
Proceedings of Machine Learning Research vol 211:1–14, 2023 5th Annual Conference on Learning for Dynamics and Control

Probabilistic Verification of ReLU Neural Networks
via Characteristic Functions

Joshua Pilipovsky JPILIPOVSKY3@GATECH.EDU
Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology

Vignesh Sivaramakrishnan VIGSIV@UNM.EDU
Department of Electrical and Computer Engineering, University of New Mexico

Meeko M. K. Oishi OISHI@UNM.EDU
Department of Electrical and Computer Engineering, University of New Mexico

Panagiotis Tsiotras TSIOTRAS@GATECH.EDU

Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
Verifying the input-output relationships of a neural network to achieve desired performance spec-
ifications is a difficult, yet important, problem due to the growing ubiquity of neural nets in many
engineering applications. We use ideas from probability theory in the frequency domain to provide
probabilistic verification guarantees for ReLU neural networks. Specifically, we interpret a (deep)
feedforward neural network as a discrete-time dynamical system over a finite horizon that shapes
distributions of initial states, and use characteristic functions to propagate the distribution of the
input data through the network. Using the inverse Fourier transform, we obtain the corresponding
cumulative distribution function of the output set, which we use to check if the network is perform-
ing as expected given any random point from the input set. The proposed approach does not require
distributions to have well-defined moments or moment generating functions. We demonstrate our
proposed approach on two examples, and compare its performance to related approaches.
Keywords: Neural networks, ReLU, verification, characteristic functions, distributional control.

1. Introduction

Neural networks (NN) have become a powerful tool in recent years for a large class of applica-
tions, including image classification (Yang et al., 2018), speech recognition (Chiu et al., 2018),
autonomous driving (Huang and Chen, 2020), drone acrobatics (Song et al., 2021), and many oth-
ers. The formal verification of neural networks is crucial for their wider adoption in safety-critical
scenarios. The main difficulty with the use of (deep) NN for safety-critical applications lies in the
demonstrated sensitivity of DNNs to input uncertainties and/or adversarial attacks. For example, in
the context of image classification, adding even a small amount of noise to the input set can greatly
change the network output (Su et al., 2019; Moosavi-Dezfooli et al., 2017). For safety-critical ap-
plications, DNNs should be robust or insensitive to input uncertainties, a property that can be tested
by verifying that the network prescribes to certain output specifications subject to various inputs.

Verification frameworks for DNNs can be classified as either deterministic or probabilistic. In
deterministic verification, one maps an input set is to an output set; if any output falls outside the
safety set, the verification fails. This is worst-case safety verification since the input set can be

© 2023 J. Pilipovsky, V. Sivaramakrishnan, M.M.K. Oishi & P. Tsiotras.

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

x0
1

x0
2

x0
n

x1
m

x1
1

w1
1,1w1
1,1

w1
1,2w1
1,2

w1
1,nw1
1,n...

...

x1 =
[
x1
1 = ReLU

(
y1
1

)
· · · x1

m = ReLU
(
y1
m

)]⊺

y1 =W 1x0 + b1

⇕

φx1
1
(t) =

1

2
(1 +φy1

1
(t)) +

i

2

[
H(φy1

1
)(t)−H(φy1

1
)(0)

]

...

φx1
m
(t) =

1

2
(1 +φy1

m
(t)) +

i

2

[
H(φy1

m
)(t)−H(φy1

m
)(0)

]

φy1(t) = exp(it⊺b1)φx0((W 1)⊺t)

Figure 1: The characteristic function (CF) of the input data can be propagated through a ReLU net-
work. This enables one to query the output CF of the network to answer questions such as
being out-of-distribution. The use of CFs also applies where the underlying distributions
do not have any moments or moment-generating functions (e.g., Cauchy distribution).

treated as an uncertainty set centered around some nominal input. Given some input x0 and a neural
network f : x 7→ y, deterministic verification can be posed as a nonlinear program (NLP), with the
objective function quantifying satisfaction of some safety rule y ∈ S. In general, though, the result-
ing NLP is intractable using standard off-the-shelf solvers. Several works have used mixed-integer
linear programming (MILP) (Lomuscio and Maganti, 2017; Cheng et al., 2017), Satisfiability Mod-
ulo Theories (SMT) (Katz et al., 2017; Scheibler et al., 2015), or semi-definite programming (SDP)
(Brown et al., 2022; Fazlyab et al., 2022; Dvijotham et al., 2020; Dathathri et al., 2020; Wong and
Kolter, 2018; Raghunathan et al., 2018), to recast and solve this NLP problem. In recent work, given
an input or an output polytope, one can generate the respective output or input polytope through the
ReLU neural network (Vincent and Schwager, 2021).

In probabilistic verification, the input set itself is uncertain and potentially unbounded. Ran-
dom uncertainties naturally arise in practical applications, for example, from signal processing,
environmental noise, and other exogenous disturbances. For example, impulse noise from Cauchy
distributions arise in various sensing and imaging domains (Sciacchitano et al., 2015; Mei et al.,
2018). In this context, the uncertainties are modeled in terms of probability distributions, and the
verification problem considers the probability that the output is in a safety set given a random input
from the input set. Given a random input vector x0 and a neural network f , the probability that the
output random vector y = f(x0) lies in some safety set S is greater than some threshold 1 − p is
given by the chance constraint,

P(y ∈ S) ≥ 1− p. (1)

Few works have studied the verification of DNNs in a probabilistic setting; most of the existing
approaches involve under- or over-approximations. In Fazlyab et al. (2019), the authors approximate
an output confidence ellipsoid via an SDP, and verify residing in a set via equivalence between
confidence sets and chance constraints. PROVEN (Weng et al., 2019) accommodates bounded
disturbances, using linear approximations of activation functions and concentration inequalities to
generate bounds on (1). In Pautov et al. (2022), a similar approach is taken with Cramer-Chernoff
concentration inequalities, and propagates samples through the network. Generative DNNs are
considered in Berrada et al. (2021), which formulates an upper bound on the chance constraint via

2

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

duality. Lastly, a scenario optimization approach in Anderson and Sojoudi (2022) constructs a lower
bound on (1) that depends upon the number of samples.

In this paper, we interpret a DNN as a dynamical system (Narendra and Parthasarathy, 1992,
1990; Weinan, 2017) that shapes distributions of data and view the verification problem as one of
propagating a distribution through a linear stochastic system with nonlinearities to form an output
distribution that needs to meet the safety constraints. We focus on DNNs with rectified linear units
(ReLU) activation functions, as the piece-wise linear nonlinearity of ReLU have known integral
operators which allow us to propagate a given input distribution. Specifically, as we denote in Fig-
ure 1, given an input distribution’s characteristic function (CF), we recover the CF of the output
of a ReLU DNN with, known error accuracy, from which we can verify the output chance con-
straint (1). Therefore, we can provide statistical guarantees for the performance of any given ReLU
neural network for a input distribution.

The paper is organized as follows. Section 2 introduces the preliminaries and problem formula-
tion. Section 3 presents the main properties of characteristic functions we use in our work and states
the main result that allows us to propagate a characteristic function through a ReLU neural network.
Section 4 presents the safety verification algorithm given the machinery developed in the previous
section applied to output polytopes. Examples demonstrating the theory are given in Section 5, and
we provide some concluding remarks and avenues for future work in Section 6.

2. Preliminaries and Problem Formulation

2.1. Notation

Real-valued vectors are denoted by lowercase letters, u ∈ Rm, matrices are denoted by uppercase
letters, V ∈ Rn×m, and random vectors are denoted by boldface, w ∈ Rp. We denote the jth

component of a vector by the subscript uj , and the ith row and jth column of a matrix by Vi,j .
The imaginary unit is denoted by i :=

√
−1. A random vector w is defined on the probability

space (Ω,B(Ω),Pw) (Billingsley, 2008, Sec. 2). We only consider continuous random vectors,
i.e., those having probability measure Pw ({w ∈ S}) =

∫
S ψw(z) dz for S ⊆ B(Ω), and PDF

ψw that satisfies ψw ≥ 0 almost everywhere (a.e.) such that
∫
R ψw(z) dz = 1. For the random

variable y = a⊺w, a ∈ Rp, we characterize the probability P{a⊺w ≤ α} using the cumulative
distribution function (CDF) Φa⊺w : R → [0, 1], that is, by P{a⊺w ≤ α} = Φa⊺w(α) (Billingsley,
2008, Sec. 14). We write w ∼ ψw to denote the fact that w is distributed according to the PDF ψw.
We denote a uniform distribution as U[a, b] where a, b ∈ N, a < b.

2.2. Problem Formulation

We consider an L-layer ReLU DNN with input x0 ∈ Rh0 and output y = f(x0) = xl ∈ RhL , with
f being the composition of L layers, that is, f = fL−1 ◦· · ·◦f0. The kth layer of the ReLU network
corresponds to a function fk : Rhk → Rhk+1 of the form

xk+1 = fk(x
k) = σ(W kxk + bk), (2)

where W k ∈ Rhk+1×hk is the weight matrix, bk ∈ Rhk+1 is the bias, and σ(xkj) := max(0, xkj) is
the component-wise ReLU function, where xkj is the jth component of xk ∈ Rhk . We assume that
the last layer is an affine transformation, that is, xL = WL−1xL−1 + bL−1. Note that convolution
layers can be captured by this framework, as they correspond to linear layers W k endowed with a
particular matrix structure.

3

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

Let the mapping f : X 7→ Y with X and Y subsets of Euclidean spaces of given dimensions,
and let S ⊂ Y denote the output safety set. We would like to answer the following questions:

• Given a random sample from the input set x = x(ω) ∈ X , where ω ∈ Ω, what is the
probability that the output y = f(x) ∈ Y lies in the output set S? Equivalently, given some
verification threshold p ∈ (0, 1], is the chance constraint (1) satisfied for all x ∈ X ?

• Given the numerically computed output distribution ψ̂y, what is the relative error in the prob-
ability of satisfaction of the output chance constraint compared to that of the true output
distribution ψy?

To answer the above questions, we use the machinery of characteristic functions (CF) to propa-
gate a distribution through a ReLU network allowing us to perform the verification task.

3. Characteristic Functions

We assume that the input distribution ψ0 over the input set X is given. The analog of the probability
density function ψx in the spatial domain is the characteristic function φx in the frequency domain.

Definition 1 (Characteristic Function) For a continuous random vector w ∈ Rp such that w ∼
ψw, the characteristic function (CF) is the Fourier transform F(ψw)(t) of the PDF ψw ∈ L2(Rp)
given by

φw(t) := Ew

[
eit

⊺w] = F(ψw)(t) =

∫

Rp

eit
⊺zψw(z) dz, (3)

where t ∈ Rp.

The CF has the following properties (Cramér, 1999; Lukacs, 1970):

P1: Let w1,w2 be random vectors of appropriate dimensions and let z = w1 + w2. Then,
ψz(z) =

(
ψw1 ∗ ψw2

)
(z) (i.e., convolution of their PDFs), and φz(t) = φw1(t)φw2(t).

P2: Given z = Fw + g for F ∈ Rn×p, g ∈ Rn, the CF is φz(t) = eit
⊺gφw(F

⊺t).

We note that the characteristic function of a distribution always exists, even when the proba-
bility density function or moment-generating function do not exist. We can recover the CDF of a
distribution from its CF using the Hilbert transform.

Definition 2 The Hilbert transform (HT) of a function f is defined as the linear integral operator

H(f)(t) := 1

π
p.v.

∫

R

f(τ)

t− τ dτ, (4)

where p.v. denotes the Cauchy principal value, that is,

p.v.

∫

R
f(t) dt = lim

ϵ↓0,a↑∞

[∫ a

ϵ
f(t) dt+

∫ −ϵ

−a
f(t) dt

]
. (5)

4

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

If not stated otherwise, all integrals in this paper are understood in the principal value sense.
Using the change of variables τ → −τ , one may equivalently express the HT as

H(f)(t) = 1

π

∫ ∞

0
[f(t− τ)− f(t+ τ)]

dτ

τ
. (6)

Note that the Hilbert transform is bounded on L2(R) (Pereyra and Ward, 2012). To numerically
compute the Hilbert transform of a continuous function, we use a finite expansion of the sinc func-
tions, which have known error bounds in the literature for some grid resolution h and number of
terms N (Stenger, 2012). Appendix 1 gives a heuristic to compute the optimal values of h,N and
provides error bounds in the resulting HT approximation (Pilipovsky et al., 2023). In addition, Feng
and Lin (2013) show that one can recover the CDF of a distribution via a Hilbert transform, yielding
similar error bounds.

Theorem 1 (Gil-Pelaez Inversion Theorem, (Feng and Lin, 2013; Gil-Pelaez, 1951))
Given a random variable x with CF φx, the CDF of x, Φx(·), at each point of continuity x, can be
evaluated by

Φx(x) =
1

2
− i

2
H(e−itxφx(t))(0), (7)

where x, t ∈ R.

3.1. Propagation of a Characteristic Function through a ReLU Network

Given an initial characteristic function φ0 that represents the input distribution, we compute the
output characteristic function φL. At an arbitrary layer k this propagation can be split into a two-
step process: (i) propagate the CF through the affine layer to obtain φyk , where yk = W kxk + bk,
and (ii) propagate the intermediate CF through the ReLU layer to obtain the output φxk+1 . Using
Property P2 of CFs, it is straightforward to compute

φyk(t) = exp(it⊺bk)φxk((W k)⊺t). (8)

Given the intermediate CF φyk , we can compute the component-wise CF after the ReLU, based on
the work of Pinelis (2015), which is summarized below.

Corollary 1 The characteristic function of the random variable x+ := max(0,x) is given by

φx+(t) := E[eitx+] =
1

2
[1 +φx(t)] +

i

2
[H(φx)(t)−H(φx)(0)] . (9)

Proof See Appendix 2 (Pilipovsky et al., 2023).

Applying the CF update (9) to each neuron j for each layer k results in the following update

φxk+1
j

(tj) =
1

2
(1 +φyk

j
(tj)) +

i

2

[
H(φyk

j
)(tj)−H(φyk

j
)(0)

]
, (10)

where tj = e⊺j,hk+1
t isolates the jth element of the frequency variable t.

5

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

3.2. Complexity of Propagation

Given the machinery of how to propagate CFs through a ReLU network via (8) and (10), we would
like to know how many computations are actually being done per layer. The accuracy of our method
is dependent on the refinement of the frequency grid for the CF evaluations and the parameters used
to numerically compute the HT.

3.2.1. FREQUENCY DOMAIN GRIDDING

In order to numerically propagate the CF through the ReLU DNN, one needs to properly setup the
bounds for computing the CF. Since the CF is defined for all points t ∈ R, we need to setup a
grid {tm}Nm=1 with some cutoffs −∞ < d− < d+ < ∞ and evaluate the CF at these grid points.
As we shall see, our method is only linearly complex in the total number of grid points used to
compute the CF. Given that the CF reduces down to zero at its tails, we can heuristically find the
cutoff points with a convergence-type condition of the form d− := argmaxt|φ(t) − φ(t − ϵ)| ≤ ϵ
and d+ := argmint|φ(t+ ϵ)−φ(t)| ≤ ϵ.

3.2.2. AFFINE LAYER PROPAGATION

We can break up the computations between the affine and max layers to analyze the computation
complexity. The propagation of the joint CF is given in (8), however in practice, we propagate
each component φ(j)

k individually, then parallelize over each marginal CF. In the spacial domain,
breaking up the affine layer propagation into components yields

yk
j =

hk∑

ℓ=1

W k
j,ℓx

k
ℓ + bkℓ , j ∈ {1, . . . , hk+1}. (11)

Thus, we use property P1 and P2 of CFs to get,

φyk
ℓ
(tm) = exp(itmb

k
ℓ)

hk∏

ℓ=1

φxk
ℓ
(W k

j,ℓtm), (12)

where tm ∈ [d−, d+] is a grid point in the frequency domain. From (12), there are (hk +1) terms in
the product for each grid point and each component, which results in a complexity ofO(hkhk+1N).
Since the number of grid points N ≫ hk for all layers k, this essentially becomes O(N), which is
linear in the resolution of the grid. As a result, this implies we can construct a very fine grid without
major losses in computational speed.

3.2.3. MAX LAYER PROPAGATION

The propagation of the CF through the max layer requires the computation of two Hilbert trans-
forms, as per (10), for each grid point and neuron. From Appendix A, the discrete HT requires
2M + 1 terms in the sum, which implies a complexity of O(hk+1MN) ∼ O(MN) across all
neurons for one layer (Pilipovsky et al., 2023).

6

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

4. Probabilistic DNN Verification

With the developed CF machinery outlined in Section 3.1, we can verify ReLU networks to a pre-
scribed degree of accuracy. For example, if p = 0.05, then a NN passes verification if at least 95%
of the input samples belong in the desired output set S. We presume that the output set Y ⊆ RhL can
be represented by a convex polytope, that is, an intersection of halfspaces. For notational simplicity,
we consider an output set that can be written as,

S = {y ∈ Rhl | c⊺y ≤ d}. (13)

and note extension to convex polytopes follows by analyzing each half-space independently.

Algorithm 1 ReLU Network Verification
Input : φx, {c, d}, N,M, h, p
Output: p̂, pass/fail

1 φx0
j
← Compute initial CF components on grid

2 φxL
j
← Propagate through ReLU network using (12) and (10)

3 φy ← Compute CF of output r.v. y := c⊺xL

4 Φy ← Compute CDF using (7)
5 p̂ := P(y ∈ S) = Φy(d)
6 if p̂ < 1− p then
7 Fail verification else Pass verification;
8 end

The first three parameters the algorithm accepts are the characteristic function of the input, φx,
and the parameters that define the half-space, c, d. The last two design choices are the HT resolution,
specified byN,h,M , and the cutoff probability for verification, p. The initial CF is then propagated
through the network, which yields the final CF. Since the output set is a half-space, the probability
for the output xL to be in the half-space is given by

P(xL ∈ S) = Φy(d) =
1

2
− i

2
H(e−itdφy(t))(0), (14)

where y := c⊺xL and φy(t) =
∏

j φxL
j
(cjt). Thus, Steps 3-4 in Algorithm 1 compute the associ-

ated CF and CDF of the constraint (13). The CDF evaluated at x = d represents the probability of
the event {c⊺x ≤ d}; if this value is less than 1− p, this is below the cutoff for verification. As an
example, if Φc⊺xL(d) = 0.7 but p = 0.1, then only 70% of samples from the output set lie in the
safety set, which is less than the cutoff of 90%; hence the verification test fails in this case.

5. Examples

We provide two examples that illustrate the proposed verification algorithm. Both examples use
ReLU feedfoward neural networks from the verification literature. All simulations were run on a
32 GB Intel i7-10750H @ 2.60 GHz computer. For computations and memory storage, we use
python with JAX (Bradbury et al., 2018). JAX was run on CPU-only mode but can be run on GPUs
or TPUs. All trials of the verification algorithm were compared to an empirical truth computed by
brute-force propagation of 104 samples through the ReLU networks for each example.

7

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1
Input Layer

-5 0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
Hidden Layer

-40 -20 0 20
0

0.2

0.4

0.6

0.8

1
Output Layer

Empirical truth
Proposed Method

0 1 2

0.5

0.6

0.7

0.8

0.9

Figure 2: The characteristic function and CDF for each layer in the ReLU network. The CDF com-
puted using the proposed method (black dot) using (7) closely resembles the empirical
CDF computed from brute-force propagation of 104 input samples (red line).

5.1. Example 1

We present our verification method and its advantages via the following scenario, adapted from
Brown et al. (2022), and compare against the bounds from a scenario-based approach in Anderson
and Sojoudi (2022). We run a set of 1000 trials, where we sample from U[−1, 1] for the weights and
biases of the ReLU network. The network architecture has two inputs, one output, and one hidden
layer with 10 neurons. The output safety set is S = {xL : xL ≥ 0}. The maximum probability of
lying outside the safety set is p = 0.05. Lastly, we also generated (an approximation of) the true
output set Y by propagating 1 million samples from the input set through the network. We model
the inputs of the network as a Cauchy distribution,

φ0(t) = exp(x0it− γ|t|), (15)

with locations x(1)0 = 1, x
(2)
0 = −1 and scale γ(1) = γ(2) = 1. The CF of a distribution allows one

to easily compute its moments from the derivatives of the CF via the following expression

E[xk] = i−kφ
(k)
x (0), (16)

where f (k) denotes the kth derivative of the function f . Since the derivatives of the Cauchy CF do
not exist at zero, this distribution has undefined moments and moment generating function. As a
result, the methods proposed in Pautov et al. (2022); Fazlyab et al. (2019); Weng et al. (2019) would
not work in this case.

To show how the distribution of the inputs propagates throughout the ReLU network, we take a
snapshot of the CFs and CDFs for a few random trials. The plots in Figures 2-3 correspond to the
parameters {N,h,M, d} = {10000, 0.05, 5000, 50}, namely, 10001 terms in the HT for each of the
104 grid points in the domain D = {t : t ∈ [−50, 50]}. Figure 2 shows the CDF at each layer in
the network, as computed from the CF through the HT. It closely resembles the ground-truth CDF
computed via sampling.

The accuracy of this propagation depends on the grid resolution in the frequency domain and
the numerical accuracy of the HT used to propagate the CF through the max layer. A finer grid in
the frequency domain with a large number of terms in the HT summation yields better results than
a coarser grid with fewer terms in the summation. To illustrate this, the fourth column in Table 1 in

8

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

(a) For this random trial, our method accu-
rately determines the violation of the output
safety set. Our results (black) are very close
(|δ∆| = 0.049) to the empirically obtained
CDF and likelihood (red).

-80 -60 -40 -20
0.85

0.9

0.95

1

(b) Our estimated safety set at the desired
probability threshold (black) is much
closer to the empirically determined safety
set (red) as compared to other SoTA meth-
ods (magenta).

Figure 3: Comparison of ReLU network safety verification.

Appendix D computes the average error in probability across all trials for various values of the grid
resolution and HT parameters (Pilipovsky et al., 2023). The parameter ∆ represents the difference
in the computed probability of success with the given probability threshold, i.e.,

∆ := Φ̄y(0)− (1− p), (17)

where Φ̄y(0) := P(xL > 0) = 1 − ΦxL(0) is known as the complementary CDF. See Figure 3
for a visual representation of these differences. Thus, the difference in these deltas is a metric for
how accurate the CF propagation is — if the numerics were exact (M,L → ∞), then ∆p∗ = ∆p.
Note that the trial for Figure 3 fails verification because ∆ < 0, which implies that the probability
of being in the safety set is less than 1− p = 0.95.

For the trial in Figure 3(a), the estimated probability of being in the safety set is approximately
23.6%, whereas the true probability is 27.9%, giving |δ∆p| = 4.3%. In comparison, (Anderson and
Sojoudi, 2022, Appendix D), uses scenario optimization to solve the reverse problem; namely, that
of finding the maximal safety set X = r̄(p) = supr{r ∈ R : P(y > r) ≥ 1 − p}. Running the
method by choosing samples according to N ≥ 2

ϵ (log(
1
δ) + 1) where δ is a confidence parameter

such that Pr̃{P(y > r) ≥ 1−p} ≥ 1− δ. With δ = 10−5, we require 501 samples. Over 500 trials,
we generated 501 samples and propagated them through the network. The best r̃ = −74.99 with the
average over 500 trials is E[r̃] = −3297.92, whereas the true 95% quantile occurs at x∗ = −17.43
while our estimated quantile is at x = −22.67. We mark the quantile values with vertical lines on
Figure 3(b). The Cauchy distribution has a longer tail than the normal distribution, thus sampling
from it produces more outliers. This does not bode well for sampling-based verification methods,
potentially causing large over-approximations of the safety set.

Table 1 in Appendix D shows the average time it takes to complete verification for one trial for
various parameters (Pilipovsky et al., 2023). For a grid resolution of 104 points and 103 HT com-
putations per grid point, we can get verification results in approximately 3 seconds for a two-layer
network. Naturally, the accuracy of the propagation degrades with lower values for the parameters,
but the computation time decreases, so there is a trade-off between accuracy and speed.

9

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Input Layer

-5 0 5
0

0.5

1
Hidden 1

0 5
0

0.5

1

-5 0 5
0

0.5

1
Hidden 2

0 5
0

0.5

1

-5 0 5
0

0.5

1
Hidden 3

0 5
0

0.5

1

-5 0 5
0

0.5

1
Hidden 4

0 2 4
0

0.5

1

-5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Output Layer

Empirical truth
Proposed Method

Figure 4: Comparison of empirical truth and estimated CDFs for each layer of the ReLU network
where only the CDF of the first three neurons are plotted before activation, φ−, and after
activation, φ+. The CDF we compute from the CF via (7) (circles) closely matches the
empirically calculated CDF from the propagation of 104 samples (solid lines) for a 50
neuron hidden layer deep network.

5.2. Example 2

We also consider a more complex network based on (Fazlyab et al., 2019). In this example, we have
2 inputs, 5 hidden layers, 50 neurons in each of the 5 hidden layers, and 2 outputs. The inputs are
normally distributed with mean µ0 = [1, 1]⊺ and covariance Σ = diag(1, 2). We randomly choose
weights and biases from U[−1, 1]. The propagation uses d = 20 for the frequency cutoffs,N = 104

grid points for the frequency resolution, and h = 0.5 and M = 5000 for the HT computations.
The verification algorithm takes approximately 15.28 sec to complete for the given propagation

parameters. Figure 4 shows the evolution of the CDFs of each marginal distribution along the
network. The labels φ+/− denote the CDF before and after the ReLU activation layer. We see that
the CF propagation produces a relatively accurate CDF throughout the whole network given the
resolution in the CF and HT. The inaccuracies result from the evaluation of the CDF at x = 0 as can
be first seen in Φ+

1 . The sinc method that we use to compute the HT and CDF does not perform very
well at discontinuity points and these errors propagate after each max layer (Feng and Lin, 2013).

6. Conclusion and Future Work

We have presented a probabilistic verification scheme for ReLU neural networks using the machin-
ery of characteristic functions. We show that our method has a clear representation of distribution
propagation through a ReLU feedforward (deep) neural network and verification becomes a eval-
uation of the CDF from the network’s output characteristic function. One extension of this work
could be to optimize the risk level by minimizing p such that P(f(x0) ∈ S) ≥ 1−p, for some input
distribution x0 ∼ ψ0. Moreover, we can consider the reverse problem of finding the largest input
set X such that a network is probabilistically safe for a given risk level p (Anderson and Sojoudi,
2022; Weng et al., 2019). Lastly, it might be possible to extend this framework to other activation
functions, as long as one can analytically propagate the CF through that activation function.

10

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

Acknowledgments

We thank Brendon G. Anderson for providing us with the code of (Anderson and Sojoudi, 2022).
This work has been supported in part by the National Science Foundation under award CNS-
1836900 and by NASA under the University Leadership Initiative award 80NSSC20M0163. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF or any NASA entity.

References

Brendon G. Anderson and Somayeh Sojoudi. Data-driven certification of neural networks with
random input noise. IEEE Transactions on Control of Network Systems, pages 1–12, 2022. doi:
10.1109/TCNS.2022.3199148.

Leonard Berrada, Sumanth Dathathri, Krishnamurthy Dvijotham, Robert Stanforth, Rudy R Bunel,
Jonathan Uesato, Sven Gowal, and M. Pawan Kumar. Make sure you're unsure: A framework for
verifying probabilistic specifications. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34,
pages 11136–11147. Curran Associates, Inc., 2021.

Patrick Billingsley. Probability and Measure. Wiley, 2008.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. 2018.

Robin A. Brown, Edward Schmerling, Navid Azizan, and Marco Pavone. A unified view of SDP-
based neural network verification through completely positive programming. In Gustau Camps-
Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings of The 25th International Con-
ference on Artificial Intelligence and Statistics, volume 151 of Proceedings of Machine Learning
Research, pages 9334–9355. PMLR, 28–30 Mar 2022.

Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum resilience of artificial neu-
ral networks. In Deepak D’Souza and K. Narayan Kumar, editors, Automated Technology for
Verification and Analysis, pages 251–268, Cham, 2017. Springer International Publishing.

Chung-Cheng Chiu, Tara N Sainath, Yonghui Wu, Rohit Prabhavalkar, and et al. State-of-the-
art speech recognition with sequence-to-sequence models. IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4774–4778, 2018.

Harald Cramér. Mathematical Methods of Statistics. Princeton Landmarks in Mathematics and
Physics. Princeton University Press, Princeton, 1999.

Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey Kurakin, Aditi Raghunathan, Jonathan Ue-
sato, Rudy R Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang, and
Pushmeet Kohli. Enabling certification of verification-agnostic networks via memory-efficient
semidefinite programming. In Advances in Neural Information Processing Systems, volume 33,
pages 5318–5331. Curran Associates, Inc., 2020.

11

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Chongli Qin, Soham De, and Pushmeet
Kohli. Efficient neural network verification with exactness characterization. In Ryan P. Adams
and Vibhav Gogate, editors, Proceedings of The 35th Uncertainty in Artificial Intelligence Con-
ference, volume 115 of Proceedings of Machine Learning Research, pages 497–507, 22–25 Jul
2020.

Mahyar Fazlyab, Manfred Morari, and George J. Pappas. Probabilistic verification and reachability
analysis of neural networks via semidefinite programming. In 2019 IEEE 58th Conference on
Decision and Control (CDC), pages 2726–2731, 2019. doi: 10.1109/CDC40024.2019.9029310.

Mahyar Fazlyab, Manfred Morari, and George J. Pappas. Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming. IEEE Transactions
on Automatic Control, 67(1):1–15, 2022. doi: 10.1109/TAC.2020.3046193.

Liming Feng and Xiong Lin. Inverting analytic characteristic functions and financial applications.
SIAM Journal on Financial Mathematics, 4(1):372–398, 2013.

J. Gil-Pelaez. Note on the inversion theorem. Biometrika, 38(3-4):481–482, 1951. doi: 10.1093/
biomet/38.3-4.481.

Yu Huang and Yue Chen. Survey of state-of-art autonomous driving technologies with deep learn-
ing. In IEEE 20th International Conference on Software Quality, Reliability and Security Com-
panion (QRS-C), pages 221–228, 2020. doi: 10.1109/QRS-C51114.2020.00045.

Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex: An
efficient SMT solver for verifying deep neural networks. In Computer Aided Verification, pages
97–117. Springer, 2017.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward relu
neural networks, 2017.

Eugene Lukacs. Characteristic Functions. Griffin, London, 2nd ed. edition, 1970.

Jin-Jin Mei, Yiqiu Dong, Ting-Zhu Huang, and Wotao Yin. Cauchy Noise Removal by Nonconvex
ADMM with Convergence Guarantees. Journal of Scientific Computing, 74(2):743–766, Febru-
ary 2018.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 86–94, 2017. doi: 10.1109/CVPR.2017.17.

Kumpati S. Narendra and Kannan Parthasarathy. Identification and control of dynamical systems
using neural networks. IEEE Transactions on Neural Networks, 1(1):4–27, 1990. doi: 10.1109/
72.80202.

Kumpati S. Narendra and Kannan Parthasarathy. Neural networks and dynamical systems. In-
ternational Journal of Approximate Reasoning, 6(2):109–131, 1992. ISSN 0888-613X. doi:
10.1016/0888-613X(92)90014-Q.

12

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

Mikhail Pautov, Nurislam Tursynbek, Marina Munkhoeva, Nikita Muravev, Aleksandr Petiushko,
and Ivan Oseledets. Cc-cert: A probabilistic approach to certify general robustness of neural
networks. Proceedings of the AAAI Conference on Artificial Intelligence, 36(7):7975–7983, Jun.
2022. doi: 10.1609/aaai.v36i7.20768.

Marı́a Cristina Pereyra and Lesley A. Ward. Harmonic analysis, volume 63 of Student Mathe-
matical Library. American Mathematical Society, Providence, RI; Institute for Advanced Study
(IAS), Princeton, NJ, 2012. doi: 10.1090/stml/063. From Fourier to wavelets, IAS/Park City
Mathematical Subseries.

Joshua Pilipovsky, Vignesh Sivaramakrishnan, Meeko M. K. Oishi, and Panagiotis Tsiotras. Prob-
abilistic verification of relu neural networks via characteristic functions. 2023. doi: 10.48550/
arXiv.2212.01544.

Iosif Pinelis. Characteristic function of the positive part of a random variable and related results,
with applications. Statistics & Probability Letters, 106:281–286, 2015. ISSN 0167-7152. doi:
https://doi.org/10.1016/j.spl.2015.07.031.

Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. Semidefinite relaxations for certifying
robustness to adversarial examples. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Karsten Scheibler, Leonore Winterer, Ralf Wimmer, and Bernd Becker. Towards verification of
artificial neural networks. In MBMV, 2015.

Federica Sciacchitano, Yiqiu Dong, and Tieyong Zeng. Variational approach for restoring blurred
images with cauchy noise. SIAM Journal on Imaging Sciences, 8(3):1894–1922, 2015.

Yunlong Song, Mats Steinweg, Elia Kaufmann, and Davide Scaramuzza. Autonomous drone racing
with deep reinforcement learning. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 1205–1212, 2021. doi: 10.1109/IROS51168.2021.9636053.

Frank Stenger. Numerical methods based on sinc and analytic functions, volume 20. Springer
Science & Business Media, 2012.

Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling deep
neural networks. IEEE Transactions on Evolutionary Computation,, 23(5):828–841, 2019.

Joseph A. Vincent and Mac Schwager. Reachable polyhedral marching (rpm): A safety verifi-
cation algorithm for robotic systems with deep neural network components. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 9029–9035, 2021. doi:
10.1109/ICRA48506.2021.9561956.

E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathemat-
ics and Statistics, 5(1):1–11, 3 2017. doi: 10.1007/s40304-017-0103-z. Dedicated to Professor
Chi-Wang Shu on the occasion of his 60th birthday.

Lily Weng, Pin-Yu Chen, Lam Nguyen, Mark Squillante, Akhilan Boopathy, Ivan Oseledets, and
Luca Daniel. PROVEN: Verifying robustness of neural networks with a probabilistic approach.
In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Pro-
ceedings of Machine Learning Research, pages 6727–6736, 09–15 Jun 2019.

13

PROBABILISTIC VERIFICATION OF RELU NNS VIA CFS

Eric Wong and J. Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In Proceedings of the 35th International Conference on Machine Learning,
(ICML), volume 80, pages 5283–5292, Stockholm, Sweden, July 10-15, 2018.

Xiaofei Yang, Yunming Ye, Xutao Li, Raymond Y. K. Lau, Xiaofeng Zhang, and Xiaohui Huang.
Hyperspectral image classification with deep learning models. IEEE Transactions on Geoscience
and Remote Sensing, 56(9):5408–5423, 2018. doi: 10.1109/TGRS.2018.2815613.

14

	Introduction
	Preliminaries and Problem Formulation
	Notation
	Problem Formulation

	Characteristic Functions
	Propagation of a Characteristic Function through a ReLU Network
	Complexity of Propagation
	Frequency Domain Gridding
	Affine Layer Propagation
	Max Layer Propagation

	Probabilistic DNN Verification
	Examples
	Example 1
	Example 2

	Conclusion and Future Work

