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Abstract
We consider the fundamental problem of online control of a linear dynamical system from two dif-
ferent viewpoints: regret minimization and competitive analysis. We prove that the optimal compet-
itive policy is well-approximated by a convex parameterized policy class, known as a disturbance-
action control (DAC) policies. Using this structural result, we show that several recently proposed
online control algorithms achieve the best of both worlds: sublinear regret vs. the best DAC policy
selected in hindsight, and optimal competitive ratio, up to an additive correction which grows sub-
linearly in the time horizon. We further conclude that sublinear regret vs. the optimal competitive
policy is attainable when the linear dynamical system is unknown, and even when a stabilizing
controller for the dynamics is not available a priori.
Keywords: Nonstochastic control, regret minimization, competitive ratio.

1. Introduction

The study of online optimization consists of two main research directions. The first is online learn-
ing, which studies regret minimization in games. A notable framework within this line of work is
online convex optimization, where an online decision maker iteratively chooses a point in a convex
set and receives loss according to an adversarially chosen loss function. The metric of performance
studied in this research thrust is regret, or the difference between overall loss and that of the best
decision in hindsight.

The second direction is that of competitive analysis in metrical task systems. In this framework,
the problem setting is similar, but the performance metric is very different. Instead of regret, the
objective is to minimize the competitive ratio, i.e. the ratio of the reward of the online decision
maker to that associated with the optimal sequence of decisions made in hindsight. For this ratio to
remain bounded, an additional penalty is imposed on movement costs, or changes in the decision.

While the goals of the two research directions are similar, the performance metrics are very
different and lead to different algorithms and methodologies. These two separate methodologies
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have recently been applied to the challenging setting of online control, yielding novel and exciting
methods to the field of control of dynamical systems.

In the paper we unify these two disparate lines of work by establishing a connection between
the two objectives. Namely, we show that the Gradient Perturbation Controller (GPC) minimizes
regret against the policy that has the optimal competitive ratio for any Linear Time Invariant (LTI)
dynamical system. The GPC algorithm hence gives the best of both worlds: sublinear regret, and
optimal competitive ratio, in a single efficient algorithm.

Our main technical contribution is proving that the optimal competitive policy derived in Goel
and Hassibi (2021) is well-approximated by a certain convex policy class, for which efficient online
learning was recently established in the work of Agarwal et al. (2019). This implies that known
regret minimization algorithms for online control can compete with this optimal competitive policy
with vanishing regret.

This structural result has other important implications to online control, yielding new results:
we show that sublinear regret can be attained vs. the optimal competitive policy even when the
underlying dynamical system is unknown, and even when a stabilizing controller is not available.

1.1. Related work

Control of dynamical systems. Our study focuses on two types of algorithms for online control.
The first class of algorithms enjoy sublinear regret for online control of dynamical systems; that is,
whose performance tracks a given benchmark of policies up to a term which is vanishing relative
to the problem horizon. Abbasi-Yadkori and Szepesvári (2011) initiated the study of online control
under the regret benchmark for linear time-invariant (LTI) dynamical systems. Bounds for this
setting have since been improved and refined in Dean et al. (2018); Mania et al. (2019); Cohen et al.
(2019); Simchowitz and Foster (2020). We are interested in adversarial noise and perturbations,
and regret in the context of online control was initiated in the study of nonstochastic control setting
(Agarwal et al., 2019), that allows for adversarially chosen (e.g. non-Gaussian) noise and general
convex costs that may vary with time. This model has been studied for many extended settings, see
Hazan and Singh (2022) for a comprehensive survey.

Competitive control. Goel and Wierman (2019) initiated the study of online control with com-
petitive ratio guarantees and showed that the Online Balanced Descent algorithm introduced in Chen
et al. (2018) has bounded competitive ratio in a narrow class of linear systems. This approach to
competitive control was extended in a series of papers (Goel et al., 2019; Shi et al., 2020). In re-
cent work, Goel and Hassibi (2021) obtained an algorithm with optimal competitive ratio in general
linear systems using H∞ techniques; in this paper we show that the competitive control algorithm
obtained in Goel and Hassibi (2021) is closely approximated by the class of DAC policies, and use
this connection to obtain our “best-of-both-worlds” result.

Online learning and Online Convex Optimization (OCO). The regret minimization tech-
niques that are the subject of this paper are based in the framework of online convex optimization,
see Hazan (2019). Recent techniques in online nonstochastic control are based on extensions of
OCO to the setting of loss functions with memory (Anava et al., 2015) and adaptive or dynamic
regret (Hazan and Seshadhri, 2009; Zhang et al., 2018).

Competitive analysis of online algorithms and simultaneous bounds on competitive ratio
and regret. Competitive analysis was introduced in Sleator and Tarjan (1985) and was first studied
in the context of Metrical Task Systems (MTS) in Borodin et al. (1992); we refer to Borodin and
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El-Yaniv (2005) for an overview of competitive analysis and online algorithms. A series of recent
papers consider the problem of obtaining online algorithms with bounded competitive ratio and
sublinear regret. In Andrew et al. (2013), it was shown no algorithm can simultaneously achieve
both objectives in OCO with switching costs. On the other hand, Daniely and Mansour (2019)
described an online algorithm for MTS with optimal competitive ratio and sublinear regret on every
time interval.

2. Preliminaries

We consider the task of online control in linear time-invariant (LTI) dynamical systems. In this
setting, the interaction between the learner and the environment proceeds as described next. At each
time step, the learner incrementally observes the current state xt ∈ Rm of the system, subsequently
chooses a control input ut ∈ Rn, and consequently is subject to an instantaneous cost c(xt, ut)
defined via the quadratic cost function (we assume the existence of β, µ such that βI ⪰ Q,R ⪰ µI)

c(x, u) = x⊤Qx+ u⊤Ru.

As a consequence of executing the control input ut, the dynamical system evolves to a subsequent
state xt+1, as dictated by the following linear system parameterized by the matrices A ∈ Rm×m

and B ∈ Rm×n, bounded as ∥A∥, ∥B∥ ≤ κ, and the perturbation sequence (wt)t∈[T ].

xt+1 = Axt +But + wt.

We assume without loss of generality that x1 = 0. The learner does not directly observe the
perturbations, or know of them in advance. We do not make any (e.g., distributional) assumptions
on the perturbations, other than that they satisfy a point-wise bound ∥wt∥ ≤ W for all times steps
t. By the means of such interaction across T time steps, we ascribe an aggregate cost to the learner
A as

JT (A|w1:T ) =
T∑
t=1

c(xt, ut).

2.1. Policy classes

Since the learner selects the control inputs adaptively upon observing the state, the behavior of a
learner may be described by a (strictly causal) policy π, a mapping from the observed state sequence
to the immediate action. We consider the following policy classes in the paper:

1. ΠALL is the exhaustive set of T -length sequence of control inputs.

2. ΠSC is the class of all strictly causal policies, mapping the heretofore observed state sequence
to the next action.

3. K ⊂ Rn×m is a class of linear state-feedback policies. Each member of this class is param-
eterized by some matrix K ∈ K, and recommends the immediate action ut

def
= Kxt. Both

the stochastic-optimal policy (H2-control) – Bayes-optimal for i.i.d. perturbations – and the
robust policy (H∞-control) – minimax-optimal for arbitrary perturbations – are linear state-
feedback policies.
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4. M is a class of disturbance-action controllers (DAC), defined below, that recommend actions
as a linear transformation of the past few perturbations, rather than the present state.

A linear policy K is called stable if the spectral radius of A + BK is strictly less than 1. Such
policies ensure that the state sequence remains bounded under their execution. The notion of strong
stability, introduced by Cohen et al. (2018), is a non-asymptotic characterization of the notion of
stability defined as follows.

Definition 1 A linear policy K ∈ Rn×m is said to be (κ, γ)-strongly stable with respect to an LTI
(A,B) if there exist matrices S,L satisfying A+BK = SLS−1 such that

max{1, ∥K∥, ∥S∥∥S−1∥} ≤ κ and max{1/2, ∥L∥} ≤ 1− γ.

A sufficient condition for the existence of a strongly stable policy is the strong controllability of
the linear system (A,B), a notion introduced in Cohen et al. (2018). In words, strong controllability
measures the minimum length and magnitude of control input needed to drive the system to any
unit-sized state.

Let K be a fixed (κ, γ)-strongly stable linear policy for the discussion that follows. We will
specify a particular choice for K in Section 3. We formally define a disturbance action controller
below. The purpose of superimposing a stable linear policy K on top of the linear-in-perturbation
terms is to ensure that the state sequence produced under the execution of a (possibly non-stationary)
disturbance-action controller remains bounded.

Definition 2 A disturbance-action controller (DAC), specified by a horizon H and parameters
M =

(
M [0], . . .M [H−1]

)
∈ Rn×m, chooses the action at the time t as

ut(M)
def
= Kxt +

H∑
i=1

M [i−1]wt−i,

where xt is state at time t, and w1, . . . wt−1 are past perturbations.

Definition 3 For any H ∈ N, γ < 1, and θ ≥ 1, an (H, θ, γ)-DAC policy class is the set of
all H-horizon DAC policies where M =

(
M [0], . . .M [H−1]

)
satisfy ∥M [i]∥ ≤ θ(1 − γ)i for all

i ∈ {0, . . . ,H − 1}.

2.2. Performance measures

This paper considers multiple criteria that may be used to assess the learner’s performance. We
introduce these below.

Let w1:T be the perturbation sequence the dynamics are subject to. Given the foreknowledge of
this sequence, we define the following notions of optimal cost; note that these notions are infeasible
in the sense that no online learner can match these on all instances.

1. OPT∗(w1:T )
def
= minu1:T∈ΠALL

JT (u1:T |w1:T ) is the cost associated with the best sequence of
control inputs given the perturbation sequence. No policy, causal or otherwise, can attain a
cost smaller than OPT∗(w1:T ) on the the perturbation sequence w1:T .

2. For any policy class Π, OPTΠ(w1:T )
def
= minπ∈Π JT (π|w1:T ) is the cost of the best policy in

Π, subject to the perturbation sequence. Note that OPT∗(w1:T ) = OPTΠALL
(w1:T ).
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With respect to these baselines, we define the following performance measures.
Competitive Ratio: The competitive ratio of an (online) learner A is the worst-case ratio of its

cost to the optimal offline cost OPT∗(w1:T ) over all possible perturbation sequences.

αT (A)
def
= max

w1:T

JT (A|w1:T )

OPT∗(w1:T )

The optimal competitive ratio is the competitive ratio of the best strictly causal controller.

α∗
T

def
= min

A∈ΠSC
αT (A)

The infinite-horizon optimal competitive ratio α∗ = limT→∞ α∗
T is defined as the limiting optimal

competitive ratio as the horizon extends to infinity, whenever it exists.
Regret: On any perturbation sequence w1:T , given a policy class Π, the regret of an online

learner A is assigned to be the excess aggregate cost incurred in comparison to that of the best
policy in Π,

RT,Π(A|w1:T ) = JT (A|w1:T )−OPTΠ(w1:T ).

The worst-case regret is defined as the maximum regret attainable over all perturbation sequences,

RT,Π(A) = max
w1:T

RT,Π(A|w1:T ).

The two types of performance guarantees introduced above are qualitatively different in terms of
the bound they espouse and the baseline they compare to. In particular:

Tighter bound for regret: A sub-linear regret guarantee implies that the average costs of
the learner and the baseline asymptotically match, while even an optimal competitive-ratio bound
promises an average cost at most a constant factor times that of the baseline.

Stronger baseline for competitive ratio: Competitive ratio measures performance relative to
the optimal dynamic policy while regret measure performance relative to the best static policy from
a (typically parametric) policy class.

2.3. Characterization of the optimal Competitive Ratio algorithm

The following explicit characterization of a strictly causal policy that achieves an optimal com-
petitive ratio in the infinite-horizon setting was recently obtained in Goel and Hassibi (2021); this
theorem shows that the competitive policy in the original system with state x ∈ Rm can be viewed
as a state-feedback controller in a synthetic system with state ξ ∈ R2m.

Theorem 4 (Optimal Competitive Policy) The strictly causal controller with an optimal infinite-
horizon competitive ratio α∗ is given by the policy ut = K̂ξt, where K̂ ∈ Rn×2m and the synthetic
state ξ ∈ R2m evolves according to the dynamics

ξt+1 = Âξt + B̂uut + B̂wŵt+1,

where Â =

[
A KΣ1/2

0 0

]
, B̂u =

[
B
0

]
, B̂w =

[
0
I

]
, ŵt = Σ−1/2Q1/2νt.
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The sequence νt is recursively defined as νt+1 = (A−KQ1/2)νt + wt starting with ν1 = 0. Here
the matrices K̂,K,Σ (and auxiliary constants P, B̃, H̃ and P̂ ) satisfy

K = APQ1/2Σ−1, Σ = I +Q1/2PQ1/2, P = BB⊤ +APA⊤ −KΣK⊤,

K̂ = −(In + B̂⊤
u P̃ B̂u)

−1B̂⊤
u P̃ Â, B̃ =

[
B̂u B̂w

]
, H̃ =

[
I 0
0 −α∗I

]
+ B̃⊤P̂ B̃,

P̃ = P̂ − P̂ B̂w(−α∗Ip + B̂⊤
w P̂ B̂w)

−1B̂⊤
w P̂ ,

and P̂ =

[
Q Q1/2Σ1/2,

Q1/2Σ1/2 Σ

]
+ Â⊤P̂ Â− Â⊤P̂ B̃H̃−1B̃⊤P̂ Â.

Furthermore, let {xt}Tt=1 be the state sequence produced under the execution of such a policy. Then,

the state sequence satisfies at all time t that ξt =
[
xt − νt
ŵt

]
.

Let K̂0 ∈ Rn×m be the sub-matrix induced by the first m columns of K̂. In general, the
infinite-horizon optimal competitive ratio may not be finite. However, the stability of the associated
filtering operation (i.e. |λmax(A−KQ1/2)| < 1) and the closed loop control system (i.e. |λmax(A+
BK̂0)| < 1) is sufficient to ensure the existence of this limit. We utilize the following bounds that
quantify this.

Assumption 1 K̂0 is (κ, γ)-strongly stable with respect to the linear system (A,B), and −K⊤ is
(κ, γ)-strongly stable with respect to the linear system (A⊤, Q1/2). Also, ∥K̂∥ ≤ κ.

We note that the above bounds are quantifications, and not strengthening, of the stability crite-
rion. In particular, any stable controller is strongly stable for some κ ≥ 1, γ < 1. Here, we use
the same parameters to state the strong stability for both controllers, K and K̂, for convenience.
Such a simplification is valid, since given (κ1, γ1)- and (κ2, γ2)-strongly stable controllers, the said
controllers are also (max{κ1, κ2},max{γ1, γ2})-strongly stable.

2.4. Low-regret algorithms

Deviating from the methodologies of optimal and robust control, Agarwal et al. (2019) propose
considering an online control formulation in which the noise is adversarial, and thus the optimal
controller is only defined in hindsight. This motivates different, online-learning based methods for
the control task. Agarwal et al. (2019) proposed an algorithm called GPC (Gradient Perturbation
Controller) and show the following theorem (which we restate in notation consistent with this pa-
per), which for LTI systems shows that regret when compared against any strongly-stable policy
scales at most as O(

√
T ).

Theorem 5 Given any κ, γ, let K(κ, γ) be the set of (κ, γ) strongly stable linear policies. There
exists an algorithm A such that the following holds,

JT (A|w1:T )− min
K∈K(κ,γ)

JT (K|w1:T ) ≤ O(
√
T log(T )).

Here O(·) contains polynomial factors depending on the system constants.
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As can be observed from the analysis presented by Agarwal et al. (2019), the above regret
guarantee holds not just against the set of strongly stable linear policies but also against the set of
(H, θ, γ)-DAC policies. The regret bound has been extended to different interaction models such as
unknown systems (Hazan et al., 2020b), partial observation (Simchowitz et al., 2020) and adaptive
regret (Gradu et al., 2020). Furthermore the regret bound in this setting has been improved to
logarithmic in T (Foster and Simchowitz, 2020b; Simchowitz, 2020).

3. Statement of results

3.1. Main Result

The central observation we make is that regret-minimizing algorithms subject to certain qualifi-
cations automatically achieve an optimal competitive ratio bound up to a vanishing average cost
term.

Typical regret-minimizing online control algorithms (Agarwal et al., 2019; Hazan et al., 2020a)
compete against the class of stable linear state-feedback policies. In general, neither the offline
optimal policy (with cost OPT∗) nor the optimal competitive-ratio policy can be approximated by
a linear policy (Goel and Hassibi, 2020). However, the algorithm proposed in Agarwal et al. (2019)
and follow-up works that build on it also compete with a more-expressive class, that of disturbance-
action policies (DACs). In Agarwal et al. (2019), this choice was made purely for computational
reasons to circumvent the non-convexity of the cost associated with linear policies; in this work,
however, we use the flexibility of DAC policies to approximate the optimal competitive policy.

More formally, we prove that we can find a DAC which generates a sequence of states and con-
trol actions which closely track the sequence of states and control actions generated by the optimal
competitive policy by taking the history H of the DAC to be sufficiently large. This structural char-
acterization of the competitive policy is sufficient to derive our best-of-both-worlds result, since a
regret-minimizing learner competitive against an appropriately defined DAC class would also be
competitive against the policy achieving an optimal competitive ratio, and hence achieve an optimal
competitive ratio up to a residual regret term.

Theorem 6 (Optimal Competitive Policy is Approximately DAC) Fix a horizon T and a distur-
bance bound W . For any ε > 0, set

H = log(1− γ/2)−1 log

(
1088W 2κ11max(1, β2)

γ4ε
T

)
, θ = 2κ2max(1, β1/2)

and define M be the set of (H, θ, γ)-DAC policies with stabilizing component K = K̂0. Let A be
the algorithm with the optimal competitive ratio α∗. Then there exists a policy π ∈ M such that for
any perturbations w1:T satisfying ∥wt∥ ≤ W , the cost incurred by π satisfies

JT (π|w1:T ) < JT (A|w1:T ) + ε.

We now show that this result implies best-of-both-worlds.1

1. Detailed proofs of all the results in this section appear in the full version of this paper, available at https://
arxiv.org/abs/2211.11219.
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3.2. Best-of-Both-Worlds in Known Systems

We begin by considering the case when the learner knows the linear system (A,B). In this setting,
both the regret and competitive ratio thus measure the additional cost imposed by not knowing the
perturbations in advance. The result below utilizes the regret bounds against DAC policies and
associated algorithms from Agarwal et al. (2019); Simchowitz (2020).

Theorem 7 (Best-of-both-worlds in online control (known system)) Assuming (A,B) is known
to the learner, there exists a constant

RT = Õ
(
poly(m,n, β, κ, γ−1)W 2 ×min

{√
T ,poly(µ−1) polylog T

})
and a computationally efficient online control algorithm A which simultaneously achieves the fol-
lowing performance guarantees:

1. (Optimal competitive ratio) The cost of A satisfies for any perturbation sequence w1:T that

JT (A|w1:T ) < α∗ ·OPT∗(w1:T ) +RT ,

where α∗ is the optimal competitive ratio.

2. (Low regret) The regret of A relative to the best linear state-feedback or DAC policy selected
in hindsight grows sub-linearly in the horizon T , i.e. for all w1:T , it holds

JT (A|w1:T ) < min
π∈K

JT (π|w1:T ) +RT and JT (A|w1:T ) < min
π∈M

JT (π|w1:T ) +RT .

3.3. Best-of-Both-Worlds in Unknown Systems

We now present the main results for online control of unknown linear dynamical system. The
first theorem deals with the case when the learner has coarse-grained information about the linear
system (A,B) in the form of access to a stabilizing controller K. In general, to compute such a
stable controller, it is sufficient to know (A,B) to some constant accuracy, as noted in Cohen et al.
(2019). This theorem utilizes low-regret algorithms from Hazan et al. (2020a); Simchowitz (2020).

Theorem 8 For a (k, κ)-strongly controllable linear dynamical system (A,B), there exists a con-
stant

RT = Õ
(
poly(m,n, β, k, κ, γ−1)W 2 ×min

{
T 2/3,poly(µ−1)

√
T
})

and a computationally efficient online control algorithm A such that, when given access to a (κ, γ)-
strongly stable initial controller K, it guarantees

JT (A|w1:T ) < min{α∗ ·OPT∗(w1:T ),min
π∈K

JT (π|w1:T ), min
π∈M

JT (π|w1:T )}+RT .

When an initial stabilizing controller is unavailable, we make use of the “blackbox control”
algorithm in Chen and Hazan (2021) to establish the next theorem.

Theorem 9 For a (k, κ)-strongly controllable linear dynamical system (A,B), there exists a con-
stant

RT = 2poly(m,n,β,k,κ,γ−1) + Õ
(
poly(m,n, β, k, κ, γ−1)W 2 ×min

{
T 2/3, poly(µ−1)

√
T
})

and a computationally efficient online control algorithm A that guarantees

JT (A|w1:T ) < min{α∗ ·OPT∗(w1:T ),min
π∈K

JT (π|w1:T ), min
π∈M

JT (π|w1:T )}+RT .
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4. Experiments

In Figure 1 we compare the performance of various controllers, namely, the H2 controller, the
H∞ controller, the infinite horizon competitive controller from Goel and Hassibi (2021), the GPC
controller from Agarwal et al. (2019) and the “clairvoyant offline” controller which selects the
optimal-in-hindsight sequence of controls. We do this comparison on a two dimensional double
integrator system with different noise sequences.2 We confirm as the results of our paper suggest
that the GPC controller attaining the best of both worlds guarantee is indeed the best performing
controller and in particular matches and sometimes improves over the performance of competitive
control.

(a) Sinusoidal Perturbations (b) Constant Perturbations

(c) Gaussian Perturbations (d) Gaussian Random Walk Perturbations

Figure 1: Relative performance of the linear-quadratic controllers in the double integrator system.

5. Conclusions, Open Problems and Limitations

We have proved that the optimal competitive policy in an LTI dynamical system is well-approximated
by the class of Disturbance Action Control (DAC) policies. This implies that the Gradient Pertur-

2. Further experiment details along with more simulations on different systems can be found in the full version of the
paper, available at https://arxiv.org/abs/2211.11219.
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bation Control (GPC) algorithm and related approaches are able to attain sublinear regret vs. this
policy, even when the dynamical system is unknown ahead of time. This is the first time that a
control method is shown to attain both sublinear regret vs. a large policy class, and simultaneously
a competitive ratio vs. the optimal dynamic policy in hindsight (up to a vanishing additive term).
It remains open to extend our results to time varying and nonlinear systems, the recent methods of
Minasyan et al. (2021); Gradu et al. (2020) are a potentially good starting point.
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