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Abstract
Solving a sequence of high-dimensional, nonconvex, but potentially similar optimization prob-

lems poses a computational challenge in engineering applications. We propose the first meta-
learning framework that leverages the shared structure among sequential tasks to improve the com-
putational efficiency and sample complexity of derivative-free optimization. Based on the obser-
vation that most practical high-dimensional functions lie on a latent low-dimensional manifold,
which can be further shared among instances, our method jointly learns the meta-initialization of a
search point and a meta-manifold. Theoretically, we establish the benefit of meta-learning in this
challenging setting. Empirically, we demonstrate the effectiveness of the proposed algorithm in
two high-dimensional reinforcement learning tasks.
Keywords: meta-learning, derivative-free optimization, manifold learning

1. Introduction

Solving a sequence of optimization problems with similar structures often arises in engineering ap-
plications. For instance, in time-varying optimization, the problem usually has a fixed structure, but
its instantiations depend on time-varying data obtained at predefined sampling times (Zavala and
Anitescu, 2010). Real-time computation of the solution is often required for problems in power
systems (Dall’Anese et al., 2017; Hauswirth et al., 2018; Tang and Low, 2017; Ding et al., 2021),
communication systems (Chen and Lau, 2011; Low and Lapsley, 1999), online learning (Mokhtari
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et al., 2016; Yang et al., 2016), and signal processing (Balavoine et al., 2015). Similarly, in multi-
task learning, multiple loss functions corresponding to similar tasks are jointly optimized for im-
proved generalization performance (Zhang and Yang, 2021). Despite advances in computing, re-
solving each instance of single-task optimization separately can be impractical. For example, a
reinforcement learning (RL) algorithm can potentially take millions of steps before converging to a
good policy from scratch, which is restrictive in real-world settings (Dulac-Arnold et al., 2021).

A promising direction, as exemplified by meta-learning, or learning-to-learn, is to leverage prior
and similar experiences to accelerate optimization (Hospedales et al., 2021). Notwithstanding the
empirical success (Finn et al., 2017), most efforts to analyze initialization-based meta-learning fo-
cus on the setting with decomposable single-task loss functions that are often convex for theoretical
tractability (Finn et al., 2019; Denevi et al., 2019; Balcan et al., 2019); nonconvex single-task set-
tings are studied usually for multi-task representation learning (Balcan et al., 2015; Maurer et al.,
2016; Du et al., 2020; Tripuraneni et al., 2020). Therefore, the first challenge is to analyze the
theoretical benefits of meta-learning for nonconvex optimizations with shared structures.

Furthermore, while gradient-based meta-learning has gained traction, there are many applica-
tions such as hyperparameter tuning (Real et al., 2017), reinforcement learning (Kirsch et al., 2022),
simulation-based optimization (Gosavi et al., 2015), and generating adversarial examples (Chen
et al., 2017), which resist access to the gradient, let alone the Hessian of the objective function. In
general, derivative-free optimization (DFO) has been employed for blackbox optimizations (Larson
et al., 2019). However, contrary to first-order techniques, where the convergence rates are indepen-
dent of the problem dimensionality, DFO methods, such as Bayesian optimization (Snoek et al.,
2012) and random search (Mania et al., 2018), often scale poorly with the dimensionality (Ghadimi
and Lan, 2013). Adaptivity to the latent low-dimensional structure of the search space has been pur-
sued by subspace methods (Wang et al., 2016; Choromanski et al., 2019). In particular, Sener and
Koltun (2020) proposed the learned manifold random search (LMRS), which learns a latent mani-
fold while performing the optimization. The second challenge, therefore, is to enable meta-learning
of DFO that exploits the latent structure of a potentially high-dimensional problem.1

In view of the aforementioned challenges, we propose the first framework that leverages the
shared structure among potentially high-dimensional, nonconvex, but similar problem instances
to improve computational efficiency and sample complexity of the repeated application of DFO.
Specifically, using LMRS as an exemplary base algorithm, we develop Meta-LMRS that adaptively
and jointly learns a meta-initialization of a search point and a meta-manifold. Preliminary results on
two high-dimensional RL problems demonstrate that Meta-LMRS facilitates each task to be solved
with a small handful of iterations. For analysis, we introduce two notions of similarity among
optimization tasks, namely V ∗

init and V ∗
manifold, which measure closeness based on the initial point

and optimization landscape as captured by some shared manifold, respectively. We establish a key
theoretical benefit of the proposed Meta-LMRS. Notably, the task-averaged regret on stationarity
(Def. 3) can be bounded as O

(
M− 1

2 + max (V ∗
init, c+ V ∗

manifold)
)

, where M is the number of
tasks and c is some constant. This bound improves upon single-task learning when M is large
enough or V ∗

init and V ∗
manifold are small enough (the tasks are sufficiently similar). To contextualize

the contribution, our technique can also be viewed as a step forward for semi-amortized models over
a latent space without requiring gradients (Amos, 2022, Sec. 3.2.2).

1. Note that here we aim to learn a low-dimensional manifold to improve sample complexity or computational efficiency,
which is conceptually different from the classical field of manifold optimization (Absil et al., 2009), where the
manifold is formed by predetermined constraints.
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The rest of the paper is organized as follows. Sec. 2 introduces the problem formulation; we also
include a recapitulation of LMRS along with tailored bounds to facilitate subsequent development.
The proposed method is presented in Sec. 3 and evaluated in Sec. 4. Conclusion is drawn in Sec. 5.
Due to space limitations, we provide all the proofs and additional experimentation details in this
online document (Sel et al., 2022).

2. Problem Formulation and Preliminaries

2.1. Problem setup

Consider an online sequence of tasks {Ti}Mi=1 that arrive sequentially. Each task Ti is to solve a
high-dimensional stochastic optimization problem of the form

min
∈ℜd

fi() =ξ [Fi(, ξ)],

where is the optimization variable and fi : ℜd → ℜ is the function of task i, which is defined as
expectation over some noise variable ξ. In DFO, instead of evaluating the gradients, we only have
zeroth-order access to the objective function through the sampling operator □, i.e., □fi() ∼ Fi(, ξ)
is a random variable for the input and some noise variable ξ.

Our goal is to learn meta-parameters θ ∈ Θ that produce a good task-specific solution i after
a few steps of random search. In particular, let Algt(θ,□fi) corresponds to performing t steps of
DFO initialized with θ. For example, if one step of random search is taken and θ corresponds to the
initial point, we have i ≡ Alg1(θ,□fi) = θ − αĝi, where α is the stepsize and ĝi is the estimated
gradient. To estimate the gradient using function evaluations, recall the classical result by Flaxman
et al. (2004); Nesterov and Spokoiny (2017). Let d−1 and d denote the d-dimensional unit sphere
and unit ball, and ω be a random vector sampled from the uniform distribution over d−1. For a
function f : ℜd → ℜ, its δ-smoothed version is f̂() =∼d [f(+δ)]. Then,

ĝ(, ω) = (F (+δω, ξ)− F (−δω, ξ))ω (1)

is an unbiased estimate of the gradient of the smoothed function ξ,ω∈d−1 [ĝ(, ω)] = 2δ
d ∇f̂().

The goal of gradient-based meta-learning is to find an inductive bias that enables solving a new
instance of optimization f with a few steps of adaptation (t is small) by a DFO Algt(θ,□f).

Notations. We use ∥ · ∥1, ∥ · ∥2, and ∥ · ∥∞ to denote ℓ1, ℓ2, and ℓ∞-norms, respectively. We
use the shorthand notation [M ] = {1, ...,M}.

2.2. Assumptions

We assume that the stochastic function is bounded (|F (, ξ)| ≤ Ω), L-Lipschitz, and µ-smooth with
respect to for all ξ, and has uniformly bounded variance (ξ[(F (, ξ)− f())2] ≤ VF ). Furthermore,
we assume that given ξ, F (·, ξ) lies on an n-dimensional manifold (e.g., n≪ d) and this manifold
can be defined via a nonlinear parametric family (e.g. a neural network): F (, ξ) = h(r(;ψ⋆r );ψ

⋆
h)

for all ∈ ℜd. The above assumptions are adopted by Sener and Koltun (2020). For simplicity,
we denote ψ = (ψr, ψh) ∈ Ψ, where Ψ is assumed to have a bounded ℓ∞ diameter: DΨ =
supψ,ψ′∈Ψ ∥ψ − ψ′∥∞. Unless otherwise specified, we assume the above for each task.
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2.3. Learning to guide random search in a single task

Based on the observations that the function of interest in many practical problems lies on a low-
dimensional nonlinear manifold, Sener and Koltun (2020) proposed LMRS to minimize the function
and learn the manifold jointly. For completeness, we provide a succinct review of LMRS (see
Algorithm ?? for the pseudo-code).

Random search over a manifold. Denote fψ = h(r(·;ψr);ψh), then, by the chain rule, we
have that ∇fψ() = (;ψr)∇h(;ψh), where (;ψr) = ∂r(;ψr)/∂ and = r(, ψr). LMRS first orthonor-
malizes the Jacobian (;ψr) using the Gram–Schmidt procedure for numerical stability and then per-
forms the random search in the column space of this orthonormal matrix q(;ψr), which has lower
dimensionality than the full space. For each step, an n-dimensional vector ω̃ is sampled uniformly
from n−1 and lifted to the input space via q(;ψr)ω̃. Then, by the manifold Stokes’ theorem, using
the lifted vector as a random direction gives an unbiased estimate of the gradient of the smoothed
function as (c.f., (1)):

ξ,ω̃∈n−1 [ĝ(,q (;ψr)ω̃)] =
2δ

n
∇f̃ψ(),

where f̃ψ() =̃∼n [f(+δq(;ψr )̃)] is the smoothed function. In each iteration, exploration is added
by sampling directions from the manifold ≫m and the full space ≫e, which are mixed to obtain the
final estimate ≫= (1− β) ≫m +β ≫e.

Manifold learning. At each iteration, we observe y(t, ωt) = f(t+δq(
t;ψtr)ω

t)−f(t−δq(t;ψtr)ωt),
which is the projection of the gradient onto the chosen directions. Thus, the one-step loss can be

defined as L(t, ωt, ψt) =
(
y(t,ωt)

2δ − ωt
⊺∇h(r(t;ψtr);ψth)

)2
, and the manifold parameters can be

learned by minimizing the aforementioned loss along the trajectory, in the same vein as Follow the
Regularized Leader (FTRL) algorithm (Hazan et al., 2016):

ψt+1 =ψ

t∑
k=1

L(k, ωk, ψ) + λR(ψ), (2)

where R(ψ) = ∥∇h(r(t;ψtr);ψth)−∇h(r(t;ψr);ψh)∥22 is a temporal smoothness regularizer that
penalizes sudden changes in the gradient estimates. In the theoretical analysis, it is assumed that
(2) can be solved optimally. Although apparently strong, the assumption is supported by the exper-
imental results of Sener and Koltun (2020) since neural networks can have high capacity. We note
that further relaxation is possible by adopting the result from Suggala and Netrapalli (2020).

2.4. Single-task performance guarantee

The following result reveals the dependence of the convergence rate on the initial parameter 1.

Lemma 1 Consider running learned manifold random search (Sel et al., 2022, Algorithm. C)
for T steps. Let ke = 1 and km = 1 for simplicity and set α = c0T

− 1
2 , β = d−1, and

δ = (2n)
1
3 (VFΩ)

1
6µ−

1
2T− 1

6 . Then, with probability 1− 4γ ln(T ),

1

T

T∑
t=1

∥∇f(t)∥2 ≤ c1√
T

√√√√ T∑
t=2

∥t −1 ∥2 +
c2

T
1
2

+
c3

T
1
3

, (3)
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where c0 =
(
L2n2µΩ−1 + 2−

2
3n

4
3V

2
3

F µ
2Ω− 4

3T
1
3

)− 1
2

, c1 = Ω
√
dc′1, c2 = 4Ln

√
Ωµ + Ω

√
d(
√
c′5 +√

c′1c
′
4), c3 = 5µ(VFΩ)

1
3n

2
3 , with {c′j}j∈[5] defined in (Sel et al., 2022, (22)-(26)).

Strictly speaking, the above result is not a standard result on convergence since the bound on the
right-hand side of (3) depends on the initial parameter 1 and random trajectory data {t}Tt=1, which is
also the key difference with (Sener and Koltun, 2020, Theorem 1). This development is the key step

toward enabling principled meta-initialization. It is possible to replace the term
√∑T

t=1 ∥t −1 ∥2
in (3) by

√
∥T −1 ∥2 (to reflect the relation between the initial point and the final point) with a

slight change of constants; in this case, we can recover the rate of O(T− 1
3 ) as in (Sener and Koltun,

2020, Theorem 1). However, we introduce the dependence on the trajectory for the purpose of
trajectory-based meta-learning; see the discussion on task-similarity in Sec. 3.1.

The next result reveals the dependence of the convergence rate on the manifold parameter.

Lemma 2 Consider running learned manifold random search (Sel et al., 2022, Algorithm. 2) in
for T steps. Let ke = 1 and km = 1 for simplicity and set α = b0T

− 1
2 , β = d−1, and δ =

2
1
2n

1
3 (VFΩ)

1
6µ−

1
2T− 1

6 . Then, with probability 1− 4γ ln(T ), we have that

1

T

T∑
t=1

∥∇f(t)∥2 ≤ b1√
T

√√√√ T∑
t=2

∥∇h(r(t;ψtr);ψth)−∇h(r(t;ψ1
r );ψ

1
h)∥2 +

b2

T
1
2

+
b3

T
1
3

. (4)

where b0 =
(
L2n2µΩ−1 + n

4
3V

2
3

F µ
2Ω− 4

3T
1
3

)− 1
2

, b1 = Ω
√
db′1, b2 = 4Ln

√
Ωµ+Ω

√
d(
√
b′5+

√
b′1b

′
4), b3 =

6µV
1
3

F Ω
1
3n

2
3 , with {b′j}j∈[5] defined in (Sel et al., 2022, (33)-(37))

2.5. Task-averaged regret on stationarity

The meta-manifold search aims to learn a meta-initialization model that facilitates each task to be
solved after a few rounds of adaptation. Therefore, we will seek to minimize the task-averaged
regret on stationarity defined as follows.

Definition 3 The task-averaged regret on stationarity (TARS) R̄ after M tasks is

R̄(M,T ) =
1

M

M∑
i=1

ET ∥∇fi(i)∥22, (5)

where i is the returned by running some within-task algorithm for T timesteps at task i and the
expectation is taken with respect to the meta and within-task algorithms and the environment.

We can expect that the upper bounds on the task-averaged regrets depend on the meta-initialization
for each task. However, unlike in the standard regret, one cannot achieve TARS decreasing in M
without further assumptions on the environment because the set of first-order stationary points may
change arbitrarily from task to task. Generally, we expect TARS to improve with the similarity
among the online optimization tasks. Furthermore, the notion of similarity not only affects the
evaluation of the meta-learning algorithm, but also impacts the quality of the meta initialization
being learned and, eventually, the performance on an unseen task.

5
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3. Methodology

3.1. Meta-learning the initial search point

The meta-learner’s goal is to make a sequence of decisions on the initial search points that can lead
to quick adaptation to each task. To begin with, recall the convergence rate for a single-task LMRS:

Ui(
1
i ) :=

ci,1√
T

√√√√ T∑
t=2

∥ti −1
i ∥2 +

ci,2

T
1
2

+
ci,3

T
1
3

, (6)

where the constants {ci,j}j=1,...,3 are given in Lemma 1. A key observation is that we can bound
each term of the dynamic regret in (5) corresponding to task i by a loss term based on the initial
policy Ui(1i ). Thus, summing from i = 1 to M and dividing by M , we have that

R̄(M,T ) ≤ 1

M

M∑
i=1

Ui(
1
i ). (7)

Therefore, we have transformed the original problem of bounding the dynamic regret TARS into a
relaxed problem of bounding the right-hand side of the inequality above, which can be formulated
as a standard online learning problem. In particular, we can treat Ui as a loss function, which
is revealed after the completion of each task and instantiated with the past trajectory {ti}Tt=1. Let
Ūparam(M) be the upper bound on the regret with respect to static initialization ,

1

M

M∑
i=1

Ui(
1
i )− Ui() ≤ Ūparam(M), (8)

where the sequence of initialization {1i }Mi=1 are obtained by some online learning algorithm. Thus,
we can proceed to bound R̄(M,T ) by Ūparam(M) + 1

M

∑M
i=1 Ui(). In the following, we discuss

Follow-the-regularized meta leader. Given a starting point x0 and a fixed learning rate η > 0,
for a sequence of functions {ℓi : X → R}i≥1, follow-the-regularized leader (FTRL) plays

i = argmin
∈X

1

2
∥ −0 ∥22 + η

∑
s<i

ℓs(),

where X is a compact convex set considered for initialization; we denote the radius of the set as
D = supx,x′∈X ∥x − x′∥2. In our follow-the-regularized meta leader (FTRML) algorithm, we
perform FTRL on the loss functions {Ui : X → R}i∈[M ]. We assume that Ui is Gi-Lipschitz with
respect to ∥ · ∥2, which is satisfied when X is compact and Ui is bounded away from zero.

Task-similarity measure. In gradient-based meta-learning, we aim to find an initial point that
performs well for a new task after a few updates (Finn et al., 2017; Lee et al., 2019). Hence, it is
natural to measure similarity between tasks based on initial points and optimization trajectories. As
we tread beyond standard gradient descent, it is meaningful to define such a measure with respect
to specific within-task algorithms, i.e., LMRS, which play a role in shaping search behavior. To this
end, we introduce a new notion of task-similarity,

V ∗
init = min

x

Vinit(x) := sup
{t+1
i ∼Algt(x,□fi)}i∈[M ],t∈[T−1]

1

M

M∑
i=1

Ui(x; {t+1
i }t∈[T−1])

 , (9)

6
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where Ui(X; {ti}t∈[T ]) makes the dependence of (6) on the trajectory data {ti}t∈[T ] explicit. Specif-
ically, the constraint t+1

i ∼ Algt(x,□fi) requires that the trajectory data {ti}t∈[T ] is generated by
Alg starting from the initial point x. We take the supremum over all possible realizations of the
trajectories to remove the randomness in the definition of V ∗

init. As seen from the definition above,
V ∗
init depends on both the initialization and the optimization trajectories and is specific to the chosen

algorithm (LMRS in our case).
Theoretical bound of TARS. In the following, we show that TARS can be reduced with an

increasing number of tasks (i.e., increasing M ) or more task-similarity (i.e., lower V ∗
init).

Theorem 4 Let {1i }i∈[M ] be obtained by running FTRML on the sequence of loss functions {Ui}i=1,...,M ,

with initial point 0 ∈ X and learning rate η =
√

D
G2M

, where G2 ≥ 1
M

∑M
i=1G

2
i , we have that

R̄(M,T ) ≲
1√
M

+ V ∗
init.

The above result reveals a key theoretical benefit of meta-learning. Suppose we treat each task as
independent and start from the same initial point ϕ. By (7) and (9), we can bound TARS R̄(M,T )
by Vinit(ϕ). For meta-learning to improve upon the single-task learning TARS, we need to have one
of the following conditions: 1) the number of tasks is large enough: M ≳ G2D

(Vinit(ϕ)−V ∗
init)

2 , or 2) the

tasks are sufficiently similar: V ∗
init ≲ Vinit(ϕ)− G

√
D√

M
, where we have omitted some constant factors.

For practical relevance, we do not need to access the exact values of V ∗
init to run FTRML. Note that

similar results as above also hold if we replace FTRL with online mirror descent or other online
algorithms (Hazan et al., 2016).

3.2. Meta-learning the search manifold

High-dimensional problems that arise in real-world settings often lie in latent low-dimensional man-
ifolds. Our critical insight is that problems of similar nature also share this latent space, and thus
can in principle be meta-learned. In the context of blackbox random search, this is of particular
interest because the manifold is typically not known prior to the optimization, and learning such a
manifold is both data- and computation-intensive.

Our strategy is parallel to the one outlined in Sec. 3.1. Thus, we will only highlight the key
differences. First, recall the manifold-dependent convergence rate for a single-task LMRS:

U ′
i(ψ

0
i ) :=

bi,1√
T

√√√√ T∑
t=2

∥∇h(r(ti;ψtr,i);ψth,i)−∇h(r(ti;ψ1
r,i);ψ

1
h,i)∥2 +

bi,2

T
1
2

+
bi,3

T
1
3

, (10)

where ψti = (ψtr,i, ψ
t
r,i) and the constants {bi,j}j=1,...,3 are given in Lemma 2. Different from (6),

U ′
i is a function of manifold parameters ψ0

i and is in general nonconvex. Hence, FTRML that runs
on the sequence of {U ′

i}i∈[M ] cannot achieve sublinear regret (Suggala and Netrapalli, 2020, Prop.
3). Thus, a different strategy is entailed.

Follow-the-perturbed meta leader. Consider the (γ, τ)-approximate optimization oracle, which,
for a given function ℓ : Ψ → R and a d′-dimensional vector σ, returns an approximate minimizer
ψ∗ ∈ Ψ such that

ℓ(ψ∗)− ⟨σ, ψ∗⟩ ≤ inf
ψ∈Ψ

{ℓ(ψ)− ⟨σ, ψ⟩}+ (γ + τ∥σ∥1).

7
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We denote such an oracle by Qγ,τ (ℓ − ⟨σ, ·⟩). For a sequence of functions {ℓi : X → R}i≥1,
follow-the-perturbed leader (FTPL) plays ψi = Qγ,τ

(∑
s<i ℓs(ψ)− ⟨σs, ·⟩

)
, where σs is a ran-

dom perturbation such that its j-th coordinate σs,j is sampled from the exponential distribution
Exp(η) with parameter η (Agarwal et al., 2019). In our follow-the-perturbed meta leader (FTPML)
algorithm, we perform FTPL on the loss functions {U ′

i}i∈[M ].
Task similarity based on the manifold. Similar to meta-initializing the starting point, we aim

to define a notion of similarity that depends on manifold parameters and the single task optimization
procedure. For simplicity, let ζ = (x, ψ). To this end, consider the following metric:

Vmanifold(ψ) := sup
x∈X ,{ζt+1

i ∼Algt(ζ,□fi)}i∈[M ],t∈[T−1]

1

M

M∑
i=1

U ′
i(ψ; {ζt+1

i }t∈[T−1]), (11)

where U ′
i(ψ; {ζ

t+1
i }t∈[T−1] makes the dependence of (10) on the trajectory data {ζti}Tt=1 explicit.

The constraint ζt+1
i ∼ Algt(ζ,□fi) can be satisfied where LMRS is chosen as a within-task al-

gorithm, which conducts joint optimization and manifold learning. Hence, we define V ∗
manifold =

minψ Vmanifold(ψ), which depends on both the initialization and the optimization trajectories.
Theoretical bound of TARS. We assume that U ′

i is G′
i-Lipschitz with respect to ∥ · ∥1, which

is satisfied when U ′
i is bounded away from zero. We state the following result for FTPML.

Theorem 5 Let {ψ1
i }i∈[M ] be obtained by running FTPML on the sequence of loss functions {Ui :

Ψ → R}i∈[M ], with appropriately chosen η, we have that

R̄(M,T ) ≲

√
d3ΨDΨG′2(τM +DΨ)

M
+ γ + τdΨG

′ + V ∗
manifold.

The above result indicates that FTPML achieves O
(
M− 1

2 + γ +
√
τ + V ∗

manifold

)
. Hence, in the

ideal case when both γ and τ are equal to zero, the theoretical benefits of meta-learning can be
shown to be similar to the discussion after Theorem 4 under the conditions that either M is large
or the tasks are sufficiently similar. In fact, the advantage over single-task learning persists as long
as γ = O

(
M− 1

2

)
and τ = O

(
M−1

)
, which is reasonable given that heuristics such as stochastic

gradient descent seem to find approximate global optima for a variety of optimization landscapes
(including training deep neural networks).

3.3. Joint meta-learning of the initial search point and the manifold

To gain the most benefits from meta-learning, we can jointly learn the initial search point x1i and
manifold parameters ψi. This is possible since the upper bounds of (6) and (10) can be combined:

R̄(M,T ) ≤ 1

M

M∑
i=1

κUi(
1
i ) + (1− κ)U ′

i(ψ
1
i ), (12)

where κ ∈ [0, 1] is the weight. For a fixed κ, we can conduct online learning on the sequence of
{κUi+(1−κ)U ′

i}i∈[M ] by running two independent processes on the two sequences {Ui}i∈[M ] and
{U ′

i}i∈[M ] with FTRML and FTPML, respectively. This is based on the observation that Ui depends
only on x1i and U ′

i depends only on ψ1
i (note that the summation in (10) starts from t = 2). As a

8
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result, it is straightforward to see that TARS can be bounded by the weighted sum of bounds from
Theorems 4 and 5. While in practice, we can set κ to be an arbitrary number in [0, 1], it is unclear
if a better setting exists. Indeed, a higher value of κ weighs more on meta-learning the initial point
(i.e., the {Ui}i∈[M ] sequence) while a lower value of κweighs more on manifold meta-learning (i.e.,
the {U ′

i}i∈[M ] sequence).
To this end, we consider adapting the weights κ together with FTRML on x1i and FTPML on ψ1

i .
Let U sim

i (κ) = κUi(
1
i ) + (1− κ)U ′

i(ψ
1
i ) be a function of κ conditioning on the values of Ui(1i ) and

U ′
i(ψ

1
i ). Hence, U sim

i is simply a linear function of κ. In the i-th meta update, we run the following
parallel processes: (1) FTRL on {U sim

m }m<i to obtain κi, (2) FTRML on {κmUm}m<i to obtain x1i ,
and (3) FTRML on {κmU ′

m}m<i to obtain ψ1
i . We prove the following bound on TARS.

Theorem 6 Let {κi, x1i , ψ1
i }i∈[M ] be obtained by running FTRL, FTRML, and FTPML on se-

quences {U sim
m }m<i, {Ui}i∈[M ], and {U ′

i}i∈[M ], respectively and in parallel. For any κ ∈ (0, 1),
we have that

R̄(M,T ) ≲ κ

(
1√
M

+ V ∗
init

)
+ (1− κ)

(√
d3ΨDΨG′2(τM +DΨ)

M
+ γ + τdΨG

′ + V ∗
manifold

)

From the bound, it may not seem obvious the theoretical improvement over meta-learning ini-
tialization or manifold independently, as one can change κ to either 0 or 1 depending on which of
the two bounds from Theorems 4 and 5 is smaller. However, the bound in Theorem 6 is adaptive
in the sense that it holds for any κ ∈ (0, 1), thus obviating the need to access the exact values of
the bounds in Theorems 4 and 5. We introduce the meta-learned manifold random search algorithm
(Algorithm 1). In this framework, a within-task algorithm (Sel et al., 2022, Algorithm 2: LMRS) is
included in the online learning framework.

Algorithm 1 Meta - Learned Manifold Random Search (Meta-LMRS)
1: for i = 1, . . . , M do
2: for t = 1, . . . , T do
3: xt+1

i , ψt+1
i = LMRS

(
xti, ψ

t
i

)
4: end for
5: Evaluate Ui(1i ) and U ′

i(ψ
1
i ) using (6) and (10), respectively

6: Update the next task parameter and manifold initialization

κi+1= FTRL
(
{U sim

m }m<i
)
, x1i+1= FTRML({κmUm}m<i), ψ1

i+1= FTPML
(
{κmU ′

m}m<i
)

7: end for

4. Experiments

We evaluate the proposed approach on two MuJoCo control problems (Todorov et al., 2012).
Experimental setup. For each task i ∈ [M ], LMRS is used as a within-task solver. FTRML and

FTPML algorithms are used to meta initialize x1i and ψ1
i at the start of each new task, respectively.

We use multi-layered perceptrons as parametric functions for the manifold. We set the manifold
dimension to 50 for both environments without extensive tuning (the rationale for choosing this

9
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Figure 1: Performance comparison of Meta-LMRS with baselines. Both the average and standard
deviation (shades) are reported across 10 independent runs.

value is discussed in (Sel et al., 2022, Sec. C)). A linear policy is used for RL agents. Two baselines
are considered: 1) the random initialization baseline uses random initialization for the within-task
algorithm, and 2) the pretrained baseline is trained on a task from the task distribution. We run the
algorithm online where tasks are encountered sequentially. Further details and discussion about task
similarity in the Half-Cheetah and Humanoid environments can be found in (Sel et al., 2022, Sec.
C).
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Figure 2: Comparison of incremental
benefits of meta-initializing policy and
manifold parameters.

Result and discussion. As shown in Fig. 1, at the
beginning of a new task, the pretrained baseline performs
similarly to Meta-LMRS. However, after a few within-
task steps, Meta-LMRS is able to achieve higher rewards
in both environments compared to baselines. The lack of
noticeable improvement in the pre-trained baseline sug-
gests that knowledge of a single task is not quickly trans-
ferred to other tasks.

Ablation analysis. Fig. 2 shows the incremental
benefits of search point and manifold meta-initializations.
Manifold initialization alone does not appear to have an
apparent improvement over random initializations. Intu-
itively, while a well-learned manifold increases the accu-
racy of the estimated gradients, a few steps are not enough
to reliably improve the policy if the search starts far from
a good solution. Joint initialization of both policy and manifold parameters (Meta-LMRS) provides
the best performance, indicating that meta-manifold benefits are enhanced when combined with a
good initial point.

5. Conclusion

In this paper, we introduce Meta-LMRS for gradient-based meta-learning over a sequence of opti-
mization tasks without access to gradients. We demonstrate the empirical performance and theo-
retical benefits of such an approach for repeatedly solving similar instances of the same problem.
This work is aligned with the emerging directions of learning to optimize (Chen et al., 2021) and
amortized optimization (Amos, 2022) and opens up opportunities to deal with problems that may
involve human feedback formulated as blackbox inquiries.
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