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Abstract
Gaussian process state space models are becoming common tools for the analysis and design of
nonlinear systems with uncertain dynamics. When designing control policies for these systems,
safety is an important property to consider. In this paper, we provide safety guarantees for Gaussian
process state space models in the form of probabilistic invariant sets, where the state trajectory is
guaranteed to lie within an invariant set for all time with a particular probability. We provide a
sufficient condition in the form of a linear matrix inequality to evaluate the probabilistic invariance
of the system, and we demonstrate our contributions with an illustrative example.
Keywords: Gaussian processes, probabilistic invariance, safety

1. Introduction

Gaussian process state space models (GPSSMs) are increasingly used to account for the inherent
nonlinearities and unknown dynamics of physical systems (Frigola et al., 2014, 2013; Turner et al.,
2010; Eleftheriadis et al., 2017; Svensson et al., 2016; Umlauft and Hirche, 2020). In contrast
to models like recurrent neural networks, GPSSMs are inherently regularized by a prior model,
mitigating the tendency to overfit, and are therefore more effective in situations where data is not
abundant. GPSSMs also possess useful probabilistic properties in quantifying uncertainty and mod-
eling errors as a distribution over functions, ensuring that the model is not overconfident in regions
of the state space where data is scarce (Schneider, 1996; Deisenroth et al., 2013).

When using GPSSMs for the design and control of dynamical systems, an important property
to consider is safety, ensuring that unsafe regions of the state space will be avoided under a partic-
ular control policy. Characterizing the effect of uncertainties on the safety of the system through
invariant sets is an important problem in system analysis (Blanchini, 1999). Robust positively in-
variant sets have been used to describe a region of the state space in which the state is guaranteed
to lie under an unknown but bounded disturbance (Brockman and Corless, 1995, 1998; Alessandri
et al., 2004). Similarly, probabilistic invariant sets have been introduced in Kofman et al. (2012,
2016) for linear systems to describe a set in which the state trajectory lies at all times with a certain
probability. The relationship between these two types of sets for linear systems has been examined
in Hewing et al. (2018).

While Kofman et al. (2012, 2016); Hewing et al. (2018) examine probabilistic invariance for
linear systems, the extension to nonlinear systems has not yet been addressed. Furthermore, while
Brockman and Corless (1995, 1998); Alessandri et al. (2004) examine robust invariance for both
linear and nonlinear systems, robust invariance does not apply to systems where probabilistic un-
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certainty exists. This is true even for works that consider robust invariance properties for systems
learned using Gaussian process (GP) regression models, such as Wang et al. (2018); Taylor et al.
(2020). These works provide robust invariance guarantees (via barrier functions), but do not treat
the uncertainty as probabilistic; instead, uncertainty is treated as a fixed function for which the
GP regression model provides a prediction with pointwise error bounds. In contrast, we consider
GPSSMs which enable us to examine probabilistic invariance for nonlinear systems, where the prob-
abilistic uncertainty is due to uncertainty in the functional model of the system as well as stochastic
noise. In particular, we ensure that for GPSSMs the state trajectory lies within a particular invariant
set with a certain probability for all time.

The remainder of this paper is organized as follows. Section 2 introduces the system model
and a few properties of GPSSMs. In Section 3, we derive probability level sets for GPs. Section 4
introduces probabilistic invariance and sets forth a sufficient condition for evaluating the probabilis-
tic invariance of the overall system. Section 5 illustrates the usefulness of this analysis for a smart
water distribution system, and Section 6 concludes the paper.

2. Gaussian Process State Space Models

We consider a discrete time system model with a continuous-valued state, where uncertainty in the
model is captured by n independent GPs, given by

xk+1 = Axk + g(xk) +Buk + wk, (1)

where xk ∈ Rn represents the system state at time step k, uk ∈ Rm is the control input vector, wk ∼
N (0, Q) with Q , Diag(σ2

1, · · · , σ2
n) is independent and identically distributed (i.i.d.) GP noise,

g(xk) ,
[
g1(xk) · · · gn(xk)

]T , and gi(xk) ∼ GP(0, ki(xk, x
′
k)) is a zero mean GP specified by

its covariance function ki(xk, x′k): Rn × Rn → R. A GP is a distribution over functions, assigning
a joint Gaussian distribution to any finite subset of the state space (Rasmussen and Williams, 2006).
The covariance function of a GP is also called the kernel function of the process, which determines
the class of functions over which the distribution is defined. We assume that a state feedback control
policy uk = Lxk is implemented so that the system in (1) can be written as

xk+1 = Ablxk + g(xk) + wk, Abl , A+BL. (2)

We also assume that N measurements of the state are taken, either through recorded trajectory
data or simply by sampling the state transition function at various points in the state and control
input space. This training data set, composed of N data pairs, is given by D̄ , {{x̄j , ūj}, x̄+

j }Nj=1,
where

x̄+
j = Ax̄j + g(x̄j) +Būj + w, w ∼ N (0, Q). (3)

The training data can be used to determine the values of the hyperparameters for the covariance
functions as well as Q by optimizing the marginal likelihood. Given input training data {x̄j , ūj}Nj=1

and output training data {x̄+
j }Nj=1, g(xk) conditioned on xk and D̄ follows a Gaussian distribution,

given by

g(xk)|{xk, D̄} ∼ N (µ(xk),Σ(xk)), µ(xk) ,

 k̄1(xk)
T (K1 + σ2

1IN )−1(y1 − ȳ1)
...

k̄n(xk)
T (Kn + σ2

nIN )−1(yn − ȳn)

 , (4)
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Σ(xk) ,

ξ1(xk) · · · 0
...

. . .
...

0 · · · ξn(xk)

 , ξi(xk) , ki(xk, xk)− k̄i(xk)T (Ki + σ2
i IN )−1k̄i(xk),

k̄i(xk),

ki(x̄1,xk)
...

ki(x̄N ,xk)

, Ki,

ki(x̄1,x̄1) ··· ki(x̄1,x̄N )
...

. . .
...

ki(x̄N ,x̄1) ··· ki(x̄N ,x̄N )

, yi,
x̄

+
1 (i)
...

x̄+
N (i)

, ȳi,
 Aix̄1+Biū1

...
Aix̄N+BiūN

,
where x̄+

j (i) denotes the ith dimension of x̄+
j while Ai and Bi denote the ith rows of A and B,

respectively. This implies that the system in (2) can be written equivalently as

xk+1 = Ablxk + Iw̄k(xk), (5)

where I ,
[
In In In

]
, w̄k(xk) ,

[
µ(xk)

T ḡ(xk)
T wTk

]T , and

ḡ(xk)|{xk, D̄} ∼ N (0,Σ(xk)). (6)

Remark 1 Note that for stationary covariance functions, ki(xk, xk) is a constant because it is not a
function of xk. For example, the value of ki(xk, xk) for each of the following stationary covariance
functions is respectively given by σ̄2

i , σ̄2
i , 1, σ̄2

i , σ̄2
i , and 1.

ki(xk, x
′
k) =



σ̄2
i constant

σ̄2
i e
− 1

2
(xk−x′k)T L̄−2

i (xk−x′k) squared exponential
(2νi(xk−x′k)T L̄−2

i (xk−x′k))νi/2Kνi ((2νi(xk−x
′
k)T L̄−2

i (xk−x′k))1/2)

2νi−1Γ(νi)
Mátern

σ̄2
i e
−((xk−x′k)T L̄−2

i (xk−x′k))1/2 exponential
σ̄2
i e
−((xk−x′k)T L̄−2

i (xk−x′k))γi/2 γ-exponential
(1 + 1

2ci
(xk − x′k)T L̄

−2
i (xk − x′k))−ci rational quadratic

The parameters in each of these stationary covariance functions are given by σ̄2
i ∈ R≥0, νi, ci ∈

R>0, γi ∈ (0, 2], L̄i = Diag(`i1, · · · , `in) with `ij ∈ R>0, Kνi is a modified Bessel function of the
second kind, and Γ is the gamma function.

Before setting forth a probabilistic invariant set for the system in (5), we note that the quantity
ḡ(xk)

TΣ(xk)
−1ḡ(xk)|xk follows a χ2 distribution, as shown in Lemma 1.

Lemma 1
ḡ(xk)

TΣ(xk)
−1ḡ(xk)|xk ∼ χ2(n), (7)

where χ2(n) represents the χ2 distribution with n degrees of freedom.

Proof Follows directly from (6) and the properties of the χ2 distribution.

3. Gaussian Process Probability Level Sets

To set forth a probabilistic invariant set for the system in (5), we first characterize sets in which
µ(xk) and ḡ(xk) each lie with at least probability p.
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3.1. Probability Level Set for µ(xk)

Lemma 2 provides a set in which µ(xk) lies with 100% probability.

Lemma 2 For the system in (5) with stationary covariance functions and ∀p ∈ [0, 1],

Pr(µ(xk) ∈ X1) ≥ p, X1 ,

{
s

∣∣∣∣∣sT s ≤
n∑
i=1

(k̂Ti (Ki + σ2
i IN )−1(yi − ȳi))2

}
, (8)

where k̂i ,
[
ki(xk, xk) · · · ki(xk, xk)

]T ∈ RN which is a constant for stationary covariance
functions.

Proof

µ(xk)
Tµ(xk) =

n∑
i=1

(k̄i(xk)
T (Ki + σ2

i IN )−1(yi − ȳi))2 ≤
n∑
i=1

(k̂Ti (Ki + σ2
i IN )−1(yi − ȳi))2,

where the inequality follows from the fact that ki(xk, xk) = maxxk∈Rn ki(x̄j , xk) ∀j for stationary
covariance functions.

3.2. Probability Level Sets for ḡ(xk)

Using the results in Lemma 1, Lemma 3 provides a probability level set for ḡ(xk), and Lemma 4
provides a similar result that more explicitly depicts the relationship between the size of the confi-
dence region, the probability level, and the degrees of freedom. However, the probability level set
presented in Lemma 4 is larger than that presented in Lemma 3 since Lemma 4 uses the multidi-
mensional Chebyshev inequality instead of directly computing the CDF of the χ2 distribution.

Lemma 3 For the system in (5) with stationary covariance functions and p ∈ [0, 1],

Pr(ḡ(xk) ∈ X2(p)) ≥ p, X2(p) ,
{
s
∣∣∣sT Σ̄−1s ≤ F−1

χ2 (p, n)
}
, (9)

where Σ̄ , Diag(k1(xk, xk), · · · , kn(xk, xk)), which is a constant for stationary covariance func-
tions, and F−1

χ2 (p, n) is the value of the inverse CDF for the χ2 distribution evaluated at probability
p with n degrees of freedom.

Proof According to Lemma 1,

Pr(ḡ(xk) ∈ X̄2(p)|xk) = p, X̄2(p) ,
{
s
∣∣∣sTΣ(xk)

−1s ≤ F−1
χ2 (p, n)

}
. (10)

Note that Σ̄ � Σ(xk) ∀xk ∈ Rn, implying that X2(p) ⊇ X̄2(p), in turn implying that

Pr(ḡ(xk) ∈ X2(p)|xk) ≥ Pr(ḡ(xk) ∈ X̄2(p)|xk). (11)

Combining (10) and (11) yields

Pr(ḡ(xk) ∈ X2(p)|xk) ≥ p. (12)
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Applying the law of total probability with (12) yields the desired result:

Pr(ḡ(xk) ∈ X2(p)) =

∫
xk∈Rn

Pr(ḡ(xk) ∈ X2(p)|xk)f(xk)dxk ≥ p
∫
xk∈Rn

f(xk)dxk = p,

where f(xk) represents the probability density function (PDF) of xk.

Lemma 4 For the system in (5) with stationary covariance functions and p ∈ [0, 1],

Pr(ḡ(xk) ∈ X2(p)) ≥ p, X2(p) ,

{
s

∣∣∣∣sT Σ̄−1s ≤ n

1− p

}
. (13)

Proof According to (6) and the multidimensional Chebyshev inequality,

Pr(ḡ(xk) ∈ X̄2(p)|xk) ≥ p, X̄2(p) ,

{
s

∣∣∣∣sTΣ(xk)
−1s ≤ n

1− p

}
. (14)

Since Σ̄ � Σ(xk) ∀xk ∈ Rn, this implies that X2(p) ⊇ X̄2(p), in turn implying that

Pr(ḡ(xk) ∈ X2(p)|xk) ≥ Pr(ḡ(xk) ∈ X̄2(p)|xk). (15)

Combining (14) and (15) yields

Pr(ḡ(xk) ∈ X2(p)|xk) ≥ p. (16)

Applying the law of total probability with (16) yields the desired result:

Pr(ḡ(xk) ∈ X2(p)) =

∫
xk∈Rn

Pr(ḡ(xk) ∈ X2(p)|xk)f(xk)dxk ≥ p
∫
xk∈Rn

f(xk)dxk = p.

4. Probabilistic Invariance Guarantees

Having quantified probability level sets for µ(xk) and ḡ(xk), we now set forth the ellipsoid in which
xk lies with at least probability p for the system in (5). To do so, we leverage the notions of quadratic
boundedness, robust positive invariance, and probabilistic positive invariance which are described
in Definitions 1, 2, and 3, respectively. These definitions, along with Lemmas 5 and 6, have been
modified and adapted from Alessandri et al. (2004); Hewing et al. (2018) in order to arrive at the
results presented in Theorems 1 and 2.

Definition 1 (Alessandri et al. (2004)) Let zk ∈ Rnz and dk ∈ Rnd represent state and distur-
bance vectors, respectively, and let D be a compact set. A system of the form

zk+1 = Azk + Bdk (17)

is quadratically bounded with symmetric positive definite Lyapunov matrix P if and only if

zTk Pzk ≥ 1 =⇒ zTk+1Pzk+1 ≤ zTk Pzk ∀dk ∈ D. (18)
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Definition 2 (Alessandri et al. (2004)) The set Z is a robustly positively invariant set for (17) if
and only if zk ∈ Z implies that zk+1 ∈ Z ∀dk ∈ D.

Definition 3 (Hewing et al. (2018)) Let dk ∼ Qdk indicate that dk is a random variable of distri-
bution Qdk. The set Z is a probabilistic positively invariant set of probability level p for (17) with
dk ∼ Qdk if and only if z0 ∈ Z implies that Pr(zk ∈ Z) ≥ p ∀k ≥ 0.

Given these definitions, Lemma 5 provides a condition that is equivalent to robust positive in-
variance, Lemma 6 shows the correspondence between robust positive invariance and probabilistic
positive invariance, and Lemma 7 combines these results to provide a sufficient condition for prob-
abilistic positive invariance.

Lemma 5 (Alessandri et al. (2004)) Let dk ∈ D ,
{
s
∣∣sTDs ≤ 1, D � 0

}
. Z ,

{
s
∣∣sTPs ≤ 1

}
is a robustly positively invariant set for (17) and the system in (17) is quadratically bounded with
symmetric positive definite Lyapunov matrix P if and only if ∃α ≥ 0 such that[

(α− 1)P +ATPA ATPB
BTPA BTPB − αD

]
� 0. (19)

Lemma 6 (Hewing et al. (2018)) IfZ is a robustly positively invariant set for (17) with dk ∈ D ,{
s
∣∣sTDs ≤ 1, D � 0

}
, then Z is also a probabilistic positively invariant set of probability level p

for (17) with dk ∼ Qdk, E[dk] = 0, Cov[dk] = D−1, and Pr(dk ∈ D) ≥ p.

Lemma 7 Let dk ∼ Qdk, E[dk] = 0, and Cov[dk] = D−1. If Pr(dk ∈ D) ≥ p and ∃α ≥ 0, P � 0
such that (19) is satisfied, then Z ,

{
s
∣∣sTPs ≤ 1

}
is a probabilistic positively invariant set of

probability level p for (17).

Proof Follows directly from Lemmas 5 and 6.

Given this sufficient condition for evaluating probabilistic invariance, Theorems 1 and 2 set
forth an ellipsoid in which xk lies with at least probability p for the system in (5), and Corollary
1 describes the volume of this ellipsoid with respect to p. Note that because X2(p) ⊆ X2(p) (as
discussed immediately preceding Lemma 3), the ellipsoid defined in Theorem 1 is smaller than that
presented in Theorem 2. However, the linear matrix inequality (LMI) presented in Theorem 2 is
not a function of the probability p and therefore only needs to be evaluated once, unlike the LMI
presented in Theorem 1 which is a function of p and must be evaluated each time for different values
of p.

Theorem 1 If ∃α ≥ 0, P � 0 such that[
(α− 1)P +ATblPAbl ATblPI

ITPAbl ITPI − αR̄(p)

]
� 0, (20)

where R̄(p) , 1
3BlkDiag

(
1∑n

i=1(k̂Ti (Ki+σ2
i IN )−1(yi−ȳi))2

In,
1

F−1

χ2
(p,n)

Σ̄−1, 1−p
n Q−1

)
, then

Ē ,
{
s
∣∣sTPs ≤ 1

}
(21)

is a probabilistic positively invariant set of probability level p for (5) when stationary covariance
functions are used for the GPs.
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Proof According to the multidimensional Chebyshev inequality,

Pr(wk ∈W (p)) ≥ p, W (p) ,

{
s

∣∣∣∣sTQ−1s ≤ n

1− p

}
. (22)

According to Lemmas 2 and 3, when stationary covariance functions are used for the GPs,
Pr(µ(xk) ∈ X1) ≥ p and Pr(ḡ(xk) ∈ X2(p)) ≥ p, which together with (22) yield

Pr(w̄k(xk) ∈ W̄ (p)) ≥ p, W̄ (p) ,
{
s
∣∣sT R̄(p)s ≤ 1

}
.

It can be shown that applying Lemma 7 to (5) yields the desired result when noting that X1 is
centered at 0 with shape matrix In (Hewing et al., 2018).

Theorem 2 If ∃α ≥ 0, P � 0 such that[
(α− 1)P +ATblPAbl ATblPI

ITPAbl ITPI − αR

]
� 0, (23)

where R , 1
3BlkDiag

(
1∑n

i=1(k̂Ti (Ki+σ2
i IN )−1(yi−ȳi))2

In,
1
n Σ̄−1, 1

nQ
−1

)
, then

E(p) ,

{
s

∣∣∣∣sTPs ≤ 1

1− p

}
(24)

is a probabilistic positively invariant set of probability level p for (5) when stationary covariance
functions are used for the GPs.

Proof According to Lemmas 2 and 4, when stationary covariance functions are used for the GPs,
Pr(µ(xk) ∈ X1) ≥ p and Pr(ḡ(xk) ∈ X2(p)) ≥ p, which together with (22) yield

Pr(w̄k(xk) ∈ Ŵ (p)) ≥ p, Ŵ (p) ,
{
s
∣∣∣sT R̂(p)s ≤ 1

}
, (25)

where R̂(p) , 1
3BlkDiag

(
1∑n

i=1(k̂Ti (Ki+σ2
i IN )−1(yi−ȳi))2

In,
1−p
n Σ̄−1, 1−p

n Q−1

)
. Note that

Pr(w̄k(xk) ∈ ˆ̄W (p)) ≥ Pr(w̄k(xk) ∈ Ŵ (p)), ˆ̄W (p) ,
{
s
∣∣∣sT ˆ̄R(p)s ≤ 1

}
, (26)

where ˆ̄R(p) , 1
3BlkDiag

(
1−p∑n

i=1(k̂Ti (Ki+σ2
i IN )−1(yi−ȳi))2

In,
1−p
n Σ̄−1, 1−p

n Q−1

)
. This is due to the

fact that ˆ̄W (p) ⊇ Ŵ (p) since ˆ̄R(p) � R̂(p). Combining (25) and (26) yields

Pr(w̄k(xk) ∈ ˆ̄W (p)) ≥ p.

It can be shown that applying Lemma 7 to (5) (when noting that X1 is centered at 0 with shape
matrix In (Hewing et al., 2018)) yields that if ∃α ≥ 0, P̄ � 0 such that[

(α− 1)P̄ +ATblP̄Abl ATblP̄I
IT P̄Abl IT P̄I − α ˆ̄R(p)

]
� 0,

then E(p) =
{
s
∣∣sT P̄ s ≤ 1

}
is a probabilistic positively invariant set of probability level p for (5).

Letting P̄ , (1− p)P yields the desired result since ˆ̄R(p) = (1− p)R.
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Corollary 1 The volume of E(p) is proportional to− log det((1−p)P ) = − log((1−p)n det(P ))
= −n log(1− p)− log det(P ), which grows unbounded as p approaches 1.

To minimize the volume of the ellipsoid Ē or E(p), the parameter P can be designed according
to the following optimization problem:

arg max
α,P

log detP s.t. α ≥ 0, P � 0, (20) or (23) is satisfied. (27)

Since minimizing Ē or E(p) jointly over α and P in (27) is not convex, a suboptimal solution
may be obtained by restricting the possible values of α to a finite set in [0, 1] and maximizing
maxP�0 log detP subject to (20) or (23) over that finite set.

5. Example

We consider a smart water distribution system used at a four-hectare wine estate in the south of
England (Fu and McCann, 2020). The goal of the water distribution system is to stabilize the water
levels of three district meter area tanks at predesigned constant reference levels. The system state
is given by the difference between the reference levels and the current water levels of the three
tanks, the control inputs are the open levels of the valves, and the sensors measure the current water
levels of the tanks. The system model is linearized at a reference level of 3 m as presented in Fu
and McCann (2020), and the nonlinearities and uncertainties of the system are accounted for with
a GPSSM as modeled in (1). We discretize the system with a sampling rate of 1 s and use a state
feedback controller L with three eigenvalues placed at 0.001. A squared exponential covariance
function is used for each GP, and we train the hyperparameters of the covariance functions as well
asQ by optimizing the marginal likelihood with training data recorded from a trajectory of the water
distribution system. We solve for P by finding a suboptimal solution to the optimization problem
in (27) according to the procedure described immediately following (27).

Figure 1 shows the state trajectory for tanks 2 and 3 for one GP sample over 1000 s from the
initial state x0 =

[
−2 −2 −2

]T . As can be seen in the figure, the state quickly converges
towards the origin before remaining within the 70% probability level set for the rest of the time,
demonstrating that the empirical probability of remaining within each probability level set is greater
than the lower bound set forth in Theorem 1. This was confirmed by running 1000 GP samples
for 1000 s each from the initial state x0 =

[
−2 −2 −2

]T , where we found that across all GP
samples the probability of the state remaining within the 50% probability level set was 99.9827%.

Figures 2 and 3 depict the sizes of the 50% probability level sets as a function of the variance
parameter σ̄2

i and the length parameter L̄i in the squared exponential covariance function. Here
we see that the size of the probability level set increases with increasing σ̄2

i and decreasing L̄i,
demonstrating that there is less confidence in where the state lies as more uncertainty is introduced
into each GP.

Figure 4 depicts the volume of E(p), the ellipsoid in which xk lies with at least probability p ∀k.
As stated in Corollary 1, Figure 4 shows that the volume of E(p) grows unbounded as p approaches
1, indicating that larger ellipsoids are associated with greater confidence regions.
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Figure 1: Example trajectory for tanks 2 and 3. Figure 2: Probability level sets for σ̄2
i .

Figure 3: Probability level sets for L̄i. Figure 4: Volume of E(p) as a function of p.

6. Conclusion

This paper has presented safety guarantees in the form of probabilistic invariance for GPSSMs.
A sufficient condition in the form of an LMI is provided to evaluate the probability of the state
trajectory remaining within an invariant set for all time. Our results are illustrated with the example
of a smart water distribution system. Future work includes investigating probabilistic invariance
for GPSSMs with nonlinear means and/or nonstationary covariance functions. Another problem
of interest includes examining probabilistic invariant sets that do not take ellipsoidal shapes and
therefore may be less conservative. A further area of interest includes investigating how much the
probabilistic invariant set contracts as more training data becomes available online.
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