IRB): The re-
search does not require IRB approval.

1. Introduction

Missing values are ubiquitous in most datasets and
have significant impact on machine learning mod-
els, as most machine learning models do not natu-
rally handle missing values. While one could simply
delete rows or columns as a preprocessing step, so
the learning algorithm is only given observed, non-
missing samples as inputs, such methods only work
when the missingness ratio is small and the feature
values are missing completely at random (MCAR).
Deleting cases with non-MCAR missing values risks
changing the data distribution, losing what might be
valuable information contained in the missing cases.

To avoid potential risks, systematic studies on un-
derstanding and handling missing values have been
conducted in statistics and machine learning. Mech-
anisms of missingness have been studied and classified
into three main categories, missing completely at ran-
dom (MCAR), missing at random (MAR), and miss-
ing not at random (MNAR). Different types of miss-
ingness have different solutions. For example, data
cleaning and deletion methods like listwise and pair-
wise deletion are often used for MCAR (Rubin, 1976).
In the MAR scenario, numerous imputation meth-
ods have been proposed. These include simple tech-
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niques like imputing missing values with the mean
or median, using a unique value to denote missing,
and using advanced statistical and machine learning
models to impute the missing values. State-of-the-art
imputation methods include discriminative models
like MICE (Van Buuren and Groothuis-Oudshoorn,
2011), MissForest (Stekhoven and Bühlmann, 2011),
KNN Imputer (Troyanskaya et al., 2001), and matrix
completion (Mazumder et al., 2010; Yu et al., 2016),
and generative models like deep generative models
(Yoon et al., 2018). Since most of these methods are
based on black-box machine learning methods and
the accuracy and behavior of the final model depends
on the imputed values, it is difficult for users to recog-
nize and understand the potential harms that might
be introduced by these imputation methods.

Recently developed interpretable machine learning
methods have been shown to be useful for debugging
models and detecting issues with datasets (Adebayo
et al., 2020; Koh and Liang, 2017). Interpretable ma-
chine learning methods provide a new opportunity to
study missing values and revisit some of the classi-
cal methods for handling missing values. In this pa-
per, we propose novel methods based on the Explain-
able Boosting Machine (EBM) (Lou et al., 2012, 2013;
Nori et al., 2019), a high-accuracy, fully-interpretable
glass-box machine learning method, to answer the fol-
lowing questions: (1) how interpretability can help
users gain insights on the causes of missingness, and
(2) how interpretability can help detect and avoid po-
tential risks introduced by different imputation meth-
ods. We show that the glass-box models provide new
insights into missingness mechanisms, and in some
settings, suggest alternate ways of handling missing
values, as well as new tools that can alert users when
imputation can lead to unexpected problems.

2. Related Work

Issues with missing value imputation methods,
whether generative or discriminative, have been
pointed out in the literature (Harel and Zhou, 2007;
Jeličić et al., 2009; Ibrahim et al., 2012; Li et al., 2015;
Van Buuren, 2018; Sidi and Harel, 2018). For exam-
ple, generative imputation methods have been criti-
cized for placing assumptions on the underlying data
distribution, not all of which are testable (Yoon et al.,
2018). Waljee et al. (2013) studied four discrimina-
tive imputation methods – MissForest, mean imputa-
tion, nearest neighbor imputation, and multivariate
imputation by chained equations (MICE) – on med-

ical datasets modified to have missing completely at
random (MCAR) values, finding that MissForest had
the least imputation error for both continuous and
categorical variables. Our paper shows that MissFor-
est, despite its popularity, presents issues that prac-
titioners should notice.

Connections between missing value imputation and
causal inference methods have been drawn. Ding and
Li (2018) pointed out that the unconfoundedness as-
sumption in causal inference is similar to the missing
at random (MAR) assumption in missing data anal-
ysis, with both fields relying on these untestable, yet
critical assumptions. The interpretability techniques
we use in this paper can be applied to datasets even
if they have missing not at random (MNAR) values.
This flexibility presents a contribution given how dif-
ficult it is to distinguish between MAR and MNAR
in practice (Van Buuren, 2018).

Our work is related to recent work using explain-
ability techniques to detect issues with datasets. Ade-
bayo et al. (2020) investigate the ability of feature at-
tribution methods to detect spurious correlations and
mislabeled examples. Koh and Liang (2017) used in-
fluence functions applied to black-box models to de-
tect mislabeled examples in data. Our work does
not use black-box models, and focuses on debugging
missing values, a key issue in many datasets.

Some AutoML tools perform automatic data clean-
ing. Both the Automatic Statistician (Steinruecken
et al., 2019) and AlphaClean (Krishnan and Wu,
2019) attempt to automatically impute missing val-
ues. Unlike these papers, our focus is not on fixing
datasets automatically, but on helping users detect,
understand and mitigate missing values problems.

3. Background

3.1. Types of Missing Values

Rubin (1976) classified missingness mechanisms into
three types: (1) Missing Completely At Random
(MCAR): the missingness is unrelated to the data, i.e.
the probability of missing is the same for all samples;
(2) Missing At Random (MAR): in addition to com-
plete randomness, the probability of missingness of a
feature is determined from the observed values of the
other features (3) Missing Not At Random (MNAR):
the probability of missingness is also related to unob-
served values in the data, e.g., the missingness is also
related to the feature value itself.
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3.2. Missing Value Imputation

Here, we describe the advanced imputation methods
we investigate in this paper: MissForest (Stekhoven
and Bühlmann, 2011) and KNN Imputation (Troy-
anskaya et al., 2001).

The MissForest algorithm first makes an initial
guess for the missing values using mean and mode
imputation. Then it sorts the features according
to the missing rate, and fits a random forest iter-
atively to predict and impute each missing feature
from the other features until the imputed values con-
verge. MissForest is a popular imputation method
as it is capable of capturing non-linear and interac-
tion effects between features to improve imputation
accuracy, and can be applied to mixed data types
(continuous and discrete). Note that, the framework
of MissForest is similar to that of MICE (Van Buuren
and Groothuis-Oudshoorn, 2011) — the only differ-
ence is MissForest uses random forest while MICE
uses linear model as base model for imputation.

KNN imputation imputes the missing values by the
mean value of its K nearest neighbors in the training
set. The distance of two samples is measured on the
non-missing features in both samples. KNN imputa-
tion is fast and accurate but requires choosing a good
distance metric and tuning the hyperparameter K.

3.3. Explainable Boosting Machines

The methods proposed in this work are based on one
interpretable machine learning model, the Explain-
able Boosting Machine (EBM).

Suppose an input sample is denoted as (x, y), where
x is the p dimensional feature vector and y is the
target. Denote the jth dimension of the feature vector
as xj . Then a generalized additive model (GAM),
first introduced by Hastie and Tibshirani (1987), is
defined as

g(E[y]) = β0 + f1(x1) + f2(x2) + · · ·+ fp(xp) (1)

where β0 is the intercept, f ′js are the shape functions
and g is the link function, e.g., the identity function
for regression, or the logistic function for classifica-
tion. Since one can add any offset to fj while sub-
tracting it from β0 or other shape functions, shape
functions are often centered by setting the popula-
tion mean of fj , i.e., Ex∼X [fj(xj)] to 0. Because each
shape function fj operates only on one single fea-
ture xj , shape functions can be plotted. This makes
GAMs interpretable since the model can be visualized

Figure 1: EBM shape function and density plot for
P/F ratio when predicting ICU mortality.

as 2D graphs. In early work on GAMs, shape func-
tions were often modeled as splines with smoothness
constraints. Explainable Boosting Machines (EBMs)
(Lou et al., 2012, 2013; Nori et al., 2019) use bagged
ensembles of boosted depth-restricted tree to repre-
sent each fj . Tree-based ensemble learning signifi-
cantly improves the performance of GAMs: EBMs
outperform traditional GAMs because its shape func-
tions have more representational power and better
capture fine detail. Figure 1 shows the shape plot
learned for P/F ratio (a measure of blood oxygena-
tion) on the MIMIC II ICU mortality-risk classifica-
tion problem. The vertical axis is the contribution to
risk on log scale: patients with low P/F ratio have
high risk, and patients with P/F ratio near 1000 are
low risk. EBM can further improves its accuracy by
adding a small number of pairwise interactions, i.e.,

g(E[y]) = β0 +

p∑
j=1

fj(xj) +

K∑
k=1

fk(xk1
, xk2

). (2)

Including pairwise interactions does not sacrifice in-
terpretability since fk(xk1

, xk2
) can be visualized as

heatmaps. In this paper, we use EBM implemented
in the InterpretML package (Nori et al., 2019).

4. Gaining new insights on the causes
of missingness

4.1. Missing Completely at Random

When dealing with missing values, it is important
to determine the mechanism of missingness. Stan-
dard statistical tests exist for testing MCAR, e.g.,
Little’s test (Little, 1988). In this section, we propose
a method to test MCAR based on EBM shape func-
tions. The testing process of the proposed method
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can be directly visualized on the shape function plots,
which is not achievable by Little’s test. We will also
show that EBM can bring additional insights beyond
simply testing for MCAR.

4.1.1. Testing for MCAR with EBM

To test for MCAR, we use the common trick of encod-
ing missing values with a unique value for the feature,
e.g., -1 for a feature with positive values or a sepa-
rate category for a categorical feature. After fitting
an EBM that predicts the target, we get a shape func-
tion representing the contribution of different feature
values for predicting the target, including the unique
value denoting missingness. Note that the leaf nodes
in EBM split the feature values into many bins, where
each bin has a prediction score. These bins and scores
together form the shape function. Therefore, the
EBM shape function fj(·) of feature j can be rewrit-
ten as a linear combination of a series of indicator
variables denoting if the feature values are within the
bins, and the coefficients are the corresponding scores
of the bins, i.e.,

fj(xj) =

Bj−1∑
k=0

θj,k · 1{bj,k < xj <= bj,(k+1)}, (3)

where {bj,k}
Bj

k=0 are the bin edges of feature j in the
EBM model, and θj,k is the shape function score of
the bin (bj,k, bj,(k+1)]. Since EBM also uses the logis-
tic link function, this transformation can turn EBM
into a logistic regression model for binary classifica-
tion. To do a statistical test, we need to make some
assumptions and create a null hypothesis. First, we
know that if the missingness is MCAR, i.e., all sam-
ples are missing with the same probability, the ex-
pected score for bins representing the missing value
should be the same as the entire population, which
is 0 as the shape function scores are mean centered
in EBMs. Therefore, we can directly apply the clas-
sical significance Wald test of logistic regression co-
efficients (Kleinbaum et al., 2002). Specifically, our
null hypothesis is H0 : θi,k = 0, and the alternative
hypothesis is H1 : θi,k 6= 0. Then we calculate the
square root of the Wald statistic

√
W =

θ̂j,k

SE(θ̂j,k)
, (4)

find the p-value by assuming
√
W follows a Z distri-

bution, and reject the null hypothesis if the p-value is

Figure 2: Example of using EBM shape function to
test for MCAR. Missing coded as -5. p-value for test-
ing MCAR is less than 0.05.

smaller than a predefined threshold. Figure 2 shows
an example of using the proposed test for MCAR us-
ing EBM shape functions. The missing value is en-
coded as -5 (lower than minimum possible feature
value) for the Bilirubin feature. The Wald test re-
jects the null hypothesis and suggests that the miss-
ing value is not MCAR.

Type MCAR datasets↓ MAR datasets↑
pm 0.1 0.2 0.3 0.1 0.2 0.3

Little’s 0.035 0.070 0.055 1.000 1.000 1.000
Ours 0.080 0.005 0.005 0.910 0.885 0.890

Table 1: Proportion of times the test rejects the null
hypothesis, i.e., the missing mechanism is MCAR, on
datasets generated by different missing types, with
different missing ratios pm. When the data is truly
MCAR, for which low rejection rate is desired, our
method is less likely to reject the null hypothesis com-
pared with Little’s test, especially when missing ratio
becomes larger. When the data is MAR, where we
hope to reject the null hypothesis (high rejection rate
is better), Little’s test can reject all null hypothesis,
and our method is able to reject it in most cases.

Table 1 compares the performance of the MCAR
test we proposed with Little (1988). To test their
performances, we generate semi-synthetic datasets
where we know the ground truth missing mechanism.
Specifically, we start from MIMIC-II dataset imputed
by MissForest, and then add missing values to the
“Age” feature manually1. For MCAR case, each sam-
ple has a fixed probability pm of missing the “Age”
feature. For MAR case, we apply a linear model on
all features except “Age”, whose coefficients are ran-

1. The “Age” feature has no missing values in the original
dataset.
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domly sampled from standard normal distribution to
all samples in the dataset, adding a standard Gaus-
sian noise to the output score, and the dnpme sam-
ples with the lowest output scores from the linear
model (plus noise) are missing the “Age” feature.
We generate 200 datasets with MCAR values and
200 datasets with MAR values, and apply both our
MCAR test and Little’s test to these datasets, and
check if these test will reject the hypothesis that the
missing is MCAR (p value<0.05). Table 1 shows the
ratio of rejecting null hypothesis. Our method detects
MCAR values more reliably than Little’s method in
high (20%-30%) missingness cases.
Summary: We propose an application of EBM to

test if the missing value is MCAR. See Appendix A
for a case study on infant mortality risk showing that
such method may be useful in determining applica-
bility of a model for future data.

4.2. Missing Values Assumed Normal

In healthcare domain, it is common for feature values
such as lab tests to be missing in the dataset because
clinicians believed the patient was likely to be “nor-
mal” for this measurement, and thus the lab test was
not performed (Li et al., 2021). In other cases, the
measurement may have been made, but the value was
not recorded since it was within normal range — clin-
icians tend to focus on abnormal findings.

Figure 3: EBM shape function of “heart rate” for
predicting pneumonia mortality risk. Blue curve is
the original shape function; red curve is the edited
shape function.

For example, this happens to a pneumonia mortal-
ity risk dataset (Cooper et al., 2005). The blue curve
in Figure 3 shows what an EBM model has learned
for predicting pneumonia mortality as a function of
heart rate. As expected, risk is elevated for patients
with abnormally low (10-30) or high heart rate (125-
200). The graph, however, shows a surprising region

of flat risk between heart rate 38 and 125, which is a
normal heart rate for patients in a doctor’s office.
Moreover, the model surprisingly predicts patients
who have normal heart rate are at elevated risk: it
adds 0.22 to the risk for patients in this region.

On further inspection, it turns out that there are
no patients in the data set with heart rates between
38 and 125, and 91% of patients are missing their
heart rate which has then been coded as zero. In
other words, there are no data to support the model
in the normal range of heart rate 38-125, and instead
the patients who would be in this range are all coded
as zero in the data and on the graph. This explains
why the model predicts the lowest risk = -0.04 for
patients with heart rate = 0, because these are the
patients who actually have normal heart rates.

Any model trained on this data (e.g., boosted trees,
random forest, neural networks) is likely to learn to
make similar predictions as EBMs in the normal heart
rate region because there is no data to support learn-
ing the correct risk in this range, and because most
models will then interpolate between the extreme re-
gions where they do have data. One exception might
be Bayesian models with strong priors, where the
prior might dominate in regions of little or no data
and cause predictions in this region to be closer to a
baseline lower-risk value. The key advantage of using
interpretable models such as EBMs is that we can eas-
ily see these problems in the model, that ultimately
were caused by problems in the data.

If patients with normal heart rates (38-125) will
always be coded as zero in the future, then a model
trained on this data might always make accurate pre-
dictions and the elevated risk predicted by the model
in the range 38-125 will not be a problem because no
patient will ever fall in that range. However, if the
model might be used to make predictions for patients
whose true heart rate would be coded between 38
and 125, the model will then make incorrect – possi-
bly dangerous – predictions. Thus, it is important to
correct this kind of problem. One might hope that a
data scientist would detect this kind of problem in the
data prior to training a model, however in practice,
these kinds of problems can be difficult to detect in
the raw data, particularly if there are many different
types of problems in the data, and might be easier to
detect once an interpretable model is trained. (Previ-
ous users of the data had not noticed this problem.)
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4.2.1. Correction via Model Editing

There are several ways to correct this kind of prob-
lem. Of course, the best approach would be to collect
and record the true heart rates for all patients. Un-
fortunately, it is often not possible to go back and
correct data in this way. As we will see in Section
5.1, imputing with the mean or median missing value
is probably not ideal. We will also show in Section
5.2 that more advanced methods of imputing missing
values such as random forest imputation (Stekhoven
and Bühlmann, 2011) and KNN imputation (Troyan-
skaya et al., 2001) might also cause problems.

An alternate approach when EBMs are used is to
directly edit the model so that the region 38-125 pre-
dicts risk similar to the learned risk prediction for pa-
tients with heart rate = 0. Since we do not have any
information about true heart rate distribution within
the region 38-125, we assume they follow a uniform
distribution and edit the graph in this region to be
a flat curve. The resulting graph is shown as the
red curve in Figure 3. (Note that the result would
be similar to uniformly imputing the heart rates in
the interval 38-125 and retraining the model.) This
approach has the following advantages:

1. Editing shape functions provides an opportunity
for experts to use their professional training to
correct and improve models in ways that may not
be adequately represented in the training data.

2. Editing the model may not only improve the ac-
curacy of the model in the real world where it
will be used (instead of just on held-aside test
data from the train set), but also make the shape
plots more “reasonable” and trusted by experts.

3. Editing an EBM shape function can be done
without retraining the model and potentially in-
troducing new problems.

Summary: We show that EBM shape function
can help identify the case when feature values are
missing because they are assumed to be normal. We
also show how editing the EBM graphs can help ad-
dress issues resulting from missing assumed normal.

4.3. Predicting the Missingness

Most missing values are not MCAR, but as mentioned
in Section 2, MNAR and MAR can be difficult to dis-
tinguish (Van Buuren, 2018). For both cases, inter-
pretable models like EBM can still be useful in pro-
viding insights on possible missingness mechanisms.

(a) “Bilirubin” shape function when predicting missing-
ness of “Na”

(b) “Systolic blood pressure” shape function when pre-
dicting missingness of “heart rate (HR)”

(c) “Temperature” shape function when predicting miss-
ingness of “Urea”

Figure 4: EBM shape functions for predicting the
missingness of one feature using the others (x-axis:
feature value, y-axis: contribution to missingness).
The effects of the imputed group (orange) and the
non-missing group (blue) are separated.

One way to analyze the missingness mechanism is
to predict the missingness of one variable using the
other variables (including the target/label). Specif-
ically, the 0-1 missingness indicator is considered as
label, and the other features and the label of the orig-
inal prediction task are considered as input feature to
train the machine learning model. The prediction ac-
curacy for missingness tells us roughly how much the
missingness is related to the values of other variables.
More importantly, with the interpretability of EBMs,
we can visualize how the values of these variables con-
tribute to the missingness.
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model pm linear curvilinear quadratic
LR

0.1

0.954±0.014 0.902±0.016 0.883±0.02
RF 0.943±0.014 0.946±0.013 0.883±0.02
KNN 0.895±0.013 0.894±0.009 0.881±0.021
EBM 0.956±0.015 0.959±0.013 0.881±0.02
LR

0.2

0.928±0.019 0.839±0.034 0.815±0.013
RF 0.911±0.019 0.928±0.019 0.831±0.017
KNN 0.813±0.024 0.81±0.022 0.812±0.008
EBM 0.930±0.019 0.946±0.02 0.822±0.016
LR

0.3

0.906±0.022 0.809±0.054 0.710±0.025
RF 0.887±0.021 0.926±0.019 0.812±0.03
KNN 0.744±0.032 0.752±0.042 0.711±0.016
EBM 0.908±0.022 0.946±0.02 0.795±0.03

(a) datasets generated by MAR

model pm linear curvilinear quadratic
LR

0.1

0.957±0.013 0.901±0.013 0.886±0.017
RF 0.944±0.013 0.948±0.011 0.886±0.017
KNN 0.899±0.012 0.898±0.01 0.885±0.018
EBM 0.959±0.012 0.963±0.011 0.885±0.017
LR

0.2

0.928±0.018 0.847±0.035 0.817±0.010
RF 0.910±0.016 0.933±0.016 0.828±0.012
KNN 0.816±0.024 0.82±0.025 0.813±0.008
EBM 0.931±0.017 0.953±0.016 0.819±0.012
LR

0.3

0.914±0.016 0.805±0.048 0.706±0.024
RF 0.891±0.015 0.925±0.015 0.811±0.028
KNN 0.760±0.035 0.764±0.039 0.711±0.017
EBM 0.916±0.016 0.949±0.015 0.789±0.03

(b) datasets generated by MNAR

Table 2: Test accuracy of predicting the missingness. EBM is compared to Logistic Regression (LR), Random
Forest (RF), and K Nearest Neighbor(KNN). The accuracies are compared on datasets generated by different
missing mechanism (MAR and MNAR generated from linear model, curvilinear model, and quadratic model)
with different missing ratio pm (0.1, 0.2, and 0.3).

We train EBMs to predict missingness on the
MIMIC-II dataset (Saeed et al., 2002) for every fea-
ture that contains missing values. The test AUCs for
missingness prediction ranges from 69.10% to 99.87%
depending on the missing feature: the test AUC is
above 84% for 7 of the 9 missing features. Surpris-
ingly, the test AUC for predicting missingness of “Na
(Sodium)” and “Urea” are 98% and 99%, which sug-
gests their missingness can be almost fully explained
by other observed variables. Figure 4 shows the shape
functions on MIMIC-II, which result from training an
EBM on all other variables to predict the missing-
ness of one variable. The features shown in Figure
4 are the features with the largest variable impor-
tance for each prediction task. Each shape function
shows the contribution of the feature (on the x axis)
to the predicted missingness (on the y-axis). Inter-
esting patterns exist in all three graphs and provide
insight about why each variables is missing.

Figure 4(a) shows how bilirubin contributes to pre-
dict the missingness of Na (Sodium). Though biliru-
bin is a continuous variable and we might expect the
shape function to be a continuous curve, the shape
function of the observed (non missing) bilirubin sam-
ples (in blue) is a constant function with contribution
-0.4. This suggests that when bilirubin is measured,
Na is less likely to be missing. Moreover, when bil-
lirubin is missing and imputed (in orange), there is
a large positive contribution (average contribution =
+0.93) to the likelihood of Na missingness, which sug-
gests that missing bilirubin strongly predicts that Na
will be missing, too. Interestingly, the causal arrow
does not flow the other way: Na is not a strong pre-
dictor of bilirubin missingness. The AUC when pre-

dicting Na missingness is 0.99, but only 0.73 for pre-
dicting bilirubin missingness, and the most important
feature for predicting bilirubin missingness is Urea,
not Na. All of this makes clinical sense because biliru-
bin is included in comprehensive metabolic panels
that also always include Na, whereas basic metabolic
panels include Na but not bilirubin, which is a more
specialized lab test. This also explains why the non-
missing group shape function (blue curve) is con-
stant: patients whose Bilirubin are not missing took
the comprehensive panels and thus their Na is always
measured regardless of the patients’ bilirubin value.
Remarkably, we are able to detect and understand
these effects merely by looking at interpretable EBM
models trained to predict missingness.

We see a similar relationship between heart rate
(HR) and blood pressure: when blood pressure is
measured, heart rate is almost always measured as
well, but it is common to measure heart rate using a
finger sensor that does not allow blood pressure to be
measured, and this asymmetric relationship between
missingness is easily visible by examining EBM plots
trained to predict HR missingness. Figure 4(b) shows
the shape functions for observed systolic blood pres-
sure (in blue) and imputed systolic blood pressure (in
orange) when predicting whether HR is missing. In
the plot, the curve of the imputed group is signifi-
cantly higher than that of the observed group, again
suggesting that when the blood pressure of the pa-
tients is missing, their heart rate is also more likely
to be missing. This effect is strong, as the maximum
gap between the two curves is approximately 2.5 (1.5
in orange curve and -1.0 in blue curve) of predicted
log odds. Again the blue curve is constant.
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Figure 4(c) shows the shape function for tempera-
ture when predicting if urea is missing or not. There
is no missing value for temperature, so there is no
orange curve. The bump at temperature ∈ [36, 37.5)
indicates that urea is more likely to be missing, which
suggests when a patient has normal body tempera-
ture, doctors may be less likely to order a blood test
to measure urea.

To test how well can EBM predict the missing-
ness, we generate some semi-synthetic datasets with
ground-truth missing mechanism. Again, these semi-
synthetic datasets start from MIMIC-II imputed by
MissForest, and then apply fixed models (linear,
curvilinear and quadratic models) plus an Gaussian
noise to decide which entry in the “Age” feature is
missing. The feature value is missing when the out-
put score is higher than the threshold. The differ-
ence between MAR and MNAR is whether the target
feature value is considered as an input of the miss-
ing models. Table 2 compares EBM’s the test accu-
racy of predicting missingness with machine learning
models commonly used for missing value imputation.
EBM predicts missingness better than other methods
in cases of MAR and MNAR values generated from
linear and curvilinear models and is not far behind
Random Forest in case of quadratic model.
Summary: We use EBMs to predict the missing-

ness of features from other input features. EBM pre-
dicts the missingness accurately. The interpretability
of EBMs can help users understand the relationship
between the features and missingness and thus bring
more insight for the cause(s) of missingness.

5. Detecting and avoiding potential
risks of missing value imputations

5.1. Imputation With the Mean

Because many machine learning methods cannot na-
tively handle missing values, it is common for data
scientists to impute missing values before training
models. There are many different ways to do this
(Lin and Tsai, 2020): with the mean, the median,
with a unique value such as 0 or -99 or +99, or by
using a machine learning method such as MissForest.

Perhaps the most common form of missing value
imputation is to use the mean, but this can some-
times be problematic. Figure 1 shows an EBM plot
of the mortality risk of ICU patients as a function of
their P/F ratio. P/F ratio is a measure of how well a
patient converts oxygen in the air they breathe into

oxygen in their blood: low P/F ratio indicates pa-
tients with low blood-oxygen whose lung function is
impaired, while P/F ratio around 1000 and higher in-
dicates good lung function. As expected, the learned
shape function captures this. What is surprising,
however, is the large drop in risk at about P/F ra-
tio=323. What could cause that?

A simple test for blood-oxygen levels is to pinch a
fingertip and see how quickly color returns to the skin.
If color returns quickly, clinicians know the blood-
oxygen level is good and do not bother to measure
P/F ratio — the P/F ratio is assumed normal. In
this dataset, however, the missing P/F ratio values
were imputed with the mean instead of being coded
as 0 as they were in Figure 3. 60% of patients are
missing P/F ratio. The mean P/F ratio when not
missing (40% of the data) is 323.6, so 60% of patients
have had their P/F ratio imputed with this value.
Because this is a large sample of healthy patients with
strong respiration, the model learns that their risk
is comparable to the risk of other healthy patients
with P/F ratio above 1000. This explains why the
graph dips at 323, yet predicts higher risk just before
and after this value. Although this anomaly does not
significantly hurt the accuracy of the model because it
has learned to make appropriate low-risk predictions
for the 60% of patients at this value, it is risky to
leave this anomaly in the model because there are real
patients with P/F ratio≈323 who will be predicted
to have low risk but who are genuinely at elevated
risk. For this reason, it would be better to encode
the missing value with unique value (e.g., -1). Model
editing is not a good solution for this problem because
imputation with the mean has caused patients who
are low risk (missing values) and elevated risk (P/F
ratio near 323) to fall at the same place on the shape
function, thus there is no reasonable edit to the graph
that can predict the correct risk for both groups.

5.1.1. Automatic Detection of Bad
Imputations

As discussed in the P/F ratio example above, mean
imputation could be dangerous especially when the
missing group is significantly different from the sam-
ples with feature values near the mean. As shown
in Figure 1 and Figure 5(a), such distribution differ-
ences can be reflected as spikes on the EBM shape
functions. However, if the spike is small or there is
no spike near the mean value, e.g., Figure 5 (b), the
difference between groups might be insignificant and
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mean imputation can be harmless. Since bad mean
imputation is associated with the spikes at the mean,
can we automatically detect bad mean imputations
through a spike detector? The answer is yes, but we
need to address two problems, (1) how to know the
spike is at the mean (2) how to detect spikes, given
that the shape function itself can fluctuate.

(a) Shape function for P/F ratio.

(b) Shape function for systolic blood pressure.

(c) Shape function for heart rate.

Figure 5: Examples of potentially harmful (a) & (c)
and harmless mean imputations (b) found by our au-
tomatic detection algorithm. Red vertical lines in-
dicate average feature values. A large spike at the
mean is potentially harmful while a small spike or no
spike is harmless.

The first problem is easy to solve. Observing that
the mean value of the feature is the same before and
after mean imputation, we can directly find the bin
(of EBM) covering the mean value, and detect if the
bin is a spike or not. This also works for median im-
putation — the median of a feature does not change
by imputing the missing values with the median.

To address the second problem, we need an algo-
rithm to distinguish spikes resulting from mean im-
putation and fluctuations that naturally occur in the
EBM shape functions. We formulate this as an out-
lier detection problem. First, we calculate the second
order differences for all bins in all shape functions
(excluding first and last bins), since spikes usually
have extreme second order differences. We denote
the function values of the kth bin and its neighbour-
ing bins as fk, fk−1, and fk+1. The corresponding
bin sizes are denoted as hk, hk−1, and hk+1. The
second order difference is

f ′′k (x) ≈
fk+1−fk

(hk+1+hk)/2
− fk−fk−1

(hk+hk−1)/2

hk + hk+1/2 + hk−1/2
. (5)

We then run an outlier detection algorithm (Isolation
Forest (Liu et al., 2008)) on these second order differ-
ences. The algorithm predicts an anomaly score for
each bin, and we choose a threshold so that around
5% of bins are detected as outliers. The potentially
harmful mean imputations are predicted if bins cov-
ering the mean values are also predicted as outliers.
The same procedure is also applied to detect poten-
tially harmful median imputations.

We test the bad mean imputation detection algo-
rithm on the MIMIC-II dataset with mean imputa-
tion on continuous features. Among the 13 contin-
uous features, in 4 a spike is detected at the mean.
Other continuous features do not have a spike at the
mean and are predicted to be “harmless” in terms of
mean imputation. As expected, continuous features
with no missing values are predicted as negative. Fig-
ure 5(c) shows a potentially harmful mean imputa-
tion found by our detection algorithm but not discov-
ered visually as the spike is not obvious. This repre-
sents one of the smallest spikes that the anomaly de-
tection algorithm would detect as potentially harmful
mean imputation (given this sample size).

Summary: By examining anomalies in the EBM
shape functions one can easily identify bad imputa-
tions with the mean. Based on this finding, we pro-
pose an automatic detection method to detect impu-
tations with the mean that can be potentially risky.

5.2. Imputation With Advanced Methods

One might assume that imputation with more ad-
vanced methods such as MissForest (RF) imputation
(Stekhoven and Bühlmann, 2011) or k-nearest neigh-
bor (KNN) imputation (Troyanskaya et al., 2001)
would not exhibit problems like those discussed in
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Figure 6: EBM shape functions trained on datasets
imputed with different missing value imputation
methods (mean imputation, MissForest (RF) impu-
tation and KNN imputation).

Sections 4.2 and 5.1, because they are designed to im-
pute feature values based on the conditional feature
distribution in the data. For example, MissForest
iteratively trains a random forest regression model,
predicting and updating the missing values of each
covariate using the other covariates, until these val-
ues converge. Interpretable EBM models can help us
detect unexpected problems that can be caused by
imputation with these methods.

We apply different imputation methods (mean im-
putation, MissForest (RF) and KNN imputation) to
the MIMIC-II dataset. Figure 6(a) shows the P/F ra-
tio shape functions and densities for the different im-
putation methods. As described in Section 5.1, values
near 1000 are healthy, and lower P/F ratio indicates
poor lung function. In this dataset, P/F ratios are
missing when doctors assume they are normal, i.e.,
the ground truth of missing values are likely to be
near 1000. However, the density plot shows that in-
stead of imputing missing values with P/F ratio val-
ues near 1000, RF and KNN actually impute P/F
ratio with lower values. Such imputations are prob-
lematic because they systematically reduce the pre-

dicted risk of the riskier low-P/F-ratio patients and
those patients might then not receive adequate care if
the resulting model is used clinically. Compared with
mean imputation, the advanced imputation methods
actually affect a larger range of patients (P/F ratio
between 0 and 800) and the advanced methods could
be even more harmful than mean imputation.

Another problem of advanced imputation methods
is that they can sometimes introduce fluctuations to
models which show up as little spikes on EBM shape
functions. Figure 6(b) shows the EBM shape func-
tion for the feature “Urea” with many little spikes
when the missing values are imputed with RF and
KNN. Again, such spikes can be potentially harmful
for patients with almost the same feature values at
these locations. The fluctuation problem can be re-
solved if the model enforces local smoothness (e.g.,
linear models or GAMs with smooth splines). How-
ever, tree-based models like random forests, gradient
boosted trees, and EBMs often are not locally smooth
and are likely to learn such spikes.

Summary: We show that advanced imputation
methods like MissForest and KNN can create prob-
lems for machine learning models that are hard to
detect. We propose a way to use EBMs to visual-
ize the potential impact of these imputation methods
(Appendix B), and show that it helps detect potential
problems that otherwise might have remained invisi-
ble and led to suboptimal healthcare decisions.

6. Discussion

We found many potential risks in models that were
introduced by missing values or imputation. Because
EBMs are interpretable and editable, once the prob-
lem is detected, we can often edit the model to fix
these issues using existing model editing tools for
GAMs (Wang et al., 2021). Because edits only af-
fect model behavior on small subsets of samples and
for a few features (e.g., samples near the mean in the
case of mean imputation), the change in accuracy is
small. However, these changes can still be critical in
high-stakes tasks like medical care, where the poten-
tial cost for bad predictions is very high.

The proposed methods are all based on EBM. We
chose EBMs because the shape functions are good at
capturing subtle anomalies in the data, compared to
linear models and decision trees. In the future, it is
worth investigating if other interpretability methods
can handle the same missing value tasks. For exam-
ple, a sparse decision tree model (Lin et al., 2020)
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might be able to learn complex feature interactions
when predicting missingness from other features.

7. Conclusion

We propose methods based on glass-box EBMs to
help understand and address missing value problems.
Such problems are common in medical applications.
Experiments on real-world medical datasets show
that the proposed methods provide insights on the
causes of missingness, and can also help detect and
avoid potential risks introduced by different imputa-
tion methods. Specifically, in terms of understanding
missingness, we propose a novel method using EBMs
to test for MCAR. For the non-MCAR case, we show
that EBM shape functions can help identify when fea-
ture values are missing because they were assumed
to be in the normal range for that variable. We also
use EBMs to predict the missingness of some features
from other input features. Here the interpretability
of the model can help users better understand the re-
lationship between features and missingness. For im-
putation, we show that anomalies in the EBM shape
functions can be used to automatically identify poten-
tially harmful imputation with the mean or median.
For advanced methods like MissForest and KNN im-
putation, we propose methods for visualizing the po-
tential impact of imputation on the resulting model.
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Figure 7: Impact of father’s education on infant mor-
tality risk, 2013.

Appendix A. Testing for MCAR with
EBM: Case Study

In some cases we have information about the mech-
anism generating missing values and the likelihood
that a similar mechanism will generate data in the
future.

As an example, consider CDC Birth Cohort Linked
Birth – Infant Death Data Files United States De-
partment of Health and Human Services (US DHHS)
et al. (2021). The dataset describes pregnancy and
birth variables for all live births in the U.S. together
with an indication of an infant’s death before the first
birthday. The dataset is collected using two certifi-
cates: 1989 Revision of the U.S. Standard Certificate
of Live Birth (unrevised) and the 2003 revision of
the U.S. Standard Certificate of Live Birth (revised).
As a result of the delayed, phased transition to the
2003 Certificate, the cohorts from 2004 to 2015 in-
clude data for reporting areas that use the newer 2003
revision along with data for reporting areas that still
use the older 1989 Certificate (unrevised), with later
years having a larger fraction of data corresponding
to the 2003 revision. Values for variables that are
present only in the 2003 certificate will be missing
for areas using the earlier, 1989 certificate. In 2013,
10% of records come from such areas, the fraction is
declining year to year and we can expect it to be even
smaller in subsequent years.

Figure 7 shows the impact of father’s education
on infant mortality risk according to an EBM model
trained on 2013 data. Values from 1 to 8 corre-
spond to different levels of educational attainment,
with 1 indicating 8th grade or less and 8 a doctor-
ate or professional degree. The risk is high for levels
1-3, drops to just below the average risk for levels
3-4 (some college and associate degree) and even fur-

Figure 8: Impact of smoking before and during preg-
nancy on infant mortality risk, 2013.

ther for BA/BS, MA/MS and doctorate (levels 6-8)2.
Level 9 indicates unwillingness to share this informa-
tion and 10 corresponds to 10% of records where this
variable was not present (version 1989). Level 9 is
associated with slightly elevated risk; we may guess
that fathers unwilling to share are more likely to be
lower on the education scale. Level 10 is associated
with risk slightly below average, which is surprising
at first glance. Unlike for Level 9, the mechanism
according to which the information is withheld is in-
dependent of the value of the variable in question
(namely, the geographical area using an older ver-
sion of the certificate). However, if the populations
using the two certificate versions were coming from
the same distribution, we would expect average risk
(0 on the shape function) for this group. The MCAR
test from Section 4.1.1 indicates these groups are sta-
tistically different from each other, suggesting social,
demographic or other differences between these pop-
ulations.

A similar picture emerges when we look at infant
mortality as a function of mother smoking before and
during pregnancy. The risk is highest for mothers
who smoked during pregnancy, slightly elevated for
those who smoked before pregnancy and lowest for
mothers who never smoked. Risk for mothers who
didn’t share this information (‘omitted’) is clearly el-
evated. The group for whom the value is missing
(older 1989 certificate, denoted ‘not asked’) has risk
slightly lower than average (0). Again, risk different
from average indicates a distribution shift with re-
spect to the rest of the population, and we see that
’omitted’ is different from ’not asked’.

If we were to train an infant mortality risk model
on 2013 data and use it for prediction on data from
subsequent years, we could run into the problem of

2. Parents’ education is the best proxy we have in the dataset
for family’s income.
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values missing for an even lower fraction of all records
and possibly coming from a distribution even more
shifted with respect to the distribution of the major-
ity of the records. Our model would likely predict the
risk less accurately for this segment of the population.

Appendix B. Visualizing the Effect of
Imputation

As mentioned in Section 5, the advanced imputation
methods can significantly change the learned shape
functions and such changes can sometimes be prob-
lematic. To help visualize the effect of imputation
and identify potential problems in advance, we pro-
pose to separate the components of the missing group
and the observed group in the EBM shape functions.
To separate these two components, instead of directly
imputing the missing values with the output of the
imputation algorithm, we add a large offset to these
imputed values so that the imputed values do not
have overlap with the observed values. For example,
in our experiments, we add max feature value plus 1
to the imputed values. This can be viewed as a trick
to squeeze the feature and its missingness indicator
variable into one dimension. Training EBMs on such
separated feature values, the shape function will be a
concatenation of the two curves corresponding to the
observed group and the missing group. Also, because
we know the offset we added to the imputed value,
we can subtract it during visualization, and show the
two curves on the same plot and original x-axis.

Figure 9 shows the EBM shape functions of the
imputed group and the observed group separated us-
ing the method proposed above. Figure 9(a) shows
that the risk of the RF imputed group is much lower
than the risk of the observed group which corrobo-
rates what we found in Figure 6(a). Similarly, the
effects of the imputed group in Figure 9(b) also differ
significantly from the observed group, which explains
why there exist spikes in the RF imputed EBM shape
function in Figure 6(b). Using interpretable methods
like EBMs allows one to understand the consequence
of different imputation methods that otherwise would
be invisible.

(a) Shape functions for P/F ratio

(b) Shape functions for Urea

Figure 9: EBM shape functions when the effects of
imputation group (imputed by MissForest, denoted
as RF imputed) and observed (non missing) groups
are separated. The plots suggests how the two groups
are different in terms of predicting the ICU mortality
risk, and suggests how MissForest imputation might
result in problematic models.
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