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Abstract
Event-triggered communication and control provide high control performance in networked control
systems without overloading the communication network. However, most approaches require precise
mathematical models of the system dynamics, which may not always be available. Model-free learn-
ing of communication and control policies provides an alternative. Nevertheless, existing methods
typically consider single-agent settings. This paper proposes a model-free reinforcement learning
algorithm that jointly learns resource-aware communication and control policies for distributed
multi-agent systems from data. We evaluate the algorithm in a high-dimensional and nonlinear
simulation example and discuss promising avenues for further research.
Keywords: Event-Triggered Communication, Hierarchical Reinforcement Learning, Networked
Control Systems, Multi-Agent Learning

1. Introduction

In networked multi-agent systems, frequent communication of all agents can overload the network,
resulting in longer delays and increased risk of message loss (Hespanha et al., 2007). In response,
event-triggered methods have been developed (Heemels et al., 2012; Grüne et al., 2014; Miskowicz,
2016). In event-triggered control (ETC), agents only communicate in case they have something
relevant to say. Designs for when agents should communicate and how information from other
agents should be incorporated into the individual agent’s control law are typically based on accurate
dynamics models. However, such models may not be readily available for high-dimensional and
nonlinear, e.g., robotic, systems. Moreover, even if they were, jointly optimizing both communication
and control strategies may be intractable for complex systems. Nevertheless, as the separation
principle does not necessarily hold for ETC (Ramesh et al., 2011), such a joint optimization is
required to obtain an optimal overall strategy. Both challenges can be addressed by learning joint
communication and control strategies from data through reinforcement learning (RL).

Over the last years, the first algorithms have been developed that learn communication and
control strategies from data, see, for instance, Vamvoudakis and Ferraz (2018); Yang et al. (2017);
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Zhong et al. (2014). However, most approaches simplify the problem by, e.g., imposing a specific
structure for the communication strategy, thereby limiting the possibility of the RL algorithm to learn
a jointly optimal policy. A key challenge in learning resource-aware communication and control
strategies as compared to learning controllers under periodic communication is the hybrid action
space. At each time step, an agent has to make a discrete communication decision, whether or not
to communicate, and what control input to apply, which is typically a continuous value. Standard
RL approaches struggle with this hybrid action space. A possible remedy is hierarchical RL (Sutton
et al., 1999). The ability of hierarchical RL algorithms to learn high-performing communication and
control policies for high-dimensional and nonlinear systems has been demonstrated by Funk et al.
(2021). Nevertheless, the authors consider a single-agent system: one agent that is connected to a
remote controller over a network. While this is undoubtedly a relevant problem setting, the issue of
resource savings becomes even more paramount when considering distributed multi-agent systems.

Multi-agent RL (MARL), even without communication constraints, is a challenging research field
of its own, Zhang et al. (2021) provide a general overview. Including resource-aware communication
as a design goal adds another complexity layer. Thus, only few approaches exist that consider
learning resource-aware communication and control strategies for multi-agent systems. The few
existing approaches either separate the problem, i.e., learn individual communication and control
policy (Demirel et al., 2018; Lima et al., 2022) or have only been evaluated in low-dimensional
systems (Shibata et al., 2021, 2022).
Contributions. We tackle the problem of jointly learning communication and control strategies for
high-dimensional networked multi-agent systems. In particular, we leverage techniques from hierar-
chical RL and MARL to learn resource-aware communication and control strategies and demonstrate
the effectiveness of the resulting algorithm in a high-dimensional and nonlinear simulation example.

2. Related Work

In the following, we relate our contributions to the literature.
Multi-agent reinforcement learning. Learning control policies from data is a rapidly evolving
research area. Various algorithms exist that can learn high-performing control policies without
any prior knowledge about the system model (Lillicrap et al., 2015; Duan et al., 2016). However,
the majority of works consider single-agent systems. Also in MARL, recent works have shown
promising results (Zhang et al., 2021; Yu et al., 2020; Tang et al., 2018; Shu and Tian, 2018; Gupta
et al., 2017; Lowe et al., 2017). Nevertheless, all mentioned works, both for single-agent and
for multi-agent systems, assume that information can be exchanged at high periodic rates. Such
frequent communication may be unsustainable in networked systems where information needs to
be transmitted over communication networks. Thus, herein, we propose an algorithm that learns
resource-aware communication and control policies for multi-agent systems.
Learning ETC for single agent-systems. For an introduction into and an overview of ETC, we
refer the reader to Heemels et al. (2012); Miskowicz (2016). In all works discussed therein, the
policy design is based on a system model that is assumed to be known. When this assumption is
violated, learning approaches provide an alternative. Learning ETC from data has received increasing
attention in recent years (Sedghi et al., 2022). Many existing approaches constrain the problem, for
instance, by predefining the structure of the event-trigger (Vamvoudakis and Ferraz, 2018; Zhong
et al., 2014; Yang et al., 2017; Sahoo et al., 2016). Restricting the space of communication policies
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may lead to suboptimal policies, mainly because the separation principle does not generally hold
in ETC (Ramesh et al., 2011). That is, for obtaining optimal communication and control policies,
both need to be optimized jointly. Such a joint optimization is, e.g., done by Baumann et al. (2018);
Hashimoto et al. (2021); Funk et al. (2021). However, those works, as the ones we discussed before,
consider single-agent systems. Herein, we seek to go a step further and target multi-agent systems.
Learning ETC for multi-agent systems. Alternative approaches that aim at learning resource-aware
control for multi-agent systems are sparse. Demirel et al. (2018) propose learning a scheduling
strategy for a multi-agent control system. They use a step-by-step approach in which they begin with
designing optimal control policies for each agent, followed by a central agent learning to adapt to
the subsystems and controllers. A similar approach was chosen by Hu et al. (2021), where agents,
connected via a network, learn a control policy and then a separate gating policy for the network.
Both approaches thus separate the optimization problem which might yield suboptimal policies since
the separation principle does not hold. Lima et al. (2022) learn a resource-allocation and control
strategy for a multi-agent system assuming both a centralized allocation mechanism and controller,
hence, not a distributed setting. To the best of our knowledge, only one alternative approach exists
that jointly optimizes communication and control strategies for distributed multi-agent systems
(Shibata et al., 2021, 2022). Nevertheless, their approach is, in essence, based on the approach
by Baumann et al. (2018). Already Baumann et al. (2018) stated that the approach has troubles
scaling to high-dimensional systems. Consequently, also Shibata et al. (2021, 2022) show results
only in relatively low-dimensional environments. In this work, we instead leverage the more scalable
approach introduced by Funk et al. (2021) based on hierarchical RL to design an algorithm that can
learn resource-aware communication and control policies for multi-agent systems and seamlessly
scales to high-dimensional environments.

3. Problem Setting

We consider a setting with N agents, where the dynamics of each agent i are given by

xi[k + 1] = f(x[k], ui[k], vi[k]), (1)

with k ∈ N the discrete time step, xi[k] ∈ Rn the state of agent i, x[k] ∈ RN ·n the concatenated
states of all agents, ui[k] ∈ Rm the action of agent i, and vi[k] ∈ Rn process noise. The agents are
supposed to achieve a common control goal, i.e., apart from potential couplings through the dynamics
function f , agents are also coupled through a joint objective. Thus, while each agent can measure its
individual state and select a local control input, they also require information from the other agents
for optimal decision-making. This information is exchanged via a communication network. The
whole setup is shown in Fig. 1 (left).

At each time step, agent i needs to decide whether or not to communicate with other agents and
which control input to apply, forming a hybrid action space. Hence, we have two policies: policy µi,
which decides about sharing information via the network, and policy πi, which decides which action
ui to take, i.e., which control input to choose.
Networked communication. Whenever agents decide to share data in the network, this information
is shared among all agents. Thus, the last broadcasted state x̃i[k] of each agent i is

x̃i[k] =

{
xi[k], if oi = 1

x̃i[k − 1], if oi = 0,
(2)
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Figure 1: Basic components of the setting and image of the simulation environment. Left: Agents
connected via a network, here for two agents, interacting in an environment. Right: The
Multiwalker environment from PettingZoo (Terry et al., 2021) used in our evaluation.

where oi∈{0, 1} is agent i’s communication decision. Implementations of many-to-all communica-
tion in wireless control have been demonstrated by Baumann et al. (2021); Mager et al. (2019).
Reward function. The optimization objective for each agent is formalized through the reward
function. Unlike standard RL designs, we here explicitly add a reward for saving communication.
Thus, we have a standard reward for control performance, rctrli , rewarding both joint and individual
control goals of the agents, and a reward rcomm

i = −oiξ, with ξ ∈ R≥0, which imposes a cost for
communication. The overall expected discounted return Ri at time step K is then

Ri[K] = E

[
K∑
k=1

γk(rctrli [k] + rcomm
i )

]
= E

[
K∑
k=1

γk(rctrli [k]− oi[k]ξ)

]
, (3)

where γ ∈ (0, 1) is a discount factor.
Problem formulation. We aim to develop a framework that lets agents maximize the expected
discounted return (3) by optimizing policies µi and πi. To achieve optimal performance, we optimize
both policies jointly. Ultimately, this leads to a framework that can learn high-performing and
resource-aware communication and control policies for (i) linear and nonlinear, (ii) low- and high-
dimensional cooperative multi-agent environments with direct interaction between agents, but (iii)
without the need for a dynamics model.

4. Background: Hierarchical Reinforcement Learning

The key to learning event-triggered communication and control policies through RL is handling the
hybrid action space, consisting of discrete communication decisions and continuous control tasks.
Hierarchical reinforcement learning naturally captures this structure by adding another decision layer
above the continuous actions within a Markov decision process (Sutton et al., 1999). This layer
consists of discrete options representing primitive decisions with long-lasting effects (Precup, 2000).
Relating to our problem setting, we have the option to communicate or not to communicate. Each
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option is followed by actions from a policy explicitly related to the option. This policy outputs actions
until there are better options to choose from, and, therefore, the option is terminated. Trajectory
sampling following this structure can be used to train RL agents based on policy gradient theorems
provided by the option-critic architecture (Bacon et al., 2017). Funk et al. (2021) use this architecture
to derive an algorithm that learns single-agent event-triggered control. Following Funk et al. (2021),
we now outline the fundamentals of the option-critic architecture. To keep the notation uncluttered,
we consider single-agent systems in this section and, hence, drop the index i.

To represent the hierarchy, states x and actions u are extended by options o. The architecture
uses several policies to parameterize the decision-making, leading from states to the choice of
options and actions. Initially, the policy over options µ(o | x) outputs an option, whereupon an
associated intra-option policy πo(u | x) outputs actions. This continues until a termination function
βo(x) ends the option, leading to another sampling of options by the policy over options. In other
words, the policy over options µ(o | x) represents the probability of choosing an option, while the
termination function βo(x) represents the probability of ending the option. The action choice can
then be expressed by a single policy,

π(u | o, x) = (1− βo(x))πo(u | x) + βo(x)
∑
õ

µ(õ | x)πõ(u | x). (4)

Sampling from this policy yields trajectories from which policy updates can be computed. For
computing these updates, the expected return (3), is approximated using a value function. In
particular, we use a variant of the Q-function, which in standard RL methods outputs the expected
reward when starting in state x, choosing action u, and following the according policy from there on.
In the option critic framework, the Q-function also depends on the option, i.e.,

Q(o, x) =

∫
ũ

π(ũ | x)Q̂(o, x, ũ) dũ, (5)

where Q̂(o, x, u)=r(o, x, u)+γQ(o′, x′) , with x′ the successor state of x, and r(o, x, u) the reward
in a time step. Using the Q-function, we can define the return to be maximized through learning,

R(o, x) = [1− βo(x)]Q(o, x) + βo(x)
∑
õ

µ(õ | x)Q(õ, x). (6)

Formulating reward and Q-function as functions of state and option allows us to derive gradients to
optimize the policies, parametrized by θµ, θπ, and θβ . For the policy over options, taking the gradient
of the reward results in

∂R(o, x, θµ, θβ)

∂θµ
= βo(x, θβ)E

[
∂

∂θµ
log(µ(o, θµ | x))Q(o, x)

]
. (7)

Besides, it follows from the Q-function for the intra-option policy that

∂Q(o, x, θπ)

∂θπ
= E

[
∂

∂θπ
log(πo(u, θπ | x))Q̂(o, x, u)

]
. (8)

Following Funk et al. (2021), we decide about communication in every single time step. Consequently,
we fix βo(x) ≡ 1, i.e., we terminate options and evaluate the policy over options in every time step.
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We can now compute policy updates based on the simplified gradients in (7) and (8). However, we
leverage extensions that provide increased performance to improve learning capabilities.

In particular, we use proximal policy option-critic (PPOC) (Klissarov et al., 2017), which aims
to exploit the performance of proximal policy optimization (PPO) Schulman et al. (2017) in the
option-critic architecture. The theory behind PPO is based on trust region policy optimization
(Schulman et al., 2015a), where the aim is to maximize a surrogate loss function

L(θ) = E
[

π(u | x)
πold(u | x)

Âπ

]
(9)

with θ parametrizing policy π, and Âπ an estimator of the advantage. This advantage is used to
evaluate how beneficial an action is in relation to the expected reward in a time step. PPO extends
this loss with a clipping function that clips the value of the ratio π(u|x)

πold(u|x) , with a clipping parameter ϵ.
Using the resulting loss function for updates of the intra-option policy, we obtain

∂L(θπ)

∂(θπ)
= E

[
∂

∂θπ
min[

πo(u|x)
πold
o (u|x)

Aπ(o, x, u); clip(
πo(u|x)
πold
o (u|x)

, 1− ϵ, 1 + ϵ)Aπ(o, x, u)]

]
. (10)

Finally, PPOC combines the clipped function (10) with generalized advantage estimation (GAE)
(Schulman et al., 2015b) for computing the advantage Aπ(x, o, u) to obtain its policy updates.

Remark 1 Generally, also other RL approaches that can handle hybrid action spaces, such as by
Neunert et al. (2020), could be used. Such approaches have not been extended to ETC yet.

5. Learning Resource-Aware Communication and Control for Multi-Agent Systems

We now present our algorithm. As discussed previously, we link hierarchical RL and event-triggered
communication and control by letting agents share information over a network only if the correspond-
ing option is triggered. However, the information an agent sends does not directly impact its decision
about which control input to apply. Thus, we omit implementing intra-option policies that are unique
to the option chosen by the policy over options µi. That is, each agent has, independent of the current
option, only one control policy πi. Nevertheless, we preserve the general nature of hierarchical RL,
since the option choice does have a long-term impact by influencing the behavior of other agents.

In the case of communication, agents share information with all others. Thus, the available
information for each agent consists of its own state xi, as well as the last broadcasted states of the
other agents, resulting in an extended state x̂i = {xi, x̃1, . . . , x̃N}. An update x̃i does not necessarily
include all information an agent can send, allowing to send only a subset of information from xi
depending on the environment. The amount of information sent thus becomes an optimization
parameter that is relevant for both computing resources and control performance. Nevertheless,
receiving state information alone is insufficient for the agents to sample meaningful actions. Agents
can only process this information if they are aware of the age of information, i.e., how old the last
received update is. Thus, we introduce timers, with τi the timer for information sent by agent i,

τi[k] =

{
0, if oi[k] = 1,

τi[k − 1] + 1, else.
(11)

Appending timers τi to last broadcasted states x̃i leads to policies µi(oi | x̂i) and πi(ui | x̂i) that
enable agents to act within the setting shown in Fig. 1.
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Communication might not have an immediate impact on other agents, which potentially desta-
bilizes learning the policy over options. Thus, we also use PPO to update the policy over options,
compared to PPOC, which uses native policy gradients. PPO’s sample efficiency can help agents find
a resource-aware communication strategy. Utilizing the derivation by Funk et al. (2021), we have

∂L(θµi)

∂(θµi)
=

∂

∂θµi

E[min[
µi(oi|x̂i)
µold
i (oi|x̂i)

Aµ
i (oi, x̂i, x); clip(

µi(oi|x̂i)
µold
i (oi|x̂i)

, 1−ϵ, 1+ϵ)Aµ
i (oi, x̂i, x)]], (12)

where we use a greedy advantage function

Aµ
i (oi, x̂i, x) = Qi(oi, x̂i, x)− max

õi∈{0,1}
Qi(õi, x̂i, x). (13)

Besides performance improvements, restricting the updates of the policy over options through the
clipping function is also a reasonable measure to limit drastic changes in the policy that could
potentially destabilize the learning of other agents.

In (13), we see that Qi depends on the concatenated state x in addition to the extended state x̂i.
This is connected to the destabilizing effect of other agents who change their policy through learning.
From the individual agent’s perspective, which models other agents as part of the environment, these
changes make the environment appear unstable. In our case, this is an even greater challenge as
each agent has several policies. To compensate for this perception, we use centralized learning
and decentralized execution (CLDE): during learning, we use a critic for each agent i, i.e., the
Qi-function, to compute policy updates. During execution, the policies µi and πi are used to sample
trajectories without the critic. By centralizing the critic, learning about the value function can be
improved, helping to stabilize the overall learning process (Lyu et al., 2021). Such centralization
can be achieved by handing over all relevant state information from other agents j to the critic of an
agent i, following the approach by Lowe et al. (2017). We implement this by always passing the true
states xj to the critic of agent i in addition to the last broadcasted states x̃j to compensate for the
lack of information through saving communication.

Remark 2 CLDE requires all agents to communicate periodically during training. We assume
that during training in a laboratory environment, we can provide sufficient bandwidth for periodic
communication, but during execution in the real world need to save resources.

We use deep neural networks (DNNs) to approximate the Qi-functions, the policy over options
µi, and each agent’s control policy πi. We follow the DNN structure proposed by Funk et al. (2021).
However, we set the standard deviation of the stochastic control policy to a constant value instead
of slowly decreasing it. Lowering the stochasticity aims to reduce the dispersion in the behavior of
other agents, making it easier for the agents to adapt to each other.

This reduced stochasticity also causes less exploration. Thus, we always consider the learning
progress over training epochs and introduce a curriculum that supports the agents in generating
a solution. First, we apply noise to the actions ui. In particular, we use values from a Gaussian
distribution with zero mean and a linearly decreasing standard deviation σ. This way, we achieve
adjustability and phasing for agent exploration, effectively making exploration a hyperparameter.
However, while the agents are still exploring the observation space to improve the output of the
control policy, the communication is already penalized. The policy over options typically reacts
quickly by reducing communication. This inevitably leads to local optima, as no cooperative action
is possible without shared information. Therefore, we leverage entropy regularization, which ensures
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that communication is learned only after exploration and, thus, forms the next step in the curriculum.
In the beginning, we apply the entropy term ζ log(µi(oi | x̂i))µi(oi | x̂i) to the updates of the policy
over options, limiting updates through the entropy regularization coefficient ζ. After sufficiently
exploring the control policy, we lower the value of ζ linearly over epochs, resulting in slowly enabled
updates to the policy over options. After reaching the final epoch of the decrease, the coefficient
remains at a low value. Typically, this leads to destabilization and decreased rewards since agents
receive less information as communication savings increase. As the last step, we, therefore, introduce
another episode of noise in the curriculum, whose standard deviation first increases linearly over
epochs and then decreases again. This yields further exploration of the policies πi and µi, as well as
the Qi-function. In summary, the curriculum proceeds in three steps: we start by (I) adding noise
to the actions with decreasing variance, followed by (II) enabling policy updates of the policy over
options, and (III) finally, we apply noise again to stimulate full exploration of the observation space.
The entire algorithm is summarized in Alg. 1.

Algorithm 1 Learning algorithm for distributed event-triggered control.

1: Input: clipping ϵ, curriculum param. ζ, σ
2: for number of agents do
3: Initialize Qi(oi, x̂i, x), µi(oi|x̂i), πi(ui|x̂i)
4: for number of epochs do
5: for number of agents do
6: Qi ← Qold

i , µi ← µold
i , πi ← πold

i

7: Sample (o, x, u)-transitions using µi, πi
8: for number of agents do
9: Calculate Aπ

i (oi, x̂i, x, u) using GAE
10: for number of optimizer iterations do
11: for number of options do
12: Sample batch

13: Calculate Aµ
i (oi, x̂i, x) from (13)

14: Calculate Lµ
i from (12)

15: Calculate Lπ
i from (10)

16: Calculate LQ
i as Funk et al. (2021)

17: θµi ← θµi + α
∂Lµ

i (θµi )

∂θµi

18: θπi ← θπi + α
∂Lπ

i (θπi )

∂θπi

19: θQi ← θQi − α
∂LQ

i (θQi
)

∂θQi

20: switch (curriculum phase)
21: case I: Update σ
22: case II: Update ζ
23: case III: Update σ

6. Results and Analysis

We demonstrate the effectiveness of our framework in a simulation example that includes a traceable
cooperative task in a high-dimensional multi-agent environment with complex physics. For this, we
choose the Multiwalker environment from PettingZoo (Terry et al., 2021), shown in Fig. 1 (right).
The goal in this environment is for the three agents to cooperatively transport a package forward,
without falling or dropping the package.

We slightly modify the environment to fit our problem setting. In particular, we change the agents’
observation space. In the native implementation, this information includes all joint angles, speeds, and
contact sensors of the individual agent. Besides, agents use LIDAR sensors to scan the environment
and obtain information about the position of the agent in front of them. Alongside the LIDAR, agents
receive state information about their neighbors in the form of relative positions, as well as their
relative position towards the package and the package angle. To make communication necessary,
we remove the LIDAR information. Similarly, we remove relative information about neighbors,
which we obtain through communication. The state of an individual agent consists then in their own
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Figure 2: Performance of our algorithm and PPO with random communication skips. We show
the return (top plots) and communication savings (bottom plots). While our algorithm
achieves significant communication savings and good performance (left), PPO with
random communication skips is unstable and cannot learn a good policy (right). Dashed
vertical lines represent the stages of the curriculum.

joint angles, speeds, contact forces, and information about the package, which results in 17 state
variables per agent. We introduce communication by allowing agents to share their absolute position
and horizontal and vertical velocity, from which receiving agents can calculate relative positions
and velocities. We thus define the last broadcasted state x̃i as the relative distances in position and
the relative differences in the velocities of the agents, combined with the corresponding timer τi.
Ultimately, the agents know their own state, relevant relative positions, as well as information about
the relative state of the package, all combined in the networked observation x̂i.

We further need to decide about inputs to the policies. As we use CLDE, the Qi-functions receive
all information available to the agent and the relative data of the other agents that have not been
communicated. The policy πi receives the package measurements and the communicated states of
other agents to sample meaningful actions. For the policy µi, experiments have shown that it is most
effective to limit the input to the package information. The idea is to initiate communication based on
how the package behaves during a training run. For instance, a deflecting package can be a relevant
trigger for sending an update. Thus, we add only the current and the package information from the
last update to the policy over options µi.

Lastly, we define the reward function. Different from the original environment, we add a
communication penalty. Further, to encourage agents to find creative solutions, we do not penalize
head deflection and extend the possible torque for the joints by a factor of 1.5. In addition, we
introduce a small penalty for speed in the horizontal direction to prevent agents from learning risky
gaits that, according to our observations, can lead to the collapse of the entire learning process.

We train the algorithm for ten runs, where one training iteration includes 2048 time steps for each
agent, and we compute updates over 3000 epochs. We show the best performing run in Fig. 2 (left).
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In particular, we show the return R(h) and communication savings Γ(h), calculated in comparison
to periodic communication at each time step with an underlying sampling time of 20 ms, of all
agents over epochs h, averaged over 50 epochs. We see the effect of the three curriculum stages
in the learning curve, marked by dashed vertical lines. Initially, we only explore the control policy,
leading to increasing reward. As the agents start to actively reduce communication in the second
phase, the reward first drops, but recovers after a while. In the third phase, we again explore the
control policy, which stabilizes the learning result. Finally, the agents learn to move the package
cooperatively forward while saving around 55 % of communication. The resulting policy is intuitive
in that, most of the time, only two agents actively work on transporting the package, reducing the
need to coordinate1.

We further compare our algorithm to native PPO. Kargar and Kyrki (2021) have shown that
PPO, in general, can learn good policies for the Multiwalker. We thus train PPO on the Multiwalker
and randomly skip communication to also achieve savings around 55 %. While PPO does not make
its own decisions about communication, we leave the remaining design unchanged, i.e., we use
CLDE, the same DNN structure, and the first stage of the learning curriculum. We then also execute
ten training runs and show the best performing policy in Fig. 2 (right). The return PPO obtains is
significantly lower than for our algorithm. This is particularly remarkable as PPO does not incur
any communication penalties. The PPO agents cannot successfully transport the package forward,
demonstrating that the task is non-trivial.

7. Conclusion

This article presents a first step toward automatic learning of joint communication and control policies
for high-dimensional and distributed multi-agent systems. We capture the hybrid nature of joint
communication and control policies through a hierarchical RL approach and optimize both. The
resulting algorithm significantly outperforms a control policy with random communication skips.

While these are promising results, there are various possibilities for further research. The
algorithm achieves good performance on a challenging simulation task. However, the training
stability may still be improved. When training multiple agents in parallel, around half of the
agents end up with a performance comparable to what we have shown in the previous section.
Through hyperparameter tuning, a higher success rate may still be attainable. Further, the underlying
algorithm and software framework are, in machine learning terms, relatively old. In particular, we
use Tensorflow 1 (Abadi et al., 2016) and the baselines (Dhariwal et al., 2017) implementation of
PPO (Schulman et al., 2017). By updating to more modern frameworks, increased performance and
stability might be possible. The choice for PPO as the underlying RL algorithm was motivated by
findings that it performs well in multi-agent settings (Yu et al., 2021). Nevertheless, dedicated MARL
algorithms may still provide a further performance increase. Also, adopting specific MARL measures
beyond CLDE, such as parameter sharing among agents (Christianos et al., 2021), might yield more
stable and successful learning. Lastly, the options framework allows for even greater flexibility. For
instance, one could imagine options for sending different kinds of information depending on the state
of the environment, or combining our approach with event-triggered control updates.

1. Videos and code are available at https://sites.google.com/view/learning-distributed-etc/.
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