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Abstract
Learning multi-view data is an emerging prob-
lem in machine learning research, and nonneg-
ative matrix factorization (NMF) is a popular
dimensionality-reduction method for integrat-
ing information from multiple views. These
views often provide not only consensus but also
complementary information. However, most
multi-view NMF algorithms assign equal weight
to each view or tune the weight via line search
empirically, which can be infeasible without any
prior knowledge of the views or computationally
expensive. In this paper, we propose a weighted
multi-view NMF (WM-NMF) algorithm. In
particular, we aim to address the critical tech-
nical gap, which is to learn both view-specific
weight and observation-specific reconstruction
weight to quantify each view’s information con-
tent. The introduced weighting scheme can al-
leviate unnecessary views’ adverse effects and
enlarge the positive effects of the important
views by assigning smaller and larger weights,
respectively. Experimental results confirm the
effectiveness and advantages of the proposed al-
gorithm in terms of achieving better clustering
performance and dealing with the noisy data
compared to the existing algorithms.

Data and Code Availability In this study,
we experiment with one image dataset and one
clinicalmulti-omics dataset that are publicly avail-
able. The data description and processing details
are in Appendix C. Codes are available at https:

//github.com/shuoshuoliu/WM-NMF.

1. Introduction

Learning multi-view data is an emerging problem in
machine learning research, as multi-view data be-
come more and more common in many real-world
applications. For example, the multi-omics data are
now ubiquitous where different biological layers such

as genomics, epigenomics, transcriptomics, and pro-
teomics can be obtained from the same set of ob-
jects (Hasin et al., 2017; Bhattacharya et al., 2021).
In those scenarios, the same set of objects has differ-
ent views collected from different measuring methods
or modalities, where any particular single-view data
may be inadequate to comprehensively describe the
information of all the objects. Hence, one major goal
of multi-view unsupervised learning is to search for
a consensus clustering across views so that similar
objects are grouped into the same cluster and dis-
similar objects are separated into different clusters.
In the literature, such a learning problem is called
multi-view clustering (Bickel and Scheffer, 2004).

There are mainly two groups of approaches in
the existing literature: generative (model-based)
and discriminative (similarity-based and dimension
reduction-based) (Rappoport and Shamir, 2018). For
the generative approach, we typically use the mix-
ture model and regression-based matrix factorization.
The idea is to model each data view’s probabilistic
distribution and obtain a common clustering result
by either allowing all views to share the same pri-
ors or derived from a shared latent factors (Lashkari
and Golland, 2008; Shen et al., 2009; Tzortzis and
Likas, 2009, 2010; Savage et al., 2010; Lock and Dun-
son, 2013; Gabasova et al., 2017). An advantage of
the generative approach is that it provides a nice in-
terpretation of what the cluster is built on, but this
approach is more computationally expensive in the
context of multi-view learning. The discriminative
approach focuses on the objective function that op-
timizes the average similarities within clusters and
dissimilarities between clusters. Different objective
functions result in different methods, such as multi-
view spectral clustering (Wang et al., 2013; Kumar
and Daumé, 2011; Kumar et al., 2011), nonnegative
matrix factorization for multi-view clustering (Liu
et al., 2013; Kalayeh et al., 2014; Yang and Michai-
lidis, 2015; Huang et al., 2014; Zhang et al., 2012),
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and canonical correlation analysis (Chaudhuri et al.,
2009; Klami et al., 2013; Lai and Fyfe, 2000; Witten
and Tibshirani, 2009; Chen et al., 2013). The dis-
criminative approach generally involves non-convex
objective functions and it might be hard to find good
solutions.

Nonnegative matrix factorization (NMF) is a well-
known algorithm for dimension reduction and feature
extraction for nonnegative data. Unlike other matrix
factorization techniques (Golub and Reinsch, 1970;
Abdi and Williams, 2010; Zhao et al., 2015), NMF
provides a more intuitive and interpretable under-
standing through the parts-based representation: a
data point can be represented by only a few acti-
vated basis elements (Turk and Pentland, 1991; Lee
and Seung, 1999). NMF has been shown the advan-
tages of extracting sparse and meaningful information
from high-dimensional data (Lee and Seung, 1999).
The theoretical analysis further reveals the equiva-
lence of NMF and spectral clustering and K-means
clustering (Ding et al., 2005). Thus, NMF can also
be viewed as a clustering method. The multi-view
NMF (MultiNMF) (Liu et al., 2013) is an extension
of NMF problem to integrate multiple nonnegative
data matrices obtained from a common set of data
points. The framework of MultiNMF attempts to
approximate each view with some constraints in or-
der to obtain both consensus and view-specific infor-
mation. Existing related methods tackle this prob-
lem with different objective functions motivated by
different applications (Zhang et al., 2012; Li et al.,
2012; Jin and Lee, 2015; Yang and Michailidis, 2015).
However, most existing MultiNMF related methods
either assume that all views are equally important or
the view-specific weights are known a priori in de-
riving the consensus clustering. In practice, such an
assumption may not be valid as we often have noisy
datasets.

The aim of this paper is to design an effective
multi-view NMF algorithm that not only can perform
multi-view clustering but also quantify each view’s
weight and each observation’s reconstruction weight
by learning the corresponding relative values across
all views. We expect this weighting mechanism to
improve the clustering performance over traditional
multi-view clustering algorithms.

Our major contributions include: (1) The proposed
method extends and improves the existing Multi-
NMF method by automatically computing both the
view-specific and observation-specific reconstruction
weights without requiring the use of prior knowl-

edge. The two types of weights provide two different
resolutions in understanding the effects of different
views. Thus, the consensus matrix can be obtained
by weighting different views, which efficiently ex-
tracts different information qualities from each view.
(2) We study the properties of these two weighting
schemes and provide guidance on choosing the tun-
ing parameters.

The rest of the paper is organized as follows. In
Section 2, we introduce notations and overview exist-
ing algorithms most relevant to our proposed meth-
ods. In Sections 3 and 4, we present our pro-
posed weighted multi-view NMF (WM-NMF) algo-
rithm and study the optimization procedures. In Sec-
tion 5, experimental results are reported for the hand-
written digit data and multi-omics biological data.
Comparisons are made with some competing models
and popular methods. We conclude with discussions
in Section 6.

2. Preliminary

Denote a nonnegative data matrix X =
(x1, . . . ,xN ) ∈ RM×N+ , where xi = (x1i, ..., xMi)

>

∈ RM+ is the i-th data point of X containing
M features. NMF factorizes X into a product
of two lower-dimensional nonnegative matrices:
X ≈ UV>, where U ∈ RM×K+ , V ∈ RN×K+ , and
K < min(M,N) is a positive integer. The NMF
problem minU,V≥0 ‖X − UV>‖2F with Frobenius
norm is in general nonconvex and NP-hard, but
can be solved with iterative updates that work well
in many applications (Lee and Seung, 1999, 2001).
Different from other matrix factorization techniques,
NMF provides a more intuitive and interpretable
understanding through the parts-based representa-
tion: a data point can be represented by only a
few activated basis elements. Further, V directly
translates to data clustering by simply assigning
each data point to the basis element on which it has
the highest loading; that is, data point i is placed in
cluster j if Vi,j is the largest entry in row i. Ding
et al. (2005) further shows the equivalence between
NMF and K-means and spectral clustering.

The multi-view NMF (MultiNMF) (Liu et al.,
2013) is an extension of NMF problem to integrate
multiple nonnegative data matrices obtained from
a common set of data points and conducts clus-
tering based on the low-rank representations. Let
{X(1), ...,X(nv)} be a set of nv views of data points,
with X(s) ∈ RMs×N

+ . Without loss of generality,
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we assume all the data matrices are pre-processed
and transformed when necessary. The framework
of MultiNMF attempts to approximate each view

X(s) ≈ U(s)V(s)> with some constraints in order to
obtain both consensus and view-specific information.
More specifically, the MultiNMF minimizes the fol-
lowing objective function:∑nv

s=1

∥∥∥X(s) −U(s)V(s)>
∥∥∥2
F

+
∑nv

s=1 αs

∥∥∥V(s)Q(s) −V∗
∥∥∥2
F

with respect to U(s),V(s),V∗ ≥ 0. The first part of
the objective function performs NMF analysis inde-
pendently on each view. The second part plays a key
role in sharing information across views, and it regu-
larizes the learned coefficient matrices V(s)’s towards
a common V

∗
. We take V

∗
as some latent data struc-

ture shared by all views. The amount of information
for each view contributing to V

∗
is regularized by

αs. Thus, αs is the parameter that tunes the rela-
tive weight among views. αs’s have the constraints
that

∑nv

s=1 αs = 1 and 0 ≤ αs ≤ 1, s = 1 : nv. αs’s
are crucial in determining the quality of the consen-
sus matrix V∗. The MultiNMF degenerates to the
single-view learning when αs’s are binary values with
only one component being 1. The resulting consensus
clustering is essentially determined by the view that
provides the best approximation to the original data.

Most existing MultiNMF related methods tackle
different problems with slightly different objective
functions motivated by different applications (Zhang
et al., 2012; Li et al., 2012; Jin and Lee, 2015; Yang
and Michailidis, 2015). However, most of them as-
sume that the weight vector is determined either
by prior knowledge (which may be impractical when
such knowledge is missing) or assigned to be equal. In
practice, such an assumption may not be valid as we
often have noisy datasets. In Section 3, we provide
an alternative solution to allow a more interpretable
and transparent understanding of how to derive the
consensus clustering among views.

3. Weighted multi-view NMF

To take the advantage of the consensus matrix used
in MultiNMF and learn the weight vector automati-
cally, we adopt the idea of exponential parameter to
automatically quantify each view’s information con-
tent (Tzortzis and Likas, 2009; Xu et al., 2016). In
addition, as demonstrated in the handwritten digit
dataset and the multi-omics data for liver hepato-
cellular carcinoma from Section 5, the same data

point across views is likely heterogeneous in deter-
mining the clustering structure. Thus, it is also im-
portant to determine the weight of each observation
to describe the relative information content. This
is achieved by quantifying the relative reconstruction
errors for the same data point across all views. We re-
fer to such weight as observation-specific reconstruc-
tion weight. For simplicity, we call it reconstruction
weight throughout the paper. The strategy of weight-
ing has also been studied in the literature but in a
different approach, for example, Li and Ding (2008)
weighs each input clustering.

With the abovementioned information, we propose
a weighted multi-view NMF (WM-NMF) framework
for a more interpretable data integration procedure,
while it achieves the ability to automatically update
view weight and reconstruction weight. More specif-
ically, WM-NMF works on minimizing the following
objective function:

O =

nv∑
s=1

∥∥∥{X(s) −U(s)V(s)>
}

Diag(w(s))
∥∥∥2
F

+

nv∑
s=1

αps

∥∥∥V(s)Q(s) −V∗
∥∥∥2
F

+ βg(V(1:nv)),

(1)

where g(V(1:nv)) is a regularization term on
V(1), . . . ,V(ns) which can be set for different pur-
poses, such as sparse NMF (Hoyer, 2004), orthogonal
NMF (Zhang et al., 2019; Liang et al., 2020), and
graph NMF (Cai et al., 2010; Huang et al., 2014).
β > 0 is the corresponding tuning parameter. We
minimize O over U(s),V(s),w(s), αs, and V∗ un-
der the constraints that V∗ ≥ 0,V(s) ≥ 0,U(s) ≥
0,
∑nv

s=1 αs = 1, αs ≥ 0,
∑nv

s=1 w
(s)
i = 1, w

(s)
i ≥ 0, s =

1 : nv, i = 1 : N .
Here, p ≥ 1 is the exponential parameter and it

controls the sparsity of αs. We provide a discussion
about p in Section 4.3. The vector α = (α1, ..., αnv )>

represents the relative weight among different views
and the agreement between V(s) and V∗. It re-
flects each view’s contribution for reaching the con-

sensus matrix V∗. w(s) = (w
(s)
1 , . . . , w

(s)
N )>, where

w
(s)
i is the reconstruction weight of data point i in

view s. Its functionality is different from the view-
specific weights, where αs provides an overall mea-
sure to quantify the contribution from view s to-
wards a consensus matrix. Intuitively, a relatively

smaller value of w
(s)
i implies that the low-dimensional

representation v
(s)
i fails to reconstruct observation

x
(s)
i , compared to other views. The introduction
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of w
(s)
i provides the flexibility to allow one view to

compensate for the shortcoming in another, and po-
tentially prevents the spurious results from noisy or
highly divergent views. Therefore, by constraining∑nv

s=1 w
(s)
i = 1 and

∑nv

s=1 αs = 1, we show the feasi-
bility to automatically update the weights as demon-
strated in Section 4.

WM-NMF framework extends and improves the
existing literature with several benefits. First, it
automatically computes the weight vectors without
relying on any prior knowledge. Second, it calcu-
lates the consensus matrix by weighting different co-
efficient matrices, which efficiently extracts different
qualities of information from each view. Third, it can
alleviate the negative effects of unimportant views
and enlarge the positive effects of important views by
assigning small and large weights on different views
and observations, respectively. Lastly, additional reg-
ularization can be easily incorporated based on our
WM-NMF framework. For example, a manifold reg-
ularization can be used to further improve the clus-
tering results (Cai et al., 2010).

The idea of manifold regularization is based on
the local invariance assumption such that the geo-
metric structure of the original dataset is inherited
in the low-rank representations (Belkin and Niyogi,
2001). To extend the existing manifold regulariza-
tion for single-view NMF to accommodate our multi-
view NMF, we first define an adjacency matrix A(s)

to measure the closeness between any two data points
represented by view s. We adopt the Gaussian ker-

nel, a
(s)
ij = exp

(
−‖x

(s)
i −x

(s)
j ‖

2
2

σ2

)
if x

(s)
j ∈ N (s)

i and

0 otherwise, where N (s)
i denotes the neighbour for

point i represented by view s. N (s)
i is generated us-

ing K-nearest neighbour which utilizes the distance

between two data points: ‖x(s)
i −x

(s)
j ‖22. The number

of neighbours is set to be 5 and σ2 = 1 as suggested
in Cai et al. (2010).

Thus, together with the corresponding low-

dimensional representation v
(s)
i , the manifold regu-

larization is defined as

S =
1

2

N∑
i,j=1

∥∥∥v(s)
i − v

(s)
j

∥∥∥2 a(s)ij = Tr
(
V(s)>L(s)V(s)

)
,

where L(s) = D(s) −A(s) is the graph Laplacian ma-
trix and D is a diagonal matrix with the ith diago-

nal entry being
∑N
j=1 a

(s)
ij . Tr(·) denotes the trace of

a matrix. By minimizing S, we expect that if x
(s)
i

and x
(s)
j are close, i.e., a

(s)
ij is large, the correspond-

ing low-dimensional representations v
(s)
i and v

(s)
j are

also close together.
Replacing g(V(1:nv)) in Eq. (1) by the above man-

ifold regularization, we can define the objective func-
tion of the manifold regularized WM-NMF as

O =

nv∑
s=1

∥∥∥{X(s) −U(s)V(s)>
}

Diag(w(s))
∥∥∥2
F

+

nv∑
s=1

αps

∥∥∥V(s)Q(s) −V∗
∥∥∥2
F

+ β

nv∑
s=1

Tr(V(s)>L(s)V(s)).

(2)
We will discuss how to choose β in the experiment
section. The scenario for WM-NMF without mani-
fold regularization can be retrieved by setting β = 0.
An illustration of the manifold regularized WM-NMF
is shown in Figure 1. In Section 4, the optimization
procedures are based on the objective function O in
Eq. (2).

Figure 1: The illustration of the weighted multi-view
NMF with manifold regularization for clus-
tering.

4. Optimization

The joint optimization function in Eq. (2) is noncon-
vex over all variables. However, if we keep four of the
five variables (U(s), V(s), V∗, α, w(s)) fixed, and op-
timize over one of them, the problem is convex and
can be solved efficiently. We thus consider the follow-
ing iterative alternating minimization method until
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convergence. At each iteration, we optimize over the
five variables alternatively.

More specifically, we first update U(s) and V(s)

individually while keeping the others fixed. We call
these procedures the inner iteration. Updating U(s)

or V(s) only needs to solve the single-view objective
function represented by

O0 =
∥∥∥{X(s) −U(s)V(s)>

}
Diag(w(s))

∥∥∥2
F

+

αps

∥∥∥V(s)Q(s) −V∗
∥∥∥2
F

+ βTr(V(s)>L(s)V(s)).

(3)

After obtaining U(s) and V(s), we solve the exact
solutions of α, w(s) and V∗. We call these procedures
the outer iteration.

4.1. Update U(s)

To simplify the notation, we omit the view index
(s) for the derivations of the inner iteration. Tak-
ing the derivative of O0 with respect to uij while
taking into account of the nonnegative constraint on
uik, and using the complementary slackness condition
Ψikuik = 0, where Ψik is the Lagrange multiplier for
the constraint uik ≥ 0 leads to the multiplicative up-
date rule of uik:

uik ← uik

[
XDiag2(w)V

]
ik

+ αps
∑N
j=1 vjkv

∗
jk[

UV>Diag2(w)V
]
ik

+ αps
∑M
l=1 ulk

∑N
j=1 v

2
jk

= uik −
uik[

UV>Diag2(w)V
]
ik

+ αps
∑M
l=1 ulk

∑N
j=1 v

2
jk︸ ︷︷ ︸

step size

×∇UO0

2

(4)
where ∇UO0 = ∂O0

∂uik
. Details for the derivation is in

Appendix A. The update can be viewed as an adap-
tive gradient descent algorithm, where the step size
should be nonzero. Therefore, we should initialize a
positive uik, otherwise uik equals to 0 for all subse-
quent iterations.

4.2. Update V(s)

Similarly, we omit the view index (s) for notation
simplicity. Let Φjk be the Lagrange multiplier for the
constraint vjk ≥ 0. Setting the derivative of O0 with
respect to vjk to be 0 while taking into consideration
of the nonnegative constraint of vjk, and using the
complementary slackness condition Φjkvjk = 0, we
have the multiplicative update rule of vjk:

vjk ← vjk
[Diag2(w)X>U]

jk
+αp

s [V∗Q>]
jk

+β[AV]jk

[Diag2(w)VU>U]jk+α
p
s [VQQ>]jk+β[DV]jk

= vjk −
vjk[

Diag2(w)VU>U
]
jk

+ αps [VQQ>]jk + β [DV]jk︸ ︷︷ ︸
step size

×∇VO0,

(5)
where ∇VO0 = ∂O0

∂vjk
, and L = D−A is the graph

Laplacian matrix defined in Section 3. The update
can be viewed as an adaptive gradient descent algo-
rithm, where the step size should be nonzero. Again,
we should make sure the initialization of vjk is posi-
tive, otherwise vjk = 0 at all subsequent iterations.

Proposition 1 below ensures that when we initial-
ize positive uik and vjk, the entries of U and V will
always be updated as positive numbers, and the up-
dated values will not get trapped in 0. We provide
the proof in Appendix B.

Proposition 1 If u1ik > 0 and v1jk > 0, ∀i, j, k, then

utik > 0, vtjk > 0, ∀i, j, k,∀t ≥ 1, where t denotes the
t-th update.

4.3. Estimate αs

This is equivalent to minimizing the following objec-
tive over αs that

min
αs

αps

∥∥∥V(s)Q(s) −V∗
∥∥∥2
F
, subject to

nv∑
s=1

αs = 1.

When p = 1, the optimal solution of αs is

α̂s =

{
1, s = arg min

s′∈1,...,nv

‖V(s′)Q(s′) −V∗‖2F
0, otherwise.

The above solution implies that p = 1 only offers a
binary solution of αs, i.e., the consensus matrix V∗

depends on a single view. Such a solution is obviously
too restrictive, as it prevents the partial information
sharing among views. On the other hand, when p >
1, we obtain the optimal solution for α as:

α̂s =
1∑nv

s′=1

(
‖V(s)Q(s)−V∗‖2F
‖V(s′)Q(s′)−V∗‖2F

) 1
p−1

. (6)

The solution implies that when the s-th view’s in-
formation content contributes more to the consensus
matrix, i.e., ‖V(s)Q(s)−V∗‖2F is smaller, α̂s becomes
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larger. Therefore, the more important the view is, the
larger the corresponding weight is.
Discussion about p: Denote A(s) = ‖V(s)Q(s) −

V∗‖2F and A(s′) = ‖V(s′)Q(s′) − V∗‖2F . It is clear
that as p goes to infinity, the denominator of Eq. (6)
converges to nv, which gives uniform weights to
each view. Meanwhile, if the normalized s-th view
V(s)Q(s) contributes the most to the consensus ma-
trix V∗, i.e., A(s)/A(s′) < 1 for s′ 6= s, then p → 1+

implies αs → 1. On the other hand, if the normalized
s-th view V(s)Q(s) contributes the least to the con-
sensus matrix V∗, i.e., A(s)/A(s′) > 1 for s′ 6= s, then
p → 1+ implies αs → 0. Hence, a smaller p results
in a sparser weight vector α. Generally, a moderate
size p should be used so that the relevant informa-
tion from different views is preserved and the effect
of consensus constraint is kept.

4.4. Estimate w
(s)
i

To optimize w
(s)
i , we only consider the terms involv-

ing w
(s)
i in the objective that we consider

min
w(s)≥0,

∑nv
s=1 w

(s)
i =1

∥∥∥{X(s) −U(s)V(s)>
}

Diag(w(s))
∥∥∥2
F

=

N∑
i=1

w
(s)
i

2
Ms∑
j=1

Y
(s)
ji

2
,

where Y(s) = X(s) −U(s)V(s)>. Since we only opti-
mize the weight for a single observation, it is equiv-

alent to minimizing w
(s)
i

2∑Ms

j=1 Y
(s)
ji

2
with the con-

straint
∑nv

s=1 w
(s)
i = 1. We have that the optimal

solution is

ŵ
(s)
i =

 nv∑
s′=1

1∑Ms′
j=1(Y

(s′)
ji )2

Ms∑
j=1

(Y
(s)
ji )2

−1 . (7)

It is easy to find the solution is nonnegative. The
above solution shows that the reconstruction weight
is determined by the reconstruction error of the s-th
view on the i-th observation across all the features.
The smaller the error is compared with other views,

the larger the weight is. Note that w
(s)
i is the weight

of an observation, so the algorithm may run slowly
with a very large sample size.

4.5. Estimate V∗

To optimize V∗, we only consider the terms involving

V∗ in the objective O =
∑nv

s=1 α
p
s

∥∥∥V(s)Q(s)−V∗
∥∥∥2
F

.

Setting the derivative of Ov with respect to V∗ to 0,
we have that the optimal solution is

V∗ =

∑nv

s=1 α
p
sV

(s)Q(s)∑nv

s=1 α
p
s

. (8)

Since V(s) ≥ 0, Q(s) ≥ 0, and αs > 0, V∗ is non-
negative. The underlying assumption of the multi-
view clustering is that all the views can agree and
reduce to a consensus matrix with different weights,
so the cluster assignments can be determined accord-
ing to the consensus matrix V∗ by the maximum co-
efficient assignments. However, Welch et al. (2019)
points out the spurious alignments in highly divergent
datasets by the maximum coefficient assignments. In
the experiment section, we use the default function
spectralcluster in MATLAB on V∗ to obtain the
cluster membership.

4.6. Summary of the algorithm

We summarize the pseudocode of the WM-NMF al-
gorithm below. The algorithm stops when the maxi-
mum number of iterations is reached or it converges,
i.e., when the difference between the two consecutive
iterations is less than the threshold 9 × 10−8. The
algorithm converges to a local minima since the ob-
jective function is nonconvex.

Since the objective function is nonconvex, the so-
lution may depend on the initialization. We initial-
ize U(s) and V(s) by the Graph Regularized Non-
negative Matrix Factorization (GNMF) (Cai et al.,
2010).

Theorem 2 The objective function O converges to
a local minima under Algorithm 1.

The proof is given in Appendix B. We verify The-
orem 2 through different datasets and provide com-
plexity analysis in Appendix C. Besides, we include
the complexity analysis (operation counts) in Ap-
pendix D.

Discussion of the tuning parameters: A larger value
of K better approximates the original data, but on
the other hand, it raises the risk of overfitting. Many
approaches have been developed to select the number
of basis elements K for the NMF problem, such as Bi-
cross validation (Owen et al., 2009), Stein’s unbiased
risk estimator (Ulfarsson and Solo, 2013), minimum
description length (MDL) (Squires et al., 2017), and
missing data imputation (Lin and Boutros, 2020).
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Algorithm 1: Weighted Multi-View NMF (WM-
NMF)

Input: Dataset {X(1), . . . ,X(nv)}; rank K; exponen-
tial parameter p; manifold parameter β.
Output:Basis matrices U(1), . . . ,U(nv); Coefficient
matrices V(1), . . . ,V(nv); Consensus matrix V∗;
View weight vector αs for each view; Reconstruction

weight w
(s)
i for each view.

Normalize each view X(s) such that ‖X(s)‖1 = 1.
Initialize U(s), V(s), V∗, set equal view weight αs =

1/nv and reconstruction weight w
(s)
i = 1/N .

repeat ← (outer iteration)
for s = 1 : nv do ← (inner iteration)
repeat

Fixing w(s), α, V∗ and V(s), update U(s) by
Eq. (4);

Fixing w(s), α, V∗ and U(s), update V(s) by
Eq. (5);

until O0 converges or the maximum number of
iteration is reached.
end for
Fixing w(s), U(s), V(s), s = 1, ..., nv, and V∗, up-

date α by Eq. (6);
Fixing α, U(s), V(s), and V∗, update w by Eq.

(7);
Fixingw(s), U(s), V(s), s = 1, ..., nv, and α, update

V∗ by Eq. (8);
until the maximum number of iteration is reached or
the algorithm converges.

Perform clustering analysis based on V∗.

Overall, all these methods show the capacity of se-
lecting K in certain datasets empirically. In this pa-
per, we assume prior information of K is given. In
Appendix C, we show that WM-NMF works consid-
erately well within a range of K in terms of the clus-
tering accuracy. Thus, it is quite robust to the choice
of K. Empirical results on other tuning parameters
are also included in Appendix C.

5. Experiments

In this section, we present experimental results on
one handwritten digit dataset and one multi-omics
dataset. For each dataset, we use six metrics to eval-
uate the clustering performance: accuracy (ACC),
normalized mutual information (NMI), Precision, Re-
call, F-score, Adjusted Rand index (Adj-RI). For all
these metrics, higher values indicate better clustering

performance. Details and formulas of them are avail-
able in Manning et al. (2008). Empirical studies on
the tuning parameters are given in Appendix C.

In addition, we compare WM-NMF with several
competing multi-view clustering algorithms described
below:

1. K-means: The default kmeans function in MAT-
LAB is implemented to obtain the results. There
are two strategies: (1) Apply K-means indepen-
dently on each single view, and select the best
performance of K-means as the final results. We
denote this strategy as BSV-kmeans. (2) Apply
K-means on the data where all the views are con-
catenated. We denote this strategy as ConcatK.

2. Spectral clustering: The classical spectral clus-
tering algorithm is applied to the datasets. The
default function spectralcluster in MATLAB
is implemented to obtain the results. Similar to
the above K-means, we denote BSV-Spectral as
the best performance of spectral clustering over
each single view, and ConcatSpectral represents
the result of spectral clustering on the data with
all views concatenated.

3. MultiNMF: Multi-view nonnegative matrix fac-
torization with equal weight. MultiNMF1 is im-
plemented with equal weights summing to 1, i.e.,
αs = 1/nv for s = 1, ..., nv. MultiNMF2 is imple-
mented with equal weight such that αs = 0.01,
which is shown to have the best performance in
Liu et al. (2013). The clustering is performed
based on V∗ by K-means.

4. MLRSSC: Multi-View low-rank sparse subspace
clustering, which is shown to be very competi-
tive in (Brbić and Kopriva, 2018). More specif-
ically, we implement four variants: P-MLRSSC,
C-MLRSSC, P-KMLRSSC and C-KMLRSSC
which represent pairwise, centroid-based, pair-
wise kernel, and centroid-based kernel multi-
view low-rank sparse subspace clustering, respec-
tively.

5. NMF-W1 and NMF-W2: They are the simpli-
fied version of WM-NMF. We denote NMF-W1
as the case whenw is fixed a priori in WM-NMF.
Comparing NMF-W1 to WM-NMF, we empha-
size the importance of the reconstruction weight.
Likewise, we denote NMF-W2 as the situation
when w is fixed and β is set to 0, such that
there is no manifold regularization in WM-NMF.
Comparing NMF-W2 to WM-NMF, we empha-
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size the importance of the reconstruction weight
and the manifold regularization.

For all the experiments, we set p = 5 and β = 0.01
for WM-NMF and we use the default settings for all
the other algorithms.

5.1. Data description

We summarize the key information of all datasets
in Table 1 and provide the data descriptions in Ap-
pendix C.

Table 1: Detailed information about the experiment
datasets.

Dataset view observations features clusters

Synthetic

X(1) 5000 100 10
X(2) 5000 150 10
X(3) 5000 50 10
X(4) 5000 200 10
X(5) 5000 100 -
X(6) 5000 50 -

Handwritten

fou 2000 76 10
pix 2000 240 10
zer 2000 47 10
fac 2000 216 10

LIHC
GE 404 15397 2

CNA 404 16384 2
DNAm 404 16384 2

5.2. Results on the handwritten digit dataset

Table 2 compares the result of WM-NMF to the other
algorithms based on the handwritten digit dataset. It
is worth noting that WM-NMF obtains the highest
scores for all six evaluation metrics. All the other
competing methods show clustering performance sig-
nificantly worse than WM-NMF. Now, we analyze
the effectiveness of the manifold regularization, view-
specific weight and reconstruction weight, respec-
tively. First, we observe that NMF-W1 performs
better than NMF-W2, which implies the importance
of the manifold regularization for clustering analysis.
Second, WM-NMF, NMF-W1, and NMF-W2 all out-
perform MultiNMF, this shows the ineffectiveness of
using equal weight for α. Third, we find that WM-
NMF hits higher scores than NMF-W1. This demon-
strates the advantage of using reconstruction weight
and the ability of WM-NMF on integrating heteroge-
neous data.

5.3. Results on the multi-omics LIHC dataset

Seal et al. (2020) uses both CNV and DNAm to pre-
dict the sample status, either tumor or normal sam-
ple, so it is treated as a classification problem and the
accuracy is 95.1%. In this paper, we treat this data
as unsupervised problem and integrate all the three
omics data to conduct clustering analysis.

Figure 2 presents the analysis results. As it shows,
both WM-NMF and NMF-W2 outperform the other
algorithms in all the evaluation metrics while WM-
NMF behaves much better than NMF-W2. The aver-
age scores of the proposed WM-NMF for the 6 eval-
uation metrics are 0.97, 0.70, 0.99, 0.95, 0.97, and
0.83, respectively. Note that we do not plot the re-
sults of MLRSSC algorithms due to their code con-
straints. Instead, we report the highest six metric
scores with standard deviations among the four al-
gorithms: 0.57 (0.04), 0.18 (0.00), 0.88 (0.00), 0.54
(0.00), 0.67 (0.00) and 0.10 (0.00). Besides, the pro-
posed WM-NMF algorithm has lower standard de-
viations compared to all the other algorithms. It is
worth noting that the clustering algorithm WM-NMF
achieves slightly higher accuracy than the neural net-
work approach for classification in Seal et al. (2020).

6. Discussion

We develop a weighted multi-view NMF (WM-NMF)
algorithm, with the goal of learning multi-view data
for integrative clustering analysis. One key feature of
WM-NMF is the ability to learn both view-specific
and reconstruction weights to quantify each view’s
information content. Thus, the unnecessary views’
adverse effects can be alleviated and the positive ef-
fects of the important views are enlarged, making
WM-NMF robust to the potentially heterogeneous
multi-view data. Such ability enables WM-NMF to
deal with heterogeneous and noisy data. Technically,
our proposed weighting scheme can be integrated
into other methods such as model-based approaches.
Therefore, we may combine the benefits of the model-
based approaches with the weighting scheme to study
the theoretical properties.

Institutional Review Board (IRB) This study
has no human-subject research and only uses publicly
available and de-identified data, which does not need
an IRB approval.
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Table 2: Comparisons of clustering performance between WM-NMF and other competing methods for hand-
written digit dataset. Numbers in the bracket represent standard deviations of the corresponding
scores, which is obtained based on 20 replications for each algorithm.

Algorithm ACC NMI Precision Recall F-score Adj-RI
BSV-kmeans 0.69 (0.07) 0.70 (0.03) 0.61 (0.05) 0.67 (0.04) 0.63 (0.05) 0.59 (0.05)
ConcatK 0.63 (0.07) 0.62 (0.03) 0.51 (0.05) 0.59 (0.03) 0.55 (0.04) 0.49 (0.04)
BSV-Spectral 0.68 (0.00) 0.71 (0.00) 0.58 (0.00) 0.68 (0.00) 0.62 (0.00) 0.58 (0.00)
ConcatSpectral 0.12 (0.00) 0.01 (0.00) 0.10 (0.00) 0.41 (0.04) 0.16 (0.00) 0.00 (0.00)
MultiNMF1 0.64 (0.03) 0.58 (0.02) 0.51 (0.03) 0.54 (0.03) 0.52 (0.03) 0.47 (0.03)
MultiNMF2 0.79 (0.04) 0.72 (0.02) 0.66 (0.03) 0.69 (0.03) 0.68 (0.03) 0.64 (0.03)
P-MLRSSC 0.75 (0.07) 0.77 (0.04) 0.68 (0.07) 0.75 (0.05) 0.71 (0.06) 0.68 (0.07)
C-MLRSSC 0.75 (0.06) 0.77 (0.04) 0.68 (0.06) 0.74 (0.05) 0.71 (0.06) 0.67 (0.06)
P-KMLRSSC 0.77 (0.06) 0.72 (0.02) 0.66 (0.05) 0.68 (0.05) 0.67 (0.04) 0.63 (0.05)
C-KMLRSSC 0.76 (0.07) 0.72 (0.03) 0.65 (0.06) 0.68 (0.05) 0.67 (0.05) 0.63 (0.06)
NMF-W1 0.92 (0.03) 0.88 (0.03) 0.85 (0.06) 0.88 (0.03) 0.86 (0.05) 0.84 (0.05)
NMF-W2 0.81 (0.08) 0.77 (0.05) 0.69 (0.10) 0.76 (0.06) 0.72 (0.08) 0.69 (0.09)
WM-NMF 0.96 (0.02) 0.93 (0.01) 0.93 (0.04) 0.94 (0.01) 0.93 (0.03) 0.93 (0.03)

Figure 2: Boxplots representing clustering results for
LIHC dataset based on 20 replications for
each algorithm. The dashed red line is the
average score of WM-NMF.
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Maria Brbić and Ivica Kopriva. Multi-view low-rank
sparse subspace clustering. Pattern Recognition,
73:247–258, 2018.

Deng Cai, Xiaofei He, Jiawei Han, and Thomas S
Huang. Graph regularized nonnegative matrix fac-
torization for data representation. IEEE transac-
tions on pattern analysis and machine intelligence,
33(8):1548–1560, 2010.

Kamalika Chaudhuri, Sham M. Kakade, Karen
Livescu, and Karthik Sridharan. Multi-view clus-

27



tering via canonical correlation analysis. In Pro-
ceedings of the 26th Annual International Confer-
ence on Machine Learning, page 129–136, New
York, NY, USA, 2009. Association for Computing
Machinery.

Jun Chen, Frederic D Bushman, James D Lewis,
Gary D Wu, and Hongzhe Li. Structure-
constrained sparse canonical correlation analysis
with an application to microbiome data analysis.
Biostatistics, 14(2):244–258, 2013.

Chris Ding, Xiaofeng He, and Horst D Simon. On
the equivalence of nonnegative matrix factoriza-
tion and spectral clustering. In Proceedings of the
2005 SIAM international conference on data min-
ing, pages 606–610. SIAM, 2005.

Evelina Gabasova, John Reid, and Lorenz Wernisch.
Clusternomics: Integrative context-dependent
clustering for heterogeneous datasets. PLoS Com-
putational Biology, 13(10):e1005781, 2017.

G. H. Golub and C. Reinsch. Singular value decom-
position and least squares solutions. Numerische
Mathematik, 14(5):403–420, Apr 1970.

Yehudit Hasin, Marcus Seldin, and Aldons Lusis.
Multi-omics approaches to disease. Genome Bi-
ology, 18(1):83, May 2017.

Patrik O Hoyer. Non-negative matrix factorization
with sparseness constraints. Journal of machine
learning research, 5(9), 2004.

Jin Huang, Feiping Nie, Heng Huang, and Chris Ding.
Robust manifold nonnegative matrix factorization.
ACM Transactions on Knowledge Discovery from
Data (TKDD), 8(3):1–21, 2014.

Daeyong Jin and Hyunju Lee. A computational ap-
proach to identifying gene-microrna modules in
cancer. PLOS Computational Biology, 11(1):1–33,
01 2015.

M. M. Kalayeh, H. Idrees, and M. Shah. Nmf-knn:
Image annotation using weighted multi-view non-
negative matrix factorization. In 2014 IEEE Con-
ference on Computer Vision and Pattern Recogni-
tion, pages 184–191, 2014.

Arto Klami, Seppo Virtanen, and Samuel Kaski.
Bayesian canonical correlation analysis. Journal
of Machine Learning Research, 14:965–1003, 2013.

Abhishek Kumar and Hal Daumé. A co-training ap-
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Appendix A

In this section, we provide the derivations for updates of U(s), V(s), and αs.

Update of U(s) and V(s)

With the notations in the main text, we have

∂O1

∂uik
= 2

[
UV>Diag2(w)V

]
ik
− 2

[
XDiag2(w)V

]
ik

+ αpsPik + Ψik,

where Pik = 2
(∑M

l=1 ulk
∑N
j=1 v

2
jk −

∑N
j=1 vjkv

∗
jk

)
and Ψik is the Lagrange multiplier for the constraint

uik ≥ 0. Using the complementary slackness condition ΨikUik = 0, plugging the expression Pik into Eq. (6)
and setting it to 0, we have

[
UV>Diag2(w)V

]
ik
uik −

[
XDiag2(w)V

]
ik
uik + αps

 M∑
l=1

ulk

N∑
j=1

v2jk −
N∑
j=1

vjkv
∗
jk

uik = 0

⇔
[
UV>Diag2(w)V

]
ik
uik + αps

M∑
l=1

ulk

N∑
j=1

v2jkuik =
[
XDiag2(w)V

]
ik
uik + αps

N∑
j=1

vjkv
∗
jkuik.

Similarly for V(s), we have

∂O2

∂vjk
=
[
Diag2(w)VU>U

]
jk
−
[
Diag2(w)X>U

]
jk

+ αps
[
VQQ> −V∗Q>

]
jk
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�[
Diag2(w)VU>U

]
jk

+ αps
[
VQQ>

]
jk
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]
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+ β [AV]jk ,

Multiplying the above equation by vjk and using the complementary slackness condition ΦjkVjk = 0 gives
the result.

Update of αs

When p > 1, setting the derivative of O that only contains αs with respect to αs to 0, we get

pα(p−1)
s A+ λ1 = 0 ⇒ αs =

(
− λ1
pA

) 1
p−1

,

where we assume A(s) = ‖V(s)Q(s) −V∗‖2F > 0. Given the constraint that
∑nv

s′=1 αs′ = 1, we have

nv∑
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(
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) 1
p−1

= 1 ⇒ (−λ1)
1
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) 1
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,

Finally, we obtain the solution of αs

α̂s =
1∑nv
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(
A(s)
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) 1
p−1
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.

Appendix B

In this section, we provide the proofs for Proposition 1 and Theorem 2.
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Proof of Proposition 1

First we assume that the denominators in Eq. (4) and (5) are always well-defined. The update rules by Lee
and Seung (2001) are not well-defined if the denominators are 0. This may happen in a very rare case when
all the terms on the denominators are 0. In such case, a small positive number can be added to avoid 0 (Lin,
2007). When it is added, the analyses keep the same, so we stick to the situations without the small positive
number in this paper.

When t = 1, Theorem 1 holds by the assumption of this theorem. For t > 1, we prove by induction. We
first prove for the case of U. Assuming the results are true at tth iteration, we note that from t to t+ 1, the
step size for updating uik in Eq. (4) is positive:

uik[
UV>Diag2(w)V

]
ik

+ αps
∑M
l=1 ulk

∑N
j=1 v

2
jk

> 0.

We now consider two situations for the derivative ∇UO0:
Case 1: When ∇UO0 = 0, ut+1

ik = utik and it converges as the complementary slackness condition suggests.
Case 2: When ∇UO0 6= 0,

uik ← uik −
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The inequality follows the definition of ∇UO0. When ∇UO0 > 0, the term in the bracket is between 0 and 1.
When ∇UO0 < 0, the term in the bracket is negative. Both imply that ut+1

ik > 0. The proof for vtjk,∀t ≥ 1
is the same as the proof for U and we omit it here.

Prior to the details of proving Theorem 2, we introduce a lemma that is essential to the proof.

Lemma 3 (Lee and Seung (2001)) If G(h, h′) is an auxiliary function of J(h), then J(h) is nonincreas-
ing under the update rule

h(t+1) = argmin
h

G(h, h(t)). (9)

Proof of Theorem 2

The updates for V∗ and αs give exact solutions for the minimization of O when others are fixed. Therefore,
we only need to prove that O is nonincreasing under the update rules of U(s) and V(s), s = 1, ..., nv. Again
to ease the notation without confusion, we drop (s) from the notations, and we simply write V and U to
refer to a specific view.

The proof is established by defining an auxiliary function and showing the Taylor-expansion of the objective
function is less than or equal to the auxiliary function. The update rules are element-wise, and we only need
to show Lik and Jjk are nonincreasing for Equations (4) and (5), where Lik and Jjk denote the part of O
relative to uik and vjk only, respectively. They are the same as O1 and O2 as defined above. For uik, if we
define the function

G
(
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t
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,
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then we have G(uik, uik) = Lik(uik).
Next, we need to show G(uik, u

t
ik) ≥ Lik(uik). The Taylor expansion of Lik (uik) gives
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(
utik
) (
uik − utik

)
+

1

2
L′′ik

(
utik
) (
uik − utik

)2
,
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This is easy to verify by comparing the first and second terms of the above inequality, respectively. We have,
according to the nonnegative constraints on U and V
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v2jk ≥ αpsutik
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Thus, G(uik, u
t
ik) is an auxiliary function of Lik(uik). Replacing G(h, ht) in Eq. (9) by G (uik, u

t
ik), we have
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2
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2
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The result follows Lemma 1 in Lee and Seung (2001) that Lik is nonincreasing under the iteration ht+1 =
arg minhG(h, ht). Since the objective function is bounded below by 0, the monotone convergence theorem
implies the convergence.

Similar statements for the proof of vjk can be established by defining the auxiliary function

G(vjk, v
t
jk) = Jjk(vtjk) + J ′jk(vtjk)(vjk − vtjk)

+

{[
Diag2(w)VtU>U

]
jk

+ αps
[
VtQQ>

]
jk

+ β [DVt]jk

vtjk

}
(vjk − vtjk)2.

It is easy to see G(vjk, vjk) = Jjk(vjk) and the remaining part is to show G(vjk, v
t
jk) ≥ Jjk(vjk). The

Taylor-expansion of Jjk(vjk) gives

Jjk (vjk) = Jjk
(
vtjk
)

+ J ′jk
(
vtjk
) (
vjk − vtjk

)
+

1

2
J ′′jk

(
vtjk
) (
vjk − vtjk

)2
,

with the second order derivative J ′′jk(vjk) = 2
[
Diag2(w)

]
jj

[
U>U

]
kk

+ 2αpsQQ> + 2β [L]jj (note that L is

the graph Laplacian matrix defined in section 3). Comparing the Taylor-expansion of Jjk(vjk) to G(vjk, v
t
jk),

we are left to show {[
Diag2(w)VtU>U

]
jk

+ αps
[
VtQQ>

]
jk

+ β [DVt]jk
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}
≥
[
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]
jj

[
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]
kk

+ αpsQQ> + β [L]jj .
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This can be verified by comparing the first and third terms of the inequality, respectively. We have, according
to the nonnegative constraints on U and V,

[
Diag2(w)VtU>U

]
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t
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t
jk.

Therefore, G(vjk, u
t
jk) is an auxiliary function of Jjk. Replacing G(h, ht) in Eq. (9) by G(vjk, v

t
jk), we have

vt+1
jk = vtjk − vtjk

J ′jk

(
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)
[
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The result follows Lemma 1 in Lee and Seung (2001) that Jjk is nonincreasing under the iteration ht+1 =
arg minhG(h, ht). Since the objective function is bounded below by 0, the monotone convergence theorem
implies the convergence.

Appendix C

Data information

1. Synthetic dataset: This synthetic dataset is generated by a four-component Gaussian mixture model.
The data contains six views, with the last two views being noisy. More specifically, we randomly generate
the cluster centers, denoted by µ1, . . . ,µ4, for views X(1) to X(4). Each element of µj , j = 1, ..., 4 is
independently drawn from the normal distribution with mean randomly generated from a uniform
distribution U [a, a+ 10] and variance 1. We set a = 10, 20, 30, 40 for these four views. To generate the
covariance matrix for each view, we first generate a random number b from U [0.1, 1], then multiply a
symmetric matrix of all ones by b. Lastly, we take element-wise power of this matrix by a symmetric
Toeplitz matrix whose diagonals are all 0. The prior proportions of the 4 components are set to be equal
and sum to 1. Further, we set X(5) to be the same as X(1) but with the first 300 observations added
by random noises independently generated from N (0, 5). We also let X(6) to be the same as X(3) but
with the first 1000 observations added by random noises independently generated from N (0, 10).

2. Handwritten digit dataset 1: This dataset contains 2000 digits and 10 labels. Each digit can be
decomposed into four views: Fourier coefficients of the character shapes (fou), pixel averages in 2 × 3
windows (pix), Zernike moments (zer) and profile correlations (fac).

3. Liver hepatocellular carcinoma (LIHC): This is a multi-omics dataset used in the application in
Seal et al. (2020). Each sample has three different types of measurements (views): gene expression
(GE), copy number variation (CNV), and DNA methylation (DNAm). The processed dataset has 404
samples, and the three views have 15397, 16384, 16384 features, respectively. To further reduce the
dimension, we select the top 100 most highly variable features for each view. In addition, these samples
belong to either tumor or normal samples, where such class labels are known a priori.

1. https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Empirical analysis on the tuning parameters

In this section, we show how to select p, β, and K using the synthetic dataset and the handwritten digit
dataset. The default values are p = 5, β = 0.01, and K = 10. During the experiment, we change the target
parameter and fix the remaining ones.

We first analyze the effect of p on the algorithm performance. Figure 3 shows how the metric scores and
the distribution of weights change as p changes. For the experiments, we let p ∈ {2, 4, 5, 8, 11}. The left panel
shows p controls the sparsity of the weight vector, i.e., the effect of different values of p on the distributions
of the weight vector. As p decreases, the weight vector α becomes sparser. The right panel shows that all
the metric scores are close with p ∈ {4, 5, 8, 11} (a moderate size).

Figure 3: Distributions of view-specific weight α (left) and the metric scores (right) under different values
of p for the synthetic dataset and handwritten digit dataset.

Next we empirically illustrate how to choose β, the manifold regularizer. Before algorithm implementation,
entries in X are scaled so that the value O1 is in general small. Consequently, we tend to choose a small β
to balance the matrix factorization effect and the manifold regularization effect. As we can see from Figure
4, both datasets demonstrate robust results with different values of β. This implies that the clustering
performance is robust to relatively small β values. Finally, we empirically show how to choose K. As we
can see from Figure 5, both datasets demonstrate robust results when K lies in a neighbour of the ground
truth. This means that the choice of K may not affect the clustering results even though it is overestimated
or underestimated.

Complexity and convergence study

To study the computational complexity, we run a series of experiments on a server with 10 processors and each
processor (2.2 GHz Intel Xeon) uses 20GB memory. We change N and nv to investigate the corresponding
effects. The default setting is 5000 data points (N = 5000), 4 views (nv = 4) with 10 clusters (K = 10) and
100 features (M = 100). During the experiment, we change one aspect while keeping all others fixed. The
values of N are set to 3k, 5k, 7k, 9k, and 11k, which is larger than M , so the theoretical complexity should
be quadratic in N . We find the running time is overall linear in terms of smaller N and scales well for large
N (e.g. N > 9000). Even though the theoretical result for N > M indicates quadratic complexity in N , the
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Figure 4: Metric scores under different values of β on the synthetic dataset (left) and handwritten digit
dataset (right). The x-axis is the value of different β from 0.005 to 0.025. Note: we set the limits
of the y-axis from 0.8 to 1.

Figure 5: Metric scores under different values of K on the synthetic dataset and handwritten digit dataset.
The x-axis shows the value of different K from 8 to 12. Note: we set the limits of the y-axis from
0.8 to 1.

running time is still acceptable. For nv, we set its value from 2 to 6. Row 1 of Figure 6 shows the running
time is linear in nv.

The multiplicative update rule for minimizing the objective function O is iterative. Theorem 2 shows
that the algorithm for updating U and V can converge to a local solution. Here we investigate how fast
the convergence is empirically. Row 2 of Figure 6 demonstrates the convergence curves. The x-axis is the
number of iterations and y-axis is the objective function value. We see that the algorithm converges very
fast, usually within 50 iterations.
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Figure 6: Running time of the WM-NMF algorithm on the synthetic dataset (row 1); convergence curves of
WM-NMF algorithm on the handwritten digit and LIHC dataset (row 2).

Appendix D

Algorithm complexity analysis

We analyze the complexity for updating U(s) and V(s) in the inner iteration. We divide the counts
of iterations into multiplication, addition and division. The overall complexity for the inner iteration is
O(MsNK +N2K) (we provide the details in appendix A). We summarize the operation counts in Table 3.

Table 3: Computational operation counts for each iteration of U(s) and V(s).
multiplication addition division overall

U(s) N +MsN +MsNK + (N + 1)K+
N +KN + 2MsNK +K(N + 2)

KMsN +NK+
2MsNK +K(Ms +N)

MsK O(MsNK)

V(s) N +MsN +MsNK + 2NK +N2K
N +KN + 2MsNK + 3KN +K

KMsN +N2K+
2MsNK +KN2 NK O(MsNK +N2K)

Further, suppose there are t1 iterations for updating U(s) and V(s) for each view, then the complex-
ity for all views is O

{
t1nv(M∗NK +N2K)

}
, where M∗ denotes the maximum of {M1, . . . ,Mnv

}. After

the t1 inner iterations of U(s) and V(s), we still need O(nv) for αs, O(nvNK) for V∗, and O(nvN) for
Diag(w). Therefore, for each iteration of the whole procedure of Algoritm 1(lines 4-12), the total complexity
is O

{
t1nv(M∗NK +N2K)

}
. Suppose t2 outer iterations are taken for O to converge or reaching the max-

imum number of iteration, then the overall algorithm takes time O
{
t1t2nv(M∗NK +N2K)

}
for N > M∗.

When N < M∗, we have the overall complexity O {t1t2nvM∗NK}.
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