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Abstract
Despite the immense success of deep learning in reinforcement learning and control, few the-

oretical guarantees for neural networks exist for these problems. Deriving performance guarantees
is challenging because control is an online problem with no distributional assumptions and an ag-
nostic learning objective, while the theory of deep learning so far focuses on supervised learning
with a fixed known training set.

In this work, we begin to resolve these challenges and derive the first regret guarantees in online
control over a neural network-based policy class. In particular, we show sublinear episodic regret
guarantees against a policy class parameterized by deep neural networks, a much richer class than
previously considered linear policy parameterizations. Our results center on a reduction from online
learning of neural networks to online convex optimization (OCO), and can use any OCO algorithm
as a blackbox. Since online learning guarantees are inherently agnostic, we need to quantify the
performance of the best policy in our policy class. To this end, we introduce the interpolation
dimension, an expressivity metric, which we use to accompany our regret bounds. The results
and findings in online deep learning are of independent interest and may have applications beyond
online control.

1. Introduction

The use of deep neural networks has been highly successful in reinforcement learning (RL) and
continuous control problems. However, a theory for deep control and RL remains challenging.
The main difficulty in applying the theory developed for supervised learning to the RL domain is
the distributional assumptions and realizability goal made in the literature thus far. In control and
RL, the environment is inherently online and often nonstochastic, and the goal is usually agnostic
learning with respect to a policy class.

In this work, we consider the problem of online episodic control with neural network-based
policies. We begin to resolve the aforementioned challenges and derive the first regret bound guar-
antees in this setting. Provable regret bounds in this domain have thus far been limited to linear
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controllers. However, most dynamical systems in the physical world are nonlinear and/or require
nonlinear controls. An important tool that allows us to go beyond linear controllers is the emerging
paradigm of online nonstochastic control: a methodology for control that is robust to adversarial
noise in the dynamics. The important aspect of this paradigm to our study is that it uses policy
classes that admit a convex parameterization.

It is natural to consider the online episodic control setting: although it is less challenging from
a technical perspective than single-trajectory control, the policy learning procedure in empirical
deep control is often done episodically as detailed in the related work section. The main technical
challenge to this goal is formalizing online learning over deep neural networks and proving accom-
panying regret bounds. Given this result, an extension to the single-trajectory setting is possible.

As the major technical component of this work, we propose a black-box reduction from on-
line deep learning to online convex optimization (OCO) that attains provable regret bounds. These
bounds apply to the general online learning setting with vector output predictors and arbitrary con-
vex loss functions. Moreover, the regret guarantees are naturally agnostic, i.e. they show perfor-
mance competitive to the best neural network in our policy class in hindsight without assuming
it achieves zero loss. To capture agnostic learning and derive meaningful guarantees for online
learning and control, we also introduce a new metric of expressivity, namely the “interpolation
dimension”, that accompanies our regret bounds.

An interesting conclusion from this reduction is the unifying view that provable convergence
and/or generalization bounds for training deep neural networks can be derived for any OCO method,
beyond online and stochastic gradient descent. This includes mirror descent, adaptive gradient
methods, follow-the-perturbed leader and other algorithms. Previously, convergence and general-
ization analyses for neural networks were done in isolation for different optimization algorithms as
detailed in the related work section.

Our contributions in this work can be summarized as follows:

• Online episodic deep control: We derive the first provable regret guarantees in online
episodic control with policies based on deep neural networks. Furthermore, we demonstrate
the richness of the considered policy class by showing that it can output the optimal open-loop
control sequence of any single episode.

• Online learning over neural networks: We give a general reduction from online learning of
neural networks to OCO that can use any OCO algorithm as a blackbox.

• Interpolation dimension: To state meaningful guarantees in online agnostic learning, we
introduce the interpolation dimension as an expressivity metric. It is a fundamental notion
and applies to any hypothesis class.

• Unifying analysis: Our proposed method applies to any OCO algorithm, including mirror
descent and adaptive gradient methods widely used in deep learning. This leads to a unifying
framework for optimization in deep learning: the online learning framework implies both
convergence and generalization bounds in the supervised learning setting.

1.1. Related work

Online and nonstochastic control. Our study focuses on algorithms which enjoy sublinear re-
gret for online control of dynamical systems; that is, whose performance tracks a given benchmark

2



DEEP CONTROL

of policies up to a term which is vanishing relative to the problem horizon. Abbasi-Yadkori and
Szepesvári (2011) initiated the study of online control under the regret benchmark for linear time-
invariant (LTI) dynamical systems. Bounds for this setting have since been improved and refined
in Dean et al. (2018); Mania et al. (2019); Cohen et al. (2019); Simchowitz and Foster (2020). Our
work instead adopts the online nonstochastic control setting (Agarwal et al., 2019), that allows for
adversarially chosen (e.g. non-Gaussian) noise and general convex costs that may vary with time.
This model has been studied for many extended settings, see Hazan and Singh (2021) for a compre-
hensive survey. Similar to our control framework, online episodic control is also studied in Kakade
et al. (2020), but the regret definition differs from ours, the results are only information-theoretic
and the system is linear in a kernel space. In terms of nonlinear systems, one common approach in
control is iterative linearization which takes the local linear approximation via the gradient of the
nonlinear dynamics. One can apply techniques from optimal control to solve the resulting changing
linear system. Iterative planning methods such as iLQR (Tassa et al., 2012), iLC (Moore, 2012)
and iLQG (Todorov and Li, 2005) fall into this category. Recent works (Roulet et al., 2022; West-
enbroek et al., 2021) provide theoretical results and insights to this approach but many theoretical
questions about the approach remain open.

The emerging theory of deep learning. For detailed background on the developing theory for
deep learning, see the book draft (Arora et al., 2021). Among the various studies on the theory
of deep learning, the neural tangent kernel (NTK or linearization) approach has emerged as the
most complete and pervasive: it is not currently believed to fully explain the practical success but
there is no alternative substantial theory yet. This technique shows that neural networks behave
similar to their local linearization and proves that gradient descent converges to a global minimizer
of the training loss (Soltanolkotabi et al., 2018; Du et al., 2018a,b; Jacot et al., 2018; Bai and
Lee, 2019; Lee et al., 2019). The NTK approach/regime has been expanded to provide various
generalization error bounds (Arora et al., 2019; Wei et al., 2019; Cao and Gu, 2019; Ji and Telgarsky,
2020), and adversarial training guarantees (Gao et al., 2019; Zhang et al., 2020). As opposed to our
generic approach, a number of different optimization algorithms have been considered in isolation
for analyzing deep learning theory in the NTK regime including (Wu et al., 2019; Cai et al., 2019;
Wu et al., 2021; Zhang et al., 2019).

The results in this work extend upon the described deep learning theory literature; in particular,
we use the same deep learning setup, and follow techniques and results from Gao et al. (2019);
Allen-Zhu et al. (2019). Furthermore, several works in the literature (Cao and Gu, 2019; Gao
et al., 2019; Zhang et al., 2020) have observed and used online components in their derivations
of generalization and adversarial training guarantees. We note that all these works, unlike our
contributions, operate in the supervised learning setting.

Online convex optimization and dimensionality notions in learning. The framework of learn-
ing in games has been extensively studied as a model for learning in adversarial and nonstochastic
environments (Cesa-Bianchi and Lugosi, 2006). Online learning was infused with algorithmic tech-
niques from mathematical optimization into the setting of online convex optimization, see (Hazan,
2019) for a comprehensive introduction. Learnability in the statistical and online learning settings
was characterized using various notions of dimensionality, starting from the VC-dimension, fat-
shattering dimension, Rademacher complexity, Littlestone dimension and more. For an extensive
treatment see (Mohri et al., 2018; Shalev-Shwartz and Ben-David, 2014; Vapnik, 1999). Regarding
interpolation, Bubeck and Sellke (2021) establish an inverse relationship between the interpolation
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ability and robustness of a function class. The notion of interpolation dimension that we introduce
here has found applications in the theory of boosting (Alon et al., 2021).

Deep control. Deep neural networks have advanced the state of the art for continuous control, not
only in simulated environments Tassa et al. (2018); Zhang et al. (2016); Duan et al. (2016), but also
in real-world tasks such as robotic manipulation OpenAI et al. (2018, 2019) and temperature control
in office buildings and data centers Wang et al. (2017); Lazic et al. (2018). In many of these applica-
tions, the policy learning procedure is episodic, where the environment resets at the beginning of an
episode. For example, OpenAI et al. (2018, 2019) train an LSTM policy for manipulating a rubik’s
cube with a robotic hand in the following manner: an environment is generated at the beginning
of the episode, which interacts with the current policy for a fixed number of time steps; then, after
collecting the episodic trajectory, the policy is updated according to a chosen optimization scheme.
This setting is closely related to online episodic control, which we formally describe in Section 2,
and motivates our theoretical analysis of neural network-based policies in this framework.

2. Problem Setting and Preliminaries

Notation. Let ‖ · ‖ denote the Euclidean norm and 〈·, ·〉 the corresponding inner product between
two vectors, matrices, or tensors of the same dimension: 〈x, y〉 = vec(x)>vec(y). Let Sp = {x ∈
Rp : ‖x‖ = 1} denote the unit p-dimensional sphere, and for a convex set K, let

∏
K denote

projection onto K.

2.1. Deep neural networks and the interpolation dimension

Deep neural networks. Let x ∈ Rp be the p-dimensional input. We define the depth H network
with ReLU activation and scalar output as follows:

x0 = Ax, xh = σrelu(θhxh−1), h ∈ [H], f(θ, x) = a>xH ,

where σrelu(·) is the ReLU function σrelu(z) = max(0, z), A ∈ Rm×p, θh ∈ Rm×m, and a ∈
Rm. Let θ = (θ1, . . . , θH)> ∈ RH×m×m denote the trainable parameters of the network and the
parameters A, a are fixed after initialization. The initialization scheme is as follows: each entry in
A and θh is drawn i.i.d. from the Gaussian distribution N (0, 2

m), and each entry in a is drawn i.i.d.
from N (0, 1). This setup is common in recent literature and follows that of Gao et al. (2019).

For vector-valued outputs, we consider a scalar output network for each coordinate. Suppose
for i ∈ [d], fi is a deep neural network with a scalar output; with a slight abuse of notation, for input
x ∈ Rp, denote

f(θ;x) = (f1(θ[1];x), . . . , fd(θ[d];x))> ∈ Rd, (2.1)

where θ[i] ∈ RH×m×m denotes the trainable parameters for the network fi for coordinate i. Let
θ = (θ[1], θ[2], . . . , θ[d]) ∈ Rd×H×m×m denote all the parameters for f .

In the online setting, the neural net receives an input xt ∈ Rp at each round t ∈ [T ], and with
parameter θ suffers loss `t(f(θ;xt)). Note that this framework generalizes the supervised learning
paradigm. We make the following standard assumptions:

Assumption 1 The input x has unit norm, i.e. x ∈ Sp, ‖x‖2 = 1.

Assumption 2 The loss functions `t(f(θ;x)) are L-Lipschitz and convex in f(θ;x).
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Interpolation dimension. Since we aim to prove regret bounds for online learning with families
of deep neural networks as the comparator class, we need to ensure these families have non-trivial
representation power. To this end, we introduce interpolation dimension, an expressivity metric that
can be naturally applied to our setting. In real-valued learning, we say that a hypothesis class has
interpolation dimension of at least k if one can assign arbitrary real labels to any k different inputs
using a hypothesis from that class.

Definition 1 The interpolation dimension of a hypothesis class H = {h : X ⊆ Rp → Rd} over
input domain X at non-degeneracy γ > 0, denoted IX ,γ(H), is the largest cardinality k such that
for any set of data points {(xj , yj)}kj=1 satisfying minj 6=l ‖xj − xl‖2 ≥ γ, yj ∈ [−1, 1]d, ∀j ∈ [k],

infh∈H

[∑k
j=1 ‖yj − h(xj)‖2

]
= 0 .

The label bound above is 1 for simplicity, but can be extended to any B > 0. Henceforth, we
show that over input domainX = Sp, neural networks that have poly(k, 1

γ ) width have IX ,γ(H) ≥ k.
This enables us to derive regret bounds for online agnostic learning over a class of neural networks
that has interpolation dimension at least k.

In the case of binary classification, interpolation dimension can be seen as the ”dual” of the
VC dimension. More details on the interpolation dimension in binary classification, connection
to VC dimension, and additional examples can be found in Appendix A.1 of the full manuscript:
https://xinyi.github.io/submission_1.pdf.

2.2. Online convex optimization

In Online Convex Optimization (OCO), a decision maker sequentially chooses a point in a convex
set θt ∈ K ⊆ Rd, and suffers loss `t(θt) according to a convex loss function `t : K 7→ R. The goal
of the learner is to minimize her regret, defined as

RegretT =
T∑
t=1

`t(θt)− min
θ∗∈K

T∑
t=1

`t(θ
∗) .

A host of techniques from classical optimization are applicable to this setting and give rise to ef-
ficient low-regret algorithms. To name a few methods, mirror descent, Newton’s method, Frank-
Wolfe and follow-the-perturbed leader all have online analogues, see e.g. Hazan (2019) for a com-
prehensive treatment.

As an extension to the OCO framework, we show that regret bounds hold analogously for the
online optimization of nearly convex functions. As we show in later sections, these regret bounds
naturally carry over to the setting of online learning over neural networks.

Definition 2 A function ` : Rn → R is ε-nearly convex over the convex, compact set K ⊆ Rn iff
∀x, y ∈ K, `(x) ≥ `(y) + ∇̀ (y)>(x− y)− ε .

The analysis of any algorithm for OCO, including the most fundamental method of online gra-
dient descent (OGD), extends to this case in a straightforward manner. Let A be any regret mini-
mization algorithm for OCO with a regret bound given by RegretT (A). This algorithm A can be
applied on the surrogate loss functions ht(θ) = `t(θt) + ∇̀ t(θt)

>(θ − θt) to obtain regret bounds
on the nearly convex losses `t as given below. The described method is presented in Algorithm 3
which along with more details can be found in Appendix A.2 of the aforementioned full manuscript.
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Lemma 3 Suppose `1, . . . , `T are ε-nearly convex, then Algorithm 3 has regret bounded by

T∑
t=1

`t(θt)− min
θ∗∈K

T∑
t=1

`t(θ
∗) ≤ RegretT (A) + εT .

2.3. Online episodic control

Consider the following online episodic learning problem for nonstochastic control over linear time-
varying (LTV) dynamics: there is a sequence of T control problems each with a horizon K and an
initial state x1 ∈ Rdx . In each episode, the state transition is given by

∀k ∈ [1,K], xk+1 = Akxk +Bkuk + wk, (2.2)

where xk ∈ Rdx , uk ∈ Rdu . The system matrices Ak ∈ Rdx×dx , Bk ∈ Rdx×du along with the next
state xk+1 are revealed to the learner after taking the action uk. The disturbances wk ∈ Rdx are
unknown and adversarial but can be a posteriori computed by the learnerwk = xk+1−Akxk−Bkuk.
An episode loss is defined cumulatively over the rounds k ∈ [1,K] according to the convex cost
functions ck : Rdx × Rdu → R of state and action: for a policy π, the loss is J(π;x1, c1:K) =∑K

k=1 ck(x
π
k , u

π
k). Like the system matrices, the cost function ck is also revealed after taking action

uk. The transition matrices (Ak, Bk)1:K , initial state x1, disturbances w1:K and costs c1:K can
change arbitrarily over different episodes. The goal of the learner is to minimize episodic regret by
adapting its output policies πt for t ∈ [1, T ],

RegretT (Π) =
T∑
t=1

Jt(πt;x
t
1, c

t
1:K)−min

π∈Π

T∑
t=1

Jt(π;xt1, c
t
1:K), (2.3)

where Π denotes the class of policies the learner competes against.
The model above is presented in its utmost generality: the system in an episode is LTV and

these LTVs are allowed to change arbitrarily throughout episodes. Results for this model can be
applied to derive guarantees for: (1) a simpler setting, learning to control a single LTV episodically;
(2) a more complex setting, first-order guarantees in control or planning over nonlinear dynamics
by taking the Jacobian linearization of the dynamics (Ahn et al., 2007; Westenbroek et al., 2021;
Roulet et al., 2022). We make the following basic assumptions about the dynamical system in each
episode that are common in the nonstochastic control literature (Agarwal et al., 2019).

Assumption 3 The disturbances satisfy ∀k ∈ [K], ‖wk‖2 ≤W .

Assumption 4 (Sequential stability) 1 There exist C1, C2 ≥ 1, 0 < ρ1 < 1 such that the system
matrices satisfy:

∀k ∈ [K], ∀n ∈ [1, k),

∥∥∥∥∥
k−n+1∏
i=k

Ai

∥∥∥∥∥
op

≤ C1 · ρn1 , ‖Bk‖op ≤ C2 .

Assumption 5 Each cost function ck : Rdx×Rdu → R is jointly convex and satisfies a generalized
Lipschitz condition ‖∇ck(x, u)‖ ≤ Lc max{1, ‖x‖+ ‖u‖} for some Lc > 0.

1. This condition is relaxed to sequential stabilizability in Appendix E
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The performance of the learner given by (2.3) directly depends on the policy class Π. In this
work, we focus on disturbance based policies, i.e. policies that take past perturbations as input
uk = f(w1:k−1), which are parameterized w.r.t. policy-independent inputs. This is in contrast to
the commonly used state feedback policy uk = f(xk). For example, the Disturbance Action Control
(DAC) policy class, shown to be more general than linear state feedback policies (Agarwal et al.,
2019), outputs controls linear in past finite disturbances, resulting in a convex parameterization of
the state/control and enabling the design of efficient provable online methods. Our work expands
the comparator class by considering policies that are nonlinear in the past disturbances, represented
by neural networks.

Definition 4 (Disturbance Neural Feedback Control) Let πθdnn denote the policy with control
outputs uk given by

∀k ∈ [K], uk = fθ(wk−1, wk−2, . . . , w1) ∈ Rdu ,

where fθ(·) = f(θ; ·) is a neural network defined in (2.1). The policy class is defined as Πdnn(f ; Θ) =
{πθdnn : θ ∈ Θ} with Θ being the set of permissible parameters.

3. Online learning of deep neural networks

We present our technical results in the following two sections; due to space constraints, all proofs
are included in the full manuscript https://xinyi.github.io/submission_1.pdf. We
first present the general framework of online learning with deep neural networks and state the ac-
companying regret guarantees. Our framework can use any OCO algorithm as a black-box as in
Algorithm 1, but for our main result, we use projected Online Gradient Descent (OGD). Projected
OGD has explicit regret bounds and variants of GD are widely used in practice.

Algorithm 1 Online Learning over Neural Networks
Input: OCO algorithm A, neural network f(·; ·), initial θ1, parameter set Θ = B(R; θ1).
for t = 1 . . . T do

Play θt, receive loss `t(θ) = `t(f(θ;xt)).
Construct ht(θ) = `t(θt) + ∇̀ t(θt)

>(θ − θt).
Update θt+1 = A(h1, . . . , ht) ∈ Θ.

end

The main technical result, provided in Theorem 5, gives a regret bound on the online agnostic
learning of deep neural networks. The benchmark hypothesis class is a class of deep neural networks
with interpolation dimension of at least k where k is decided a priori and used in the construction
of the network.

Theorem 5 Suppose Assumptions 1 and 2 hold, and let HNN(R; θ1) = {f(θ; ·) : θ ∈ Θ} denote
the class of neural networks f(θ; ·) as in (2.1) with parameter set Θ = B(R; θ1) = {θ : ‖θ[i] −
θ1[i]‖F ≤ R,∀ i ∈ [d]} and X = Sp. Suppose γ ∈ (0, O

(
1
H

)
], take R = O

(
k3 logm
γ
√
m

)
, then

for m ≥ O(p
3/2(k24H12 log8m+d)3/2

γ8
), with probability 1 − O(H + d)e−Ω(log2m) over the random

initialization,

• The function classHNN(R; θ1) has interpolation dimension IX ,γ(HNN(R; θ1)) ≥ k.
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• Algorithm 1 using OGD with ηt = 2R
√
d

LH
√
m
· t−1/2 for A attains regret bound

T∑
t=1

`t(f(θt;xt)) ≤ min
g∈HNN(R;θ1)

T∑
t=1

`t(g(xt)) + Õ

(
k3LH

√
dT

γ
+
k4LH5/2

√
dT

γ4/3m1/6

)
,

where Õ(·) hides terms polylogarithmic in m.

The above theorem indicates that the average regret can be minimized up to arbitrary precision:
for any ε > 0, if one chooses sufficiently large network width m = Ω(ε−6) and sufficiently large
number of iterations T = Ω(ε−2), the average regret is bounded by ε. The interpolation dimension
bound is established due to the seminal work Allen-Zhu et al. (2019), spelled out in the following
lemma and proven in Appendix A.1.

Lemma 6 Let HNN(R; θ1) = {f(θ; ·) : θ ∈ Θ} denote the class of neural networks as in (2.1)
where Θ = B(R; θ1) and X = Sp. Suppose γ ∈

(
0, O( 1

H )
]
, m ≥ Ω

(
k24H12 log5m

γ8

)
and

R = O
(
k3 logm
γ
√
m

)
, then with probability 1− d · e−Ω(log2m) over random initialization of θ1,

IX ,γ (HNN(R; θ1)) ≥ k . (3.1)

3.1. Proof Sketch

Due to space constraints, we give a proof sketch here; for a more detailed analysis outline, see
Appendix C, and for the full proof see Appendix D. There are 3 steps to the proof of Theorem 5.
First, we show that the considered loss functions `t : Θ → R, `t(θ) = `t(f(θ;xt)) are nearly
convex with respect to the parameter θ. This is due to the observation that in the overparameterized
regime, neural networks behave similarly to their local linearization.

Second, we can use the near convexity of the loss functions `t(θ) for all θ ∈ B(R; θ1), and
Lemma 3 to show a regret bound over the parameter set Θ = B(R; θ1). The bound is comprised
of the sublinear regret of the OCO algorithm used for parameter update, and the worst-case linear
penalty of near convexity εnc · T , where εnc is in terms of R and m.

Finally, we use Lemma 6 to ensure that our choice of R and m give the desired interpolation
dimension, and derive the final regret guarantee in terms of k, γ and m.

4. Online episodic control with neural network controllers

The online episodic control problem described in Section 2.3 with the policy class Π = Πdnn(f ; Θ)
can be reduced to online learning for neural networks. This reduction is done by following the
current policy each episode, constructing the episode loss, and updating the policy via an OCO al-
gorithm. Algorithm 2 below uses projected OGD but as in the previous section, any OCO algorithm
can be used instead.

Theorem 7 Suppose Assumptions 3, 4, 5 hold and let Πdnn(f ; Θ) denote the policy class given by
Definition 4 with Θ = B(R; θ1). TakeR = O

(
K3(2KW+H) logm√

m

)
, then form ≥ Ω(K46H20W 8(dxdu)3/2 log12m)

8
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Algorithm 2 Deep Neural Network Episodic Control with OGD
Input: stepsize ηt > 0, initial parameter θ1, parameter set Θ = B(R; θ1).
for t = 1 . . . T do

for k = 1 . . .K do
Observe xtk and construct ztk = vec([wtk−1, . . . , w

t
1,0, . . . ,0, k]) ∈ RK·dx+1.

Normalize ztk =
ztk
‖ztk‖

, and play utk = f(θt, z̄
t
k).

end
Construct loss function Lt(θ) =

∑K
k=1 c

t
k(x

t,θ
k , f(θ, z̄tk)).

Perform gradient update θt+1 =
∏

Θ[θt − ηt∇θLt(θt)].
end

with probability at least 1−O(H + du)e−Ω(log2m) over the randomness of initialization θ1, Algo-
rithm 2 with ηt = O( R

√
du

LH
√
m
t−1/2) satisfies

RegretT (Πdnn(f ; Θ)) ≤ Õ

(
K10LcH

4W 2dud
1/2
x ·
√
T +

K12LcH
6W 3dud

1/2
x

m1/6
· T

)
,

where Πdnn(f ; Θ) can output the optimal open-loop control sequence u?1:K ∈ [−1, 1]K×du of any
episode and Õ(·) hides terms polylogarithmic in m.

This theorem statement, analogous to Theorem 5, implies that arbitrarily small ε > 0 average
episodic regret is attained with a large network width m = Ω(ε−6) and large number of iterations
T = Ω(ε−2). The regret bound is against the benchmark policy class Πdnn(f ; Θ) which is chosen
such that the neural network class has interpolation dimension k = K. This implies open-loop
control optimality over a single episode in the following way. For simplicity, drop the episode index
t ∈ [T ] and define the optimal open-loop control sequence of an episode.

Definition 8 Define the optimal open-loop control sequence u?1:K ∈ [−1, 1]K×du to be

u?1:K = arg min
∀k,uk∈[−1,1]du

{
J(u1:K ;x1, c1:K) =

K∑
k=1

ck(xk, uk)

}
.

To demonstrate the capacity of the benchmark policy class Πdnn(f ; Θ) with Θ = B(R; θ1) we show
that it can output the optimal open-loop control sequence of any single episode as detailed below.

Lemma 9 Take R = O
(
K3 logm(2KW+H)√

m

)
, suppose m ≥ Ω

(
K24H12 log5m(2KW +H)8

)
,

then with probability 1−du ·e−Ω(log2m) over the random initialization of θ1, Πdnn(f ; Θ) can output
any open-loop control sequence u?1:K ∈ [−1, 1]K×du:

inf
πθdnn∈Πdnn(f ;Θ)

[
K∑
k=1

‖uθk − u?k‖2
]

= 0 .
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4.1. Proof Sketch

To extend the online learning results of Theorem 5 to the online episodic control setting, we ensure
the control setting satisfies the corresponding assumptions. For each k ∈ [K], denote the padded
input zk = vec([wk−1, . . . , w1,0, . . . ,0, k]) ∈ RK·dx+1 where the index is padded to ensure inputs
are separable (Definition 1). To satisfy Assumption 1, normalize the network inputs z̄k = zk

‖zk‖2 ∈
SK·dx+1.

For a policy πθdnn the episode loss L(θ) = J(πθdnn;x1, c1:K) depends on the parameter θ through
all the K controls uθk = f(θ; z̄k). Denote f̄(θ) = [uθ1, . . . , u

θ
K ]> ∈ RK×du and let L(θ) = L(f̄(θ))

by abuse of notation. We demonstrate that the reduction to the online learning setting is achieved
by showing that L(f̄(θ)) satisfies the convexity (Lemma 23) and Lipschitz (Lemma 26) conditions.
Hence, for each episode t ∈ [T ], the episode loss Lt(θ) = Jt(π

θ
dnn;xt1, c

t
1:K) satisfies Assumption

2 and the rest of the derivation is analogous to that of Theorem 5. Finally, Lemma 9 uses the
interpolation dimension property of the neural network class to conclude the open-loop optimality
stated in the theorem. See Appendix E for full details.

5. Conclusions and Future Work

In this work, we derive the first regret guarantees for neural network based controllers in online
control. Our results are in the online episodic control setting, which is motivated by empirical
research in control and deep reinforcement learning. We propose algorithms that obtain sublinear
episodic regret against the optimal open-loop control sequence of any episode, which relies on a
general reduction from online deep learning to regret minimization.

We also introduce a new metric for the expressive power of a hypothesis class and use it for char-
acterizing the expressivity of the benchmark neural network class. The definition of interpolation
dimension enables this characterization to be isolated to neural networks but is in no way specific
to them. Many intriguing questions about this expressivity notion remain, such as its broader con-
nection to statistical learning theory given its close relationship to the VC dimension.

We use the NTK paradigm to derive the control and online learning results in this work. How-
ever, there still are open questions to understand the empirical success of neural networks. As deep
learning theory advances in this direction, the question of extending these results to reinforcement
learning and control problems remains open too.
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