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Abstract

Detailed mobile sensing data from phones and
fitness trackers offer an opportunity to quantify
previously unmeasurable behavioral changes to
improve individual health and accelerate re-
sponses to emerging diseases. Unlike in nat-
ural language processing and computer vision,
deep learning has yet to broadly impact this
domain, in which the majority of research and
clinical applications still rely on manually de-
fined features or even forgo predictive modeling
altogether due to insufficient accuracy. This
is due to unique challenges in the behavioral
health domain, including very small datasets
(∼101 participants), which frequently contain
missing data, consist of long time series with
critical long-range dependencies (length< 104),
and extreme class imbalances (> 103:1).

Here, we describe a neural architecture for
multivariate time series classification designed
to address these unique domain challenges.
Our proposed behavioral representation learn-
ing approach combines novel tasks for self-
supervised pretraining and transfer learning
to address data scarcity, and captures long-
range dependencies across long-history time se-
ries through transformer self-attention follow-
ing convolutional neural network-based dimen-
sionality reduction. We propose an evaluation
framework aimed at reflecting expected real-
world performance in plausible deployment sce-
narios. Concretely, we demonstrate (1) per-
formance improvements over baselines of up
to 0.15 ROC AUC across five influenza-related
prediction tasks, (2) transfer learning-induced
performance improvements including a 16% rel-
ative increase in PR AUC in small data scenar-
ios, and (3) the potential of transfer learning in
novel disease scenarios through an exploratory
case study of zero-shot COVID-19 prediction
in an independent data set. Finally, we discuss
potential implications for medical surveillance
testing.

Data and Code Availability This paper uses
data from the Homekit2020 Flu Study. Of the 5195
participants in this study, 5034 consented to data
sharing. This subset is available via Synapse (link
withheld to protect anonymity), and is documented
in a parallel submission to CHIL along with a bench-
mark evaluation. We make all code used in this paper
available at this GitHub repository.
Institutional Review Board (IRB) The study
that collected the data presented here was approved
by the Western Institutional Review Board (WIRB,
Puyallup, WA, USA) and the University of Washing-
ton IRB (Study #1271380)

1. Introduction

Mobile sensing data from phones, watches, and fitness
trackers offer an unparalleled opportunity to track
complex behavioral changes and symptoms, detect
high risk individuals in large populations, and de-
ploy targeted interventions. Because many conditions
manifest themselves through behavioral and phys-
iological changes (e.g., reduced activity, disrupted
sleep, increased heart rate), leveraging these data
could minimize the impact of emerging diseases. Cur-
rently, such conditions exact a massive toll (e.g., (Me-
zlini et al., 2021)), with contagious respiratory ill-
nesses such as COVID-19 (or influenza/flu) rising to
the second leading cause of death in the U.S. in Jan-
uary 2022.

Despite the enormous potential and availability of
these data for well over a decade, broad and tangible
impacts on population health have yet to be real-
ized. For example, consider their limited impact on
COVID-19, which reduced gross global product by
$28 trillion (International Monetary Fund, 2020); ex-
cept for contact tracing apps, which do not require
predictive modeling, the global COVID-19 response
made no significant use of these data beyond research
studies.
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While neural representation learning approaches
have provided transformative performance improve-
ments across Natural Language Processing (NLP)
and Computer Vision (CV) (Mikolov et al., 2013; De-
vlin et al., 2019; Lewis et al., 2019; Lan et al., 2019;
Liu et al., 2019; He et al., 2016; Krizhevsky et al.,
2012), currently these techniques are rarely adopted
for mobile sensing research and applications. In con-
trast to typical NLP and CV benchmark datasets,
mobile sensing data are usually very limited in size
(often less than 20 individuals due to arduous and ex-
pensive data collection (Xu et al., 2021)), frequently
contain missing data (93% of days in our data; e.g.
when device is not used or charging), consist of long
history time series (>10,000 min-by-min time steps
for one week of data) with relevant long range de-
pendencies (e.g. changes in heart rate across multi-
ple days), and feature extreme class imbalances (up
to 2760:1 in our data; because most people are not
sick on most days) (Xu et al., 2021). Therefore,
researchers have often been limited to using small
datasets and less data hungry non-neural models such
as boosted tree models with hand-crafted features
which typically perform worse (e.g., (Xu et al., 2021;
Laport-López et al., 2020; Zhang et al., 2021; Nair
et al., 2019; Lin et al., 2020; Hafiz et al., 2020; Buda
et al., 2021; Mairittha et al., 2021; Meegahapola et al.,
2021)).

In this paper, we describe a neural architecture for
multivariate time series classification specifically de-
signed for these unique domain challenges. Specifi-
cally, (1) this model learns directly from raw minute-
level sensor data (in contrast to prevailing use of
manually defined features; Section 3.1), (2) leverages
novel self-supervised pretraining tasks (Section 3.2)
and transfer learning to improve performance in
datasets of limited size without requiring additional
supervision, (3) directly models potentially informa-
tive missingness patterns instead of excluding par-
ticipants with missing data, (4) captures long-range
dependencies across long-history time series through
transformer layers (Vaswani et al., 2017), while (5)
reducing the input sequence length to these trans-
former layers through hierarchical feature extraction
of convolutional neural networks (CNNs).1

Next, we present a framework of best practices for
evaluating mobile sensing models (Section 5), which

1. Because the full self-attention mechanism of transform-
ers has computational and memory requirements that are
quadratic with the input sequence length (Beltagy et al.,
2020)

describes (1) how to avoid massively overestimating
model performance relative to expected real-world
performance, and (2) an approach to reduces the sta-
tistical uncertainty introduced by inherent extreme
class imbalances (up to 1:2,760 in our evaluation data;
Section 4) that is based on jointly comparing model
performance across multiple prediction tasks. We
then apply this framework to the evaluation of the
proposed model across four experiments.

In Experiment 1 (Section 6.1) we evaluate model
performance across five single domain prediction
tasks related to predicting the flu with FitBit wear-
able data, and show that CNN encoders, transformer
blocks, modeling missingness, and self-supervised
pretraining significantly increase predictive perfor-
mance, up to 0.15 ROC AUC relative to common
baselines.

In Experiment 2 (Section 6.2) we compare three
novel self-supervised pretraining tasks and show that
a task which incorporates basic domain expertise per-
forms best.

In Experiment 3 (Section 6.3) we demonstrate
transfer learning of pretrained behavioral representa-
tions. Specifically, we simulate 20 separate small data
studies with only ten participants each for training.
We show that finetuning a pretrained model (trained
on a separate self-supervision task on an independent
set of participants) on these ten participants outper-
forms training from scratch with a ∼ 16% improve-
ment in precision-recall AUC.

In Experiment 4 (Section 6.4) we extend the pre-
vious transfer learning setting to an exploratory case
study of zero-shot COVID-19 prediction in a small
third party dataset. In this zero-shot paradigm, with-
out any training on COVID-19 cases, the proposed
pretrained model achieves a 0.62 ROC AUC, while an
XGBoost baseline cannot exceed near-random perfor-
mance (0.51 ROC AUC).2 This demonstrates that the
pretraining of the proposed model architecture is able
to learn generalizable features that enable significant
performance improvements across multiple domains
(flu and COVID-19).

Finally, we reflect on these advances and potential
implications in the the context of the medical litera-
ture on surveillance testing (Section 7). Advances
in model performance especially on small datasets
and novel disease scenarios could support a more

2. Note that statistical power is limited due to the small
dataset size, and therefore we first include the repeated
simulation study of Experiment 3 to demonstrate robust-
ness of transfer learning performance.
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widespread use of mobile sensing data as well as en-
able rapid deployments in emerging disease scenarios.
For example, in the crucial early days of the COVID-
19 pandemic, laboratory testing was not widely avail-
able, and many positive cases remained undetected.
In this setting, a generalizable pretrained model could
be fine-tuned on the few test cases already available,
and used to identify members of a population who
may be infected and should be targeted for additional
testing or interventions (Brook et al., 2021; Nestor
et al., 2021; Quer et al., 2020). It is promising to note
that the proposed model enables predictive perfor-
mance comparable to some flu and COVID-19 rapid
antigen tests (ca. 0.68 to 0.88 ROC AUC (Bachman
et al., 2021; Chu et al., 2012)). Still, we emphasize
that additional research and validation experiments
are needed to support the use of predictive models
such as ours in public health strategy and policy.

In summary, our contributions include:

• A neural architecture for multivariate time series
classification in mobile sensing and novel set of
pretraining tasks (Section 3)

• A framework for evaluating mobile sensing mod-
els, which provides best-practices for selecting
realistic prediction tasks and mitigating inher-
ent statistical uncertainty during model selection
(Section 5)

• An empirical evaluation demonstrating that the
proposed approach significantly improves pre-
diction performance on small datasets through
transfer learning in both flu predictions and a
case study of a novel zero-shot COVID-19 pre-
diction task (Section 6).

We make our model publicly available for use by re-
searchers and practitioners at REDACTED, so that
they may use it as an initialization for their own pre-
diction tasks.

2. Related Work

Our model builds upon prior work in neural meth-
ods and transfer learning for behavioral sensing and
modeling. Our model is the first to learn generaliz-
able feature representations from long-history multi-
variate time series to enable transfer learning in small
datasets.

2.1. Neural Models for Time Series
Classification in Mobile Sensing

Behavioral data has been modeled and mined us-
ing deep learning techniques across a variety of do-
mains, including human activity recognition (using
CNN) (Yao et al., 2017), personalized fitness rec-
ommendation (using stacked LSTM (Hochreiter and
Schmidhuber, 1997)) (Ni et al., 2019), mood pre-
diction (using RNN, GRU, or autoencoder) (Suhara
et al., 2017; Cao et al., 2017; Spathis et al., 2019),
stress prediction (using LSTM and autoencoder) (Li
and Sano, 2020), health status prediction (using CNN
and cross-attention) (Hallgŕımsson et al., 2018), and
personality prediction (Wu et al., 2020). Two studies
experimented with multi-head attention and convo-
lution as we do here, but neither paper applies this
architecture to transfer learning (Song et al., 2018;
Tang et al., 2021). Liu et al. (2022) apply a CNN au-
toencoder to raw sensor data to predict COVID-19,
but do not experiment with transformer layers nor
transfer learning as we do here.

Until very recently, the state of the art in time
series classification has eschewed deep learning in fa-
vor of more traditional statistical learning methods
(Fawaz et al., 2019). Fawaz et al. (2019) propose a
set of benchmark datasets and tasks for time series
classification, but relative to the minute-level time se-
ries we model here these datasets are shorter (at most
2,000 observations in length), do not contain missing
data, and are mostly univariate.

2.2. Self-Supervised Learning in Behavioral
Modeling

In the broader field of self-supervision for time se-
ries classification, the most relevant work is Zerveas
et al. (2021), who use a simple linear projection
to shrink the input multivariate time series to the
scale supported by transformers. Zhang et al. (2019)
use an LSTM to learn self-supervised representations
of multivariate timeseries, but apply this method
to anomaly detection. Transfer learning remains a
“grand challenge” for mobile sensing (Wang et al.,
2019), and has been explored in human activity recog-
nition (Ma et al., 2020), stress and mood predic-
tion (Jaques et al., 2017; Li and Sano, 2020), and fore-
casting adverse surgical outcomes in an ICU (Chen
et al., 2020). Hallgŕımsson et al. (2018) use a CNN
autoencoder to forecast heart rate from steps and
sleep data, but do not predict acute events like vi-
ral infection. Kolbeinsson et al. (2021) pretrain
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transformers to auto-regressively predict one of sev-
eral handcrafted features on a day given the previ-
ous day’s aggregated sensor data, but do not model
minute-level raw time series to predict a multitask
array of features as we do here. Furthermore, none of
these applications focus explicitly on model transfer
to small datasets. Tang et al. (2021) study perfor-
mance on small datasets, but unlike our work do not
evaluate with a zero-shot, out-of-domain task.

3. Methods

Here, we detail our model which is composed of a
CNN encoder for learning hierarchical and temporal
features, effectively reducing the dimensionality, and
a transformer for learning potentially long-range rela-
tionships between these features. Then, we motivate
and describe a set of self-supervised pretraining tasks
that can be used to boost overall model performance.
3

3.1. Our Model

Our Model is composed of a convolutional encoder,
a stack of transformer blocks, and a final densely
connected linear layer that is used for classification.
Intuitively, the convolutional encoder learns a com-
pressed, hierarchical feature representation of the raw
time series data, while the transformer learns rela-
tionships between these features. An overview of our
model architecture is given in Figure 1.

Notation. Formally, we define a given input sensor
stream as xi ∈ Rm×1, where m is the length of the
time series, and xit is the value of sensor stream i at
time t. We assemble X = (x0, .., xn) ∈ Rm×n as a
multivariate time series of n streams in a given user’s
data.

Convolutional Encoder. The convolutional en-
coder learns a temporal, hierarchical feature repre-
sentation of the raw sensor data. Given the input
multivariate time series X, we stack q convolutional
layers. In the simplest case, when stride and kernel
size are not considered, the output of the jth channel
Cj with input size (Cin, Lin) is:

3. We would like to make it abundantly clear that this paper
is not the first to combine CNNs with transformers or ap-
ply self-supervised learning to time series data. Instead,
the core architectural contribution of this paper is the ap-
plication of these techniques in a unified system to a new
domain to address the challenges of modeling behavioral
time series data.

out (Cj) = bias (Cj) +

Cin−1∑
k=0

weight (Cj , k) ? input (k)

where ? is the cross-correlation operator, and
weight and bias reflect learned parameters unique to
each channel and each layer. Between layers we apply
ReLU and batch-norm, which limit overfitting. We
denote the final output of the CNN Encoder as X,
which has dimensionality (Cout,q, Lout,q).

Transformer Blocks. Intuitively, this module
learns relationships between the features produced in
the final output of the CNN encoder. Our model uses
a stack of u transformer blocks, each composed of r
attention heads and a feed forward layer. We take
the output of the final layer, E, to be the learned
representation of the input time series:

h0 = X
T

+Wp

hi = TransformerBlock(hi−1), i ∈ 1...u

hnormi = LayerNorm(hi)

E = hnormu

Where Wp is a learned positional embedding ma-
trix.

Allowing for Missing Data. Researchers fre-
quently report missingness as an obstacle to adopt-
ing deep learning techniques. In our dataset, 93% of
days contain at least a minute of missing data. Ac-
cordingly, we model missingness by replacing miss-
ing values with zeros and including a binary flag for
each of the sensor streams which encodes if the sensor
reading is missing in that timestep.

Training. We train our model with the Adam opti-
mizer (Kingma and Ba, 2017) and cross entropy loss.
Details about hyperparameter tuning are available on
the project’s github.

Note on explicitly modeling class imbalance.
In writing this paper we experimented with several
common techniques for modeling imbalanced classifi-
cation problems, including focal loss (Lin et al.) and
balanced cross entropy loss. We note that these meth-
ods did not significantly improve performance, per-
haps because the difficulty of the underlying classifi-
cation problem dwarfs the difficulty imposed by class
imbalance. Nonetheless, as we show in Section 5.2, it
is important to evaluate model performance on these
tasks with the imbalance in mind.
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Figure 1: Our Model (Section 3.1) combines a CNN encoder for learning hierarchical and temporal features
from raw time series data and a transformer for learning long-range relationships between these
features. Additionally, we provide three novel self-supervised pretraining tasks for learning from
unlabeled data (Section 3.2).

3.2. Self-Supervised Pretraining Tasks

Much like in computer vision and NLP, labeled be-
havioral health data are expensive to collect at scale
because labels require costly testing infrastructure.
Transfer learning through self-supervised pretraining
helps models learn generalizable representations from
unlabeled data, where the status quo is only being
able to learn from limited labled data. Here, we pro-
pose three techniques for self-supervised pretraining
for behavioral data.

Same User. Prior work indicates that data from
the same user on different days are often highly cor-
related relative to data from other users (Wang et al.,
2016). Drawing inspiration from next sentence pre-
diction tasks in NLP (Logeswaran and Lee, 2018), we
hypothesize that a model that is trained to encode the
differences between users may learn useful represen-
tations of behavioral data. To this end, we construct
a dataset of one million pairs of (non-overlapping)
windows from the same user, and one million pairs of
windows from different users. We use the same en-
coder to generate embeddings for each of the windows
in the pair, concatenate the embeddings, and use a
linear layer to classify whether the pair of windows
were from the same user (Figure 1A).

Autoencoder. For this pretraining task, we add a
CNN decoder to the end of our model and use a mean-
squared error objective to learn a reconstruction of
the input time series from our model’s lower dimen-
sional embedding (Figure 1B). For simplicity’s sake

our decoder is a reflection of the encoder, i.e. it has
the same architecture but with its one dimensional
convolutions replaced with one dimensional decon-
volutions and with a decreasing number of channels
such that the final output has the same dimensional-
ity as the original input.

Domain Inspired Features. As previously men-
tioned, the majority of prior work in behavioral mod-
eling has focused on classification tasks with hand-
crafted features. While neural minute-level models
may achieve superior performance than simple clas-
sifiers trained on these features, there is nonetheless
a large body of work supporting the utility of hand-
crafted features in sensing (Xu et al., 2021; Laport-
López et al., 2020; Zhang et al., 2021; Nair et al.,
2019; Lin et al., 2020; Hafiz et al., 2020; Buda et al.,
2021; Mairittha et al., 2021; Meegahapola et al.,
2021). For this pretraining task, we ask the model
to perform a multiple regression to predict the daily
features in Table A1 on the final day of the seven
day window (Figure 1C). Intuitively, there may be
other, less obvious yet highly informative orthogonal
features that our model could learn in order to recon-
struct these higher level features. This task also has
the added benefit of allowing us to inject expertise
into the model. Since these features are calculated
from the raw data (and in fact are mostly available
through the Fitbit API) and do not require any ex-
ogenous labels this task is fully self-supervised.
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Feature Description

Number of participants 5196
Average number of days of data 114
Mean % of missing data per day 9.8%
Mean age (±SD) 37.7 (10.2)
Portion Female 72%
Mean BMI (±SD) 30.3 (20.3)
Number of US States Represented 50

Table 1: Summary statistics for the Homekit Flu
Monitoring Study (Section 4)

4. Dataset

Our dataset consists of 591k user-days of Fitbit data
collected from 5196 participants in the Homekit Flu
Monitoring Study over the course of six months. Each
minute the devices recorded the participant’s total
steps, average heart rate, and binary flags indicating
if the participant was sleeping, awake, or in bed. Par-
ticipants also completed daily surveys which asked
if they were experiencing flu symptoms, including
coughing, chills, fever, and fatigue. When a partici-
pant indicated that they were experiencing a cough
and one other symptom, they were asked to self-
administer a nasal swab test kit, which was then
mailed to a lab for PCR analysis. Table 1 contains
summary statistics for this study.

5. Challenges in Evaluation

There are few, if any, established best practices for
evaluating behavioral models (Nestor et al., 2021;
McDermott et al., 2021). Given this lack of guidance,
current evaluation paradigms vary significantly across
studies. Here, we identify two common challenges
to evaluating behavioral models in health and pro-
pose accompanying solutions, which we use to com-
pare models in Section 6. In summary, evaluations
for behavioral models in healthcare should:

• Replicate genuine conditions, such as only using
data from the past to inform predictions, and be
tolerant to endemic missing data (Section 5.1).

• Faithfully quantify statistical significance, in
particular when condition positive examples are
rare, as is often the case in diagnostic testing
(Section 5.2).

5.1. Problem: Evaluations in artificial
settings may lead to misleading
performance estimates

Without a clear health application in mind from the
outset it can be difficult for researchers to define tasks
which faithfully replicate “real world” conditions. It
is not uncommon for models to:

• train on data from the future, e.g. by using data
from one user at the end of the data collection
period to inform predictions about another user
at the beginning (Wang et al., 2016),

• use data collected in laboratory settings with
limited ecological validity (Ismail et al., 2020),

• make predictions only if a user supplies sufficient
data by using a device frequently (Malik et al.,
2020; Wang et al., 2014).

These practices may overestimate performance in di-
agnostic settings where a model would only have ac-
cess to data from the past, rely on in-situ data, and
would be most useful if it could function even with en-
demic missing data (Nestor et al., 2021; Ismail et al.,
2020).

Solution: Situate tasks around plausible
healthcare scenarios. Here, we structure our pre-
diction tasks to emulate the following realistic sce-
nario:

Given training data from the first half of a flu
season, how well can a model predict symptoms
and infections in the second half of the flu sea-
son for every user on every day?

Such a scenario arises in surveillance testing, where a
population is frequently tested and positive individ-
uals are asked to undertake additional testing or self
isolate (Mercer and Salit, 2021). Additionally, our
tasks only use data from the seven days prior to a
predicted event so that no information from the fu-
ture informs a prediction about the past. We also
include no explicit information about a users identity
(e.g. participant id or demographics) to encourage
models to learn generalizable motifs about activity
data rather than facets of individual users’ behavior.
This evaluation setting follows existing best-practice
recommendations and avoids falsely overstating the
level of performance (Nestor et al., 2021).
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5.2. Problem: Predicting rare events limits
statistical power and makes model
selection inherently challenging

In mobile sensing for public health, relevant events
are often fairly rare as intuitively most people are not
sick most days. For example, one useful application of
surveillance testing for respiratory viral infections is
that if an individual tests positive they can self isolate
and limit the spread of the infection to others. The
CDC estimates that the average American has a 10%
chance of a symptomatic flu infection in a 365 day
period, implying that the probability of an American
receiving an initial positive flu diagnosis on a given
day is roughly 0.027% (cdc, 2021a). This corresponds
to a 1:3,703 class imbalance, similar to the 1:2,760 in
our evaluation dataset.

Modeling challenges aside, these extreme class im-
balances make comparing model performance diffi-
cult as they limit statistical power and lead to large
confidence intervals across many common test statis-
tics. For example, for the Delong Test, a common
test for comparing the ROC AUCs of two classfiers,
the variance of the difference in AUCs is proportional
to 1

(N−m)m , where N is the size of the dataset and

m is the number of true positive examples (DeLong
et al., 1988). Intuitively this variance is minimized,
and statistical power maximized, when m = N/2 (a
1:1 class balance), and variance is maximized when
m = 1.

Empirically, uncertainty can be quite high on real-
istic tasks, with peer studies of COVID-19 and flu
detection reporting confidence intervals as high as
±0.1 ROC AUC (Quer et al., 2020). Such statistical
uncertainty makes it difficult to compare models, as
extreme improvements in predictive performance on
individual tasks are required to make strong claims
about methodological progress.

As outlined in Section 5.1, many studies of interest-
ing phenomena such as COVID-19 massively subsam-
ple true negatives to artificially deflate this class im-
balance (Quer et al., 2020). This creates a much sim-
pler (but unrealistic) task, since higher false positive
rates do not massively impact overall performance
(Haibo He and Garcia, 2009).

Solution: Aggregate performance across mul-
tiple tasks to increase statistical power. Here,
rather than directly compare the performance of
models on individual tasks, we instead jointly com-
pare the relative performance of models across all
tasks to improve statistical power. Intuitively, if a

model performs best on all tasks, but not with high
statistical significance on any one test, the probabil-
ity that the model performance is indeed the same
as all others is low. Specifically, we employ a Critical
Difference plot (Brazdil and Soares, 2000), which first
uses Friedman’s statistic (Friedman, 1940) to test the
null hypothesis that there is no difference between
the relative performance of models, and then de-
ploys pairwise significance tests (e.g. Wilcoxon signed
rank) between classifiers. This method, used here for
the first time in mobile sensing for epidemiology, al-
lows us to make statistically sound claims about our
model’s improvement over other common techniques
without simplification of the underlying tasks (Sec-
tion 6).

6. Empirical Evaluation

Here, we define five realistic prediction tasks and
compare Our Model’s performance against three rep-
resentative baselines inspired by prior work (Sec-
tion 6.1). In Experiment 1 we evaluate the perfor-
mance between tasks through the framework defined
in Section 5 to show that Our Model outperforms
these baselines. Next, Experiment 2 compares pre-
training methods for behavioral data to show that
a method which integrates simple domain knowledge
performs best (Section 6.2). Experiment 3 in Sec-
tion 6.3 then shows that in simulated settings with
limited training data, pretraining provides an aver-
age 0.04 ROC AUC performance boost relative to a
non-pretrained model. Finally, we use a small, inde-
pendently collected Fitbit dataset to illustrate that
features learned by our model on flu prediction gen-
eralize to COVID-19 prediction in a zero-shot task in
Experiment 4.

6.1. Experiment 1:
Realistic Single Domain Prediction Tasks

We evaluate methods on five behavioral modeling
tasks. Below “severe” constitutes a three or more
on a four point Likert scale.

• Flu Positivity: Will the participant produce a
nasal swab that tests positive for the flu today?
This task emulates existing surveillance studies
for both flu and COVID-19 where users are fre-
quently tested for respiratory viral infection and
asked to self-isolate in the event of a positive re-
sult (Chu et al., 2020; Fusco et al., 2020).
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Flu Positivity Severe Fever Severe Cough Severe Fatigue Flu Symptoms
ROC PR ROC PR ROC PR ROC PR ROC PR

XGBoost (Day Level) 0.708 0.003 0.741 0.013 0.704 0.018 0.708 0.032 0.647 0.044
LSTM 0.674 0.001 0.733 0.006 0.649 0.008 0.710 0.017 0.606 0.026
ResNet 0.551 0.001 0.701 0.004 0.629 0.007 0.686 0.014 0.629 0.036
CNN 0.860 0.002 0.801 0.015 0.690 0.008 0.699 0.016 0.612 0.024
CNN-Transformer 0.884 0.007 0.790 0.039 0.697 0.023 0.713 0.038 0.640 0.042
CNN-Transformer Pretrained 0.887 0.010 0.818 0.056 0.708 0.023 0.758* 0.074* 0.671* 0.066*
Class Balance 1:2,760 1:643 1:132 1:78 1:37

Table 2: Results on all tasks for our model. *Indicates p < 0.05 (Delong). Note that while substantial
class imbalance precludes statistically significant results on some tasks (“Flu Positivity”, “Severe
Fever”, and “Severe Cough”), Our Model performs better than all baselines and ablations when
jointly evaluating performance across all tasks to increase statistical power (Figure 2).

• Severe Fever: Will the participant report a se-
vere fever today?

• Severe Cough: Will the participant report a
severe cough today?

• Severe Fatigue: Will the participant report se-
vere fatigue today?

• Flu Symptoms: Will the participant report
two or more flu symptoms (including cough,
fever, and fatigue) of any severity today? This
prediction is important because preliminary
screening for flu typically recommends a patient
for additional treatment or testing if they re-
port some combination of two or more symptoms
(cdc, 2021b), and this was the criterion used in
the flu monitoring study that produced the eval-
uation dataset as well.

For these tasks, we follow our aforementioned eval-
uation best practices (Section 5.1) by training with
data before the midpoint of the flu season (February
10th, in our case), and testing and evaluating models
on data after the midpoint (as only data for one flu
season is available). Furthermore, we make a predic-
tion for every user on every day regardless of data
quality, including predictions for users with no true
positive labels.

In each case, we compare our model to the following
baselines:

• XGBoost: How well does our model perform
relative to a non-neural baseline? Boosted de-
cision trees are frequently used in many sensing
studies because they are supported by common,
easy to use libraries and often achieve strong per-
formance out-of-the-box (Xu et al., 2021). Since
boosted trees expectedly do not scale well to the

thousands of observations in our raw time series
data, we compute a set of commonly used fea-
tures for each day in the window, and then con-
catenate these features for a final input. While
neural models have surpassed non-neural clas-
sifiers in most CV and NLP applications, XG-
Boost is still commonly used in many contem-
porary sensing studies (e.g., (Zhang et al., 2021;
Nair et al., 2019; Lin et al., 2020; Hafiz et al.,
2020; Buda et al., 2021; Mairittha et al., 2021;
Meegahapola et al., 2021)). A list of all features
is available in Table A1.

• LSTM: How well does a recurrent model per-
form on this task? LSTMs are strong baselines
in time series classification Ruiz et al. (2021) and
EEG processing Craik et al. (2019).

• ResNet: How well does a competitive neural
model for time series classification perform on
our task? While ResNet typically underperforms
the state of the art in most computer vision
tasks, it is still viewed as a competitive model for
multivariate time series classification (He et al.,
2015). For example, it is the highest-ranking
neural model on the UEA multivariate time se-
ries classification archive (Ruiz et al., 2021).

• CNN: How important are the transformer lay-
ers to our model’s performance? To answer
this question, we removed the transformer blocks
from our model and passed the CNN’s final out-
put directly to a linear layer. 1D CNNs are fre-
quently used in timeseries classification (Pyrkov
et al., 2018; Kiranyaz et al., 2021), and have
been applied to data from wearable devices be-
fore (Liu et al., 2022; Shen et al., 2019; Natarajan
et al., 2020).
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• CNN-Transformer: How important are pre-
training and missingness flags to our model’s per-
formance? For this ablated model, we pass the
CNN’s final output to a transformer, but do not
apply any pretraining method and do not include
missingness flags.

We do not include a “transformer only” baseline (i.e.,
our model without the CNN encoder) because multi-
head attention scales quadratically with the input
length, making it computationally infeasible to per-
form such an experiment on a multi-day timeseries
window (i.e., minute level data on a seven day win-
dow produces a 10,080 dimensional vector), which ex-
ceeds common context sizes in transformer models on
commodity GPUs (Beltagy et al., 2020).

Results. Our model outperforms all baselines on ev-
ery task (Table 2), which indicates that our method is
a meaningful improvement over state of the art classi-
fiers for behavioral data. Here we focus on precision-
recall AUC, since the metric is typically more in-
formative in cases of extreme class imbalance (Saito
and Rehmsmeier, 2015). Through Delong’s test we
find significant improvements in ROC AUC and PR
AUC on the “Severe Fatigue” and “Flu Symptoms”
tasks at α = 0.05. As outlined in Section 5, we em-
ploy Friedman’s test and pair-wise Wilcoxon signed-
rank tests to compare performance across tasks, and
find that Our Model significantly outranks XGBoost,
CNNs, and CNN-Transformers at the best-practice
parameter α = 0.1 (Brazdil and Soares, 2000), as it
ranks first across all tasks. A critical difference plot is
available in Figure 2, which shows that Our Model is
the best performing model overall, and that there is
no statistically significant difference in the rankings
of XGBoost, CNN, and the (non-pretrained) CNN-
Transformer. We also experiment with the model’s
performance at modest levels of missing data, and
find that it compares favorably to XGBoost (e.g. over
0.9 ROC AUC on the “Flu Positivity” task even with
20%-30% of data missing; Figure A.1). A complete
summary of results is available in Table 2.

6.2. Experiment 2: Comparison of
Self-Supervised Pretraining Methods

Next we compare the three pretraining techniques
proposed in Section 3.2 on the “Flu Symptoms”
task (Section 6.1). This “Flu Symptoms” task has
the least extreme class imbalance (1:37) and there-
fore yields highest statistical power to differentiate

123456

ResNet
CNN

LSTM XGBoost - Day Level
CNN-Transformer
CNN-Transformer Pretrained

Critical Difference w.r.t.
Precision-Recall AUC

Figure 2: Critical Difference Plot (Brazdil and
Soares, 2000) between models at α = 0.1.
Numbers indicate each model’s average
ranking on the single domain prediction
tasks (Section 6.1), while the thick dark
line connects models which are not signif-
icantly different from one another. This
demonstrates that Our Model, which uses
pretraining and models missing data, sig-
nificantly outperforms ResNet, CNNs, XG-
Boost, and CNN-Transformers across tasks
(average rank=1.0).

model performance. We use the following pretrain-
ing method:

1. Pretrain the model using all seven day windows
in the train dataset.

2. Freeze the model’s CNN and transformer layers.
If the pretraining technique used a classification
head, randomize its parameters. If instead a re-
gression head was used, replace it with a ran-
domly initialized classification head.

3. Finetune the model on the target task (“Flu
Symptoms”, in this case).

For all experiments, we use all of the model fea-
tures described in Section (3.1) (i.e., the convolu-
tional encoder, transformer blocks, and missingness
flags). For comparison, we include a “No Pretrain-
ing” baseline, which shows the performance of a ran-
domly initialized model.

Results. ROC and Precision Recall curves for this
experiment are available in Figure 3. “Domain In-
spired Features” pretraining, which trains the model
to predict a pre-computed set of handcrafted features
(Section 3.2), significantly outperforms other pre-
training techniques and a randomly initialized model
with a 16% improvement in PR AUC. Notably, the
model pretrained on the “Same User” task does sig-
nificantly worse than the others. One plausible expla-
nation is that by learning to embed windows from the
same user in the same region of the latent space, the
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Figure 3: Comparison of self-supervised pretraining
tasks (Section 3.2) on the “Flu Symptoms”
task. The “Domain Inspired Features”
task, which integrates domain knowledge,
performs best.

model sacrifices its ability to distinguish “unusual”
(e.g. flu positive) windows for a given user, since
these windows would ordinarily be much further away
in the latent space.

We additionally compared this pretraining-fine
tuning approach to a multitask learning where both
the pretraining and the target prediction objec-
tive are optimized concurrently. We repeated this
comparison for each of the pretraining tasks (Sec-
tion 3.2) in combination with the “Flu Symptoms”
task. This strategy produced no meaningful im-
provement over the randomly initialized model, in-
dicating that unsupervised pretraining is a supe-
rior paradigm for this setting. In addition, the
pretraining-finetuning paradigm enables us to sepa-
rate these two steps across two datasets, especially
when the target dataset is relatively small. This is
the focus of the next two experiments.

6.3. Experiment 3: Transfer learning
improves flu prediction performance on
small datasets in a repeated simulation
study

Labeled behavioral data is often prohibitively expen-
sive to collect, particularly in the context of pub-
lic health where ground-truth labels require costly
testing infrastructure and study management. Ac-
cordingly, many studies from prior work operate on
data with on the order of dozen participants (Xu

et al., 2021). In this regard, one promising appli-
cation of generalizable self-supervised pretraining is
that models could leverage large unlabeled datasets
to improve predictive power in settings with limited
labeled training data. Here, we repeatedly simulate
such settings to robustly investigate whether such
transfer learning leads to performance improvements.

First, we isolate all 4,989 study participants who
never tested positive for the flu. We treat this set as a
large, unlabeled dataset which we use to pretrain our
model on the self-supervised “Daily Features” task
(Section 3.2). We then take the remaining 206 users
who did test positive at some point during the study,
and randomly split this set into twenty folds of ten
or eleven users each. This ensures that source and
target domain share no participants in common. We
provide an overview of this split in Figure 4(a).

Next, for each fold we finetune the model on the
supervised “Flu Positivity” task using data from the
fold, and evaluate it on the users in the remaining
nineteen folds. We choose this task as it mirrors
the zero shot setting in the external dataset of Ex-
periment 4. In both of these settings, all test sub-
jects tested positive at some point and the predic-
tive model attempts to predict on which day they do
so. This process simulates finetuning the model with
fewer than a dozen users’ data. We compare this ap-
proach to two non-pretrained models that only have
access to the smaller target domain dataset: CNN-
Transformer, and XGBoost trained on manually de-
fined features (Table A1).

Results. We find that our pretrained model out-
performs non-pretrained models on the “Flu Positiv-
ity” task when trained on fewer than a dozen par-
ticipants (Figure 4(b)). Pretraining alone increases
average performance from 0.626 ROC AUC to 0.665,
and 0.017 PR AUC to 0.021 (both p < 0.05, Mann-
Whitney U). This indicates that Our Model can learn
generalizable features from unlabeled data.

6.4. Experiment 4: Zero-shot COVID-19
prediction in a small external dataset

It is plausible that a self-supervised pretrained
model, which in Experiment 1-3 showed good per-
formance on flu related tasks, could support non-
random predictive performance in a zero shot set-
ting for COVID-19? Both diseases are respiratory
viral infections and and may trigger similar behav-
ioral and physiological responses (e.g., a change in
resting heart rate around symptom onset (Shapiro
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Preserve 
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participants
1.

Finetune on small subset of  
positive participants

2.

Test finetuned model 
on distinct, larger 
subset of positive 
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3.

(a) The cross validation split for our simulation of
small datasets (Section 6.3)

0.58 0.60 0.62 0.64 0.66 0.68
ROC AUC

XGBoost

CNN-Transformer

Pretrained
CNN-Transformer

(Our Model)

0.012 0.014 0.016 0.018 0.020 0.022
PR AUC

XGBoost

CNN-Transformer

Pretrained
CNN-Transformer

(Our Model)

(b) Performance on the “Flu Positivity” task (Sec-
tion 6.1) using training data from ten partici-
pants. Neural models outperform XGBoost, and
pretraining yields additional improvement. Hor-
izontal lines represent 95% confidence intervals
(all p ≤ 0.05; Mann-Whitney U).

Figure 4: Simulating “small data” scenarios using
training data from only ten participants
(Section 6.3).

XGBoost Our Model

Zero-shot PR AUC 0.005 0.018
Zero-shot ROC AUC 0.51 0.68

Table 3: Performance on zero-shot COVID-19 Pre-
diction (Section 6.4). Our model’s superior
performance shows that CNN-Transformers
pretrained on the “Domain Inspired Fea-
tures” task (Section 3.2) learn generalizable
features.

et al., 2021)). We use a small, independently col-
lected dataset of Fitbit recordings and COVID-19
test results to show that Our Model can learn rep-
resentations which generalize to entirely unseen dis-
eases. This dataset contains 1470 total days of data
for 32 individuals who tested positive with COVID-
19 (Mishra et al., 2020). The original study uses a
retrospective prediction task with no train/test split,
and so it is not possible to make a direct comparison
between our model and theirs, but this dataset allows
us to test performance on an unseen disease.

We pretrain our model with the “Domain Inspired
Features” task (Section 3.2) and finetune it on the
“Predict Flu Positivity” task (Section 3.2). Note
that this is the same configuration as “Our Model”
in Table 2. Then, with no additional supervision
we use the model to predict COVID-19 positivity in
the small, external dataset. As a zero-shot baseline
we calculate a set of day-level features (Table A2)
from these data “and” our original flu dataset (Sec-
tion 4) and train XGBoost with these features on the
“Flu Prediction” task. Neither Our Model nor the
XGBoost baseline is exposed to any data from the
COVID-19 dataset during training.

Results. Our Model outperforms XGBoost on this
zero-shot task, achieving 0.68 ROC AUC, while XG-
Boost predicts at 0.51 ROC AUC (random chance)
(Table 3). This illustrates the feasibility of pretrained
CNN-Transformers for novel disease prediction.

7. Discussion & Conclusion

During the COVID-19 pandemic over-the-counter
antigen tests have been effective in surveillance test-
ing, but the frequency of tests, more so than their
sensitivity, remains a barrier to success in mitigating
spread (Larremore et al., 2020). This paper presents
a framework for evaluating mobile sensing methods
for frequently predicting respiratory viral infections.
While there are limitations to this study, our results
show performance on par with COVID-19 rapid diag-
nostic tests in similar surveillance settings. More re-
search is needed to demonstrate similar performance
levels in larger studies. Nonetheless, our findings sug-
gest that mobile sensing predictions can complement
rapid antigen testing or trigger additional testing.
Our results indicate that pretraining, transformer
self-attention, modeling missing data, and transfer
learning are effective techniques in learning general-
izable behavioral representations for mobile sensing.
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Appendix A. Reproducability Appendix

A.1. Hyperparameter Tuning

All models in this paper were trained with a randomized hyperparameter sweep using a withheld validation
set. For CNN modules, we experimented with kernel sizes as large as 63, stride sizes as large as 256,
depths as deep as eight layers, and as many as 32 output channels. The LSTM baseline uses three stacked
layers with a hidden size of 128. For transformer modules, we experimented with pre-computed and fixed
positional embeddings, up to twelve layers of stacked transformers, and up to nine-head attention. We also
tried dropout rates between 0.0 and 0.5. In total, over five hundred model configurations were tested before
setting on the final configuration of kernel sizes of 5,5,2, stride sizes of 5,3,2, output channels of 8,16,32, two
transformer layers each with four heads, and dropout of 0.4. We tried Adam learning rates from 1 to 1e− 6,
and found that 5e− 4 worked best. This relatively small learning rate seemed to be important for limiting
overfitting. We also conducted a hyperparameter sweep for XGBoost models, and found that η = 1 and a
maximum depth of six worked best. Further, we experimented with window sizes ranging from three to ten
days, and found that the model overfitted on both ends of this range, with best performance at seven days.

Feature Description

Resting HR Avg. heart rate (HR) while still
Main Minutes in Bed Longest span of minutes in bed
Sleep Efficiency Time sleeping over time in bed
Nap Count Number of naps
Total Asleep Minutes Total time spent sleeping
Total in Bed Minutes Total time spent in bed
Active Calories Calories burned from exercise
Calories Out Total calories burned
Base Metabolic Rate Calories passively burned
Sedentary Minutes Time spent not moving
Lightly active minutes Time spent lightly active
Fairly active minutes Time spent lightly exercising
Very active minutes Time spent actively exercising
Missing HR Indicator for missing HR data
Missing Sleep Indicator for missing sleep data
Missing Steps Indicator for missing steps
Missing Day Indicator for missing all data

Table A1: Summary of manually defined features, calculated for every user and on each day. “Missing”
features are binary variables which are 1 if more than one hour of data is missing, and 0 otherwise.

Feature Description

Resting HR 95th Pct 95th percentile of resting HR

Resting HR 50th Pct 50th percentile of resting HR
Resting HR std. Standard deviation of resting HR

Awake HR 95th Pct 95th percentile of HR while awake

Steps Streak 95th Pct 95th percentile of continuous steps

Steps Streak 50th Pct 50th percentile of continuous steps
Total Minutes in Bed Number of minutes spent in bed
Sleep Minutes Number of minutes spent asleep
Total Steps Total number of steps
Missing HR Indicator for missing HR data
Missing Sleep Indicator for missing sleep data
Missing Steps Indicator for missing steps
Missing Day Indicator for missing all data

Table A2: Summary of manually defined features used for XGBoost baseline in the zero shot experiment
(Section 6.4) calculated for every user and on each day. “Missing” features are binary variables
which are 1 if more than one hour of data is missing, and 0 otherwise.
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Figure A.1: Performance on the “Flu Positivity” task for binned levels of missing data. Missingness is
defined as the fraction of minutes with heart rate data over the duration of the accompanying
seven day window. 90% of labels have less that 30% missingness, making positive labels sparse,
and so we do not compare methods past this threshold.
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