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Abstract

Accurate estimates of long-term risk probabilities and their gradients are critical for many stochas-
tic safe control methods. However, computing such risk probabilities in real-time and in unseen
or changing environments is challenging. Monte Carlo (MC) methods cannot accurately evaluate
the probabilities and their gradients as an infinitesimal devisor can amplify the sampling noise.
In this paper, we develop an efficient method to evaluate the probabilities of long-term risk and
their gradients. The proposed method exploits the fact that long-term risk probability satisfies cer-
tain partial differential equations (PDEs), which characterize the neighboring relations between the
probabilities, to integrate MC methods and physics-informed neural networks. We provide theoret-
ical guarantees of the estimation error given certain choices of training configurations. Numerical
results show the proposed method has better sample efficiency, generalizes well to unseen regions,
and can adapt to systems with changing parameters. The proposed method can also accurately es-
timate the gradients of risk probabilities, which enables first- and second-order techniques on risk
probabilities to be used for learning and control.

Keywords: Stochastic safe control; physics-informed learning; risk probability estimation.

1. Introduction

Safe control for stochastic systems is important yet a key challenge for deploying autonomous sys-
tems in the real world. In the past decades, many stochastic control methods have been proposed to
ensure safety of systems with noises and uncertainties, including stochastic reachabilities (Prandini
and Hu, 2008), chance-constrained predictive control (Nakka et al., 2020) and efc. Despite the huge
amount of stochastic safe control methods, many of them rely on accurate estimates of long-term
risk probabilities or their gradients to guarantee long-term safety (Abate et al., 2008; Chapman et al.,
2019; Santoyo et al., 2021; Wang et al., 2021). To get such accurate estimates is non-trivial, and
here we list the challenges.

* High computational complexity. Estimating long-term risk is computationally expensive, be-
cause the possible state trajectories scale exponentially with regard to the time horizon. Besides,
the values of risk probability are often small in safety-critical systems, and thus huge amounts
of sample trajectories are needed to capture the rare unsafe event (Janssen, 2013).

o Sample inefficiency. Generalization of risk estimation to the full state space is hard to achieve for
sample-based methods, since each point of interest requires one separate simulation. The sample
complexity increases linearly with respect to the number of points for evaluation. Besides, most
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Figure 1: The overview diagram of the proposed PIPE framework. The system takes form (1) with
safe set defined as (2). For training data, one can acquire the empirical risk probabilities by simulat-
ing the system dynamics and calculating the ratio of unsafe trajectories over all trajectories. For the
physics model, we know that the mapping between state-time pair and the risk probability satisfies a
governing convection diffusion equation (Theorem 4). The PIPE framework uses physics-informed
neural networks to learn the risk probability by fitting the empirical training data and using the
physics model as constraints. PIPE gives more accurate and sample efficient risk probability pre-
dictions than Monte Carlo or its variants, and can generalize to unseen regions in the state space and
unknown parameters in the system dynamics thanks to its integration of data and physics models.

of the existing methods require re-evaluation of the risk probability for any changes of system
parameters, which further degrades sample efficiency (Zuev, 2015).

* Lack of direct solutions. For control affine systems, recent study (Chern et al., 2021) suggests
that the risk probability can be characterized by the solution of partial differential equations
(PDEs). It provides an analytical approach to calculate the risk probability, but to solve the
time-varying PDE and get the actual probability value is non-trivial.

* Noisy estimation of probability gradients. Estimating gradients of risk probabilities is difficult,
as sampling noise is amplified by the infinitesimal divisor while taking derivatives over the esti-
mated risk probabilities.

To resolve the abovementioned issues, we propose a physics-informed learning framework PIPE
(Physics-Informed Probability Estimator) to estimate risk probabilities in an efficient and generaliz-
able manner. Fig. 1 shows the overview diagram of the proposed PIPE framework. The framework
takes both data and physics models into consideration, and by combining the two, we achieve better
sample efficiency and the ability to generalize to unseen regions in the state space and unknown
parameters in the system dynamics. The use of deep neural networks enables the efficient learning
of complex PDEs, and the consideration of physics models further enhances efficiency as it allows
imperfect noisy data for training. The resulting framework takes only inaccurate sample data in a
sparse sub-region of the state space for training, and is able to accurately predict the risk probability
over the whole state space for systems with different parameters.

2. Related Works

2.1. Stochastic safe control

Stochastic safe control is a heated topic in recent years, as safety under uncertainties and noises be-
comes the key challenge of many real-world autonomous systems. Stochastic reachability analysis
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takes the stochastic dynamics model and forward rollouts the possible trajectories to get the safety
probability of any given state, and use this information to design suitable safe controllers (Abate
et al., 2008; Prandini and Hu, 2008; Patil and Tanaka, 2022). Conditional Value-at-Risk considers
the risk measure of the system and guarantees the expected risk value to always decrease condi-
tioned on the previous states of the system, and thus guarantees safety (Samuelson and Yang, 2018;
Singletary et al., 2022). Chance-constrained predictive control takes probabilistic safety require-
ments as the constraints in an optimization-based controller, and solves a minimal distance control
to a nominal controller to find its safe counterpart (Nakka et al., 2020; Zhu and Alonso-Mora, 2019;
Pfrommer et al., 2022). While these methods provide theoretical guarantees on safety, all of them re-
quire accurate estimation of risk probabilities or their gradients to yield desirable performance, and
to get accurate estimates itself challenging. We tackle this problem by combining physics models
and data to provide accurate estimates of risk probability and its gradient.

2.2. Rare event simulation

Rare event simulation considers the problem of estimating the probability of rare events in the sys-
tem, and is highly related to risk probability estimation because the risk probability is often small
in safety-critical systems. Here, we list a few widely adopted approaches for rare event simulation.
Standard MC forward runs the system dynamics multiple times to empirically estimate the risk
probability by calculating the unsafe trajectory numbers over the total trajectory number (Rubino
and Tuffin, 2009). Standard MC is easy to implement, but needs huge amounts of sample trajec-
tories to get accurate estimation, which becomes impractical when the required accuracy is high.
Importance sampling methods calculate the risk probability on a shifted new distribution to improve
the sample efficiency, but needs good prior information on the re-sampled distribution for reason-
able performance enhancement, which is hard to achieve for complex systems (Cérou et al., 2012;
Botev et al., 2013). Subset simulation calculates the risk probability conditioned on intermediate
failure events that are easier to estimate, to further improve sample efficiency (Au and Beck, 2001).
However, computational efficiency remains an issue and generalization to the entire state space is
hard to achieve, as the estimation can only be conducted at a single point once (Zuev, 2015). There
are no known methods that can compute the risk probability in an integrated way for the entire state
space, and to do so with high sample efficiency. We address this problem by proposing a learning
framework that considers both data and model to give generalizable prediction results with high
sample efficiency.

2.3. Physics-informed neural networks

Physics-informed neural networks (PINNs) are neural networks that are trained to solve super-
vised learning tasks while respecting any given laws of physics described by general nonlinear
partial differential equations (Raissi et al., 2019). PINNs take both data and the physics model
of the system into account, and are able to solve the forward problem of getting PDE solutions,
and the inverse problem of discovering underlying governing PDEs from data. PINNs have been
widely used in power systems (Misyris et al., 2020), fluid mechanics (Cai et al., 2022) and medical
care (Sahli Costabal et al., 2020). For stochastic safe control, previous works use PINNs to solve
the initial value problem of deep backward stochastic differential equations to derive an end-to-end
myopic safe controller (Han et al., 2018; Pereira et al., 2021). However, to the best of our knowl-
edge there is no work that considers PINNs for risk probability estimation, especially on the full
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state-time space scale. In this work, we take the first step towards leveraging PINNs on the problem
of risk probability estimation.

3. Problem Formulation

We consider a nonlinear stochastic control system dynamics characterized by the following stochas-
tic differential equation (SDE):
dx = f(x,u)dt + odw, (1)

where x € R" is the state, u € R™ is the control input, w; is a n-dimensional Wiener process start-
ing from wg = 0 and o is the magnitude of the noise. We assume that function f is parameterized
by some parameter A. Safety of the system is defined as the state staying within a safe set C, which
is the super-level set of a function ¢(z) : R™ — R, i.e.,

C={z]¢(x) >0} 2

This definition of safety can characterize a large variety of practical safety requirements (Prajna
et al., 2007; Ames et al., 2019). For the stochastic system (1), since safety can only be guaranteed
in the sense of probability, we consider the long-term safety probability Fs and recovery probability
F,. of the system defined as below.

Definition 1 (Safety probability) Srarting from initial state xo = x € C, the safety probability F
of system (1) for outlook time horizon T is defined as the probability of state x; staying in the safe
set C over the time interval [0,T], i.e.,

Fé(x,T) =Pzt € C,Vt € [0,T] | o = ). 3)

Definition 2 (Recovery probability) Starting from initial state xo = x ¢ C, the recovery proba-
bility F. of system (1) for outlook time horizon T is defined as the probability of state x; to get back
to the safe set during the time interval [0,T), i.e.,

F'(z,T)=P(3t € [0,T],2; € C| zp = x). 4)

Both safety probability and recovery probability are specific realizations of risk probability, depend-
ing on whether the initial state is safe or not and whether the safe or unsafe events are of interest in
the system (they are complementary). In the rest of the paper, we will denote risk probability as F’,
and it refers to safety probability or recovery probability depending on the initial state of the system
is within the safe set or not.

Remark 3 The risk probability defined above characterizes the long-term behaviour of the stochas-
tic system. In many literature, people may consider Gaussian approximation to measure the risk at
each time step (Liu and Tomizuka, 2015; Akametalu et al., 2014). However, if we know the prob-
ability of risk at each time step being ¢, then the probability bound of risk for k time steps will be
1 — (1 —e)* — 1. This value is very conservative because the derivation does not capture the
dynamic relationships between time steps. Previous studies also consider approximations of long-
term safety, e.g., supermartingale (Prajna et al., 2007), Chebyshev’s inequality (Boucheron et al.,
2013; Farokhi et al., 2021) and Boole’s inequality (Li et al., 2021). Those approximations allows
efficient calculations but can be conservative as well.
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Figure 2: The training scheme of the physics-informed neural network (PINN) in PIPE.

The value of the risk probability F' over the state space is crucial for safe control of these
systems, but in practice it is hard to obtain all risk probability information accurately, e.g., the
failure probability of manufacturing robot arm is very small and thus hard to estimate (Lasota et al.,
2014). In this paper, the goal is to accurately estimate the risk probability and its gradient over the
entire state space, and to achieve adaptation in changing system dynamics. Specifically, we want
to find the mapping between the state-time pair (x,7") and the risk probability F' over the entire
state-time space R™ x R for any system parameter A, and to estimate the gradient of risk probability
F with regard to the state x. We list four specific goals for the problem, generalization to unseen
regions in the state-time space, efficient estimation with fixed number of sample data, adaptation on
changing system parameters, and accurate estimation of probability gradients.

4. Proposed Method

In this section, we propose a model-based data-driven approach, PIPE, to efficiently estimate risk
probabilities. We first introduce a PDE whose solution will characterize the risk probability. Then
we combine MC data and the PDE model to form a physics-informed neural network to learn the
risk probability. The PIPE formulation enjoys advantages from both PDE and MC, and achieves
better performance and efficiency than any of the method alone.

Theorem 4 (Chern et al., 2021) For a stochastic control affine system in the form of (1), the risk
probability F' (for both safety probability F'° defined in Definition 1 and recovery probability F'"
defined in Definition 2) is characterized by the following convection diffusion equation,

2
Wote.T) = OF OF 1 <O_26F

= gD~ feng @D - ju (@) =0 ©)
with initial condition F(x,0) = 1(x € C). For safety probability, the boundary condition is
F*(z,T) =0, x ¢ C. For recovery probability, the boundary condition is F"(z,T) =1, x € 9C.

Theorem 4 states that the risk probability of a control system can be analytically expressed as
a PDE. The PDE consists of a convection term and a diffusion term. The convection term char-
acterizes how the risk probability changes as the system evolves under its deterministic part of the
dynamics. The diffusion term characterizes the effect of stochastic noises on the risk probability
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value as the noise term in the dynamics diffuses with time. The initial condition says when the
outlook time 7' is 0, the risk probability value is the indicator function of whether the state is within
the safe set. The boundary condition says that on the boundary of safe set C, the risk probability F’
is 0 if we consider safety probability, and is 1 if we consider recovery probability. We use Wr(z,T')
to denote the function value that the PDE risk probability F' should satisfy, to better define the loss
function in the learning framework later.

While the PDE provides a way to get the actual risk probability of the system, to solve a PDE
using numerical techniques is not easy in general, especially when the coefficients are time varying
as in the case of (5). MC methods provide another way to solve this problem. Assume the dynamics
of the system is given, one can simulate the system for an initial condition multiple times to get
an empirical estimate of the risk probability by calculating the ratio of unsafe trajectories over all
trajectories. However, MC requires huge number of trajectories to get accurate estimation, and the
evaluation of the risk probability can only be conducted at a single point at a time.

To leverage the advantages of PDE and MC and to overcome their drawbacks, we propose to use
physics-informed neural networks (PINNs) to learn the mapping from the state and time horizon to
the risk probability value F'. Fig. 2 shows the architecture of the PINN. The PINN takes the state-
time pair (x,7") and the system parameter A as the input, and outputs the risk probability prediction
F, the state and time derivatives %—i and g—g, and the Hessian %275, which come naturally from the
automatic differentiation in deep learning frameworks such as PyTorch (Paszke et al., 2019) and
TensorFlow (Abadi et al., 2016). Unlike standard PINN, we add the system parameter A as an input
to achieve adaptations on varying system parameters. Assume the PINN is parameterized by 6, the
loss function is defined as

L(0) = wpLy(6) + wala(8), (6)
where !
£0(6) = > IWg (213,
(z,T)eP
1 ~ n 2 @
£d(9) = a Z HF@(.%',T) - F(‘rvT)H2
(z,T)eD

Here, F is the training data, Fy is the prediction from the PINN, P and D are the training point
sets for the physics model and external data, respectively. The loss function £ consists of two parts,
the physics model loss £, and data loss £4. The physics model loss £, measures the satisfaction
of the PDE constraints for the learned output. It calculates the actual PDE equation value WAB,
which is supposed to be 0, and use its 2-norm as the loss. The data loss £, measures the accuracy of
the prediction of PINN on the training data. It calculates the mean square error between the PINN
prediction and the training data point as the loss. The overall loss function £ is the weighted sum
of the physics model loss and data loss with weighting coefficients w), and wg.

The resulting PIPE framework combines MC data and the governing PDE into a PINN to learn
the risk probability. The advantages of the PIPE framework include fast inference at test time,
accurate estimation, and ability to generalize from the combination of data and model.

5. Performance Analysis

In this section, we provide performance analysis of PIPE. We first show that for standard neural
networks (NNs) without physics model constraints, it is fundamentally difficult to estimate the
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risk probability of a longer time horizon than those generated from sampled trajectories. We then
show that with the PINN, we are able to estimate the risk probability at any state for any time
horizon with bounded error. Let 2 be the state space, 7 = [0, 7] be the time domain, ¥ =
(092 x [0, Tg]) U (€2 x {0}) be the boundary of the space-time domain. Denote D := Q x 7 for
notation simplicity and denote D be the interior of D.

Corollary 5 Suppose that D € R is a bounded domain, u € C°(D) N C%(D) is the solution
to the PDE of interest, and u(x,T), (x,T) € X is the boundary condition. Let X4 be a strict sub-
region in X, and Dg be a strict sub-region in D. Consider a neural network Fg that is parameterized
by 6 and has sufficient representation capabilities. For VM > 0, there can exist 0 that satisfies both
of the following conditions simultaneously:

1. SUP (z,1)ex, |Fg(l’,T) - fb(.’L‘,T)‘ <1
2. supryep, [Fo(z,T) —u(x, T)| < b2
and

sup |Fg(z,T) —u(x,T)| > M. )
(z,T)eD

Theorem 6 Suppose that D € R is a bounded domain, u € C°(D) N C?(D) is the solution
to the PDE of interest, and u(x,T), (x,T) € X is the boundary condition. Let Fg denote a PINN
parameterized by 0. If the following conditions holds:

1. Ey [|Fp(Y) —u(Y)|] < 01, where Y is uniformly sampled from ¥
2. Ex [|[Wgy(X)|] < 62, where X is uniformly sampled from D
3. I, Wg,, uare % Lipshitz continuous on D.

Then the error of Fg over D is bounded by

)
sup |Fo(z,T) —u(x,T)| < C101 + C2—2 9)
(z,T)eD A

where C, Cy are constants depending on D, 3, and W.

See extended version of this paper for proofs (Wang and Nakahira, 2023). Corollary 5 says that
standard NN can give arbitrarily inaccurate prediction due to insufficient physical constraints. This
explains why risk estimation problems cannot be handled solely on fitting sampled data. Theorem 6
says that when the PDE constraint is imposed on the full space-time domain, the prediction of the
PINN has bounded error, and the error scales linearly with the training loss.

6. Experiments

We conduct four experiments to illustrate the efficacy of the proposed method. The system dynamics
of interest is (1) with x € R, f(z) = A dt, g(x) = 0 and o = 1. The system dynamics become

dr = Adt + dw. (10)

The safe set is defined as (2) with ¢(x) = x — 2. The state-time region of interest is Q x 7 =
[—10,2] x [0,10]. For risk probability, we consider the recovery probability of the system from
initial state zo ¢ C outside the safe set. Specifically, the risk probability F' is characterized by the
solution of the following convection diffusion equation

OF OF 1 <82F

87($7T) = A%(xaT> + itr M(xaT)> ) (11)
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Figure 3: (I) Settings and results of the risk probability generalization task. PIPE and TPS fitting
are compared. The average absolute error of prediction is 9.2 x 1072 for TPS, and 0.3 x 10~2 for
PIPE. (II) Gradient of the risk probability prediction of PIPE and MC. The average absolute error
of gradient prediction is 2.78 x 10~2 for MC, and 0.06 x 10~ for PIPE.

with initial condition F'(z,0) = 1(x > 2) and boundary condition F'(2,7') = 1. We choose this
system because we have the analytical solution of (11) as ground truth for comparison, as given
by F(z,T) = (2 — x) exp {7((27;7%7”)2} /V27T3. The empirical data of the risk probability is
acquired by running MC with the system dynamics (1) with initial state z = z¢ multiple times, and
calculate the number of trajectories where the state recovers to the safe set during the time horizon
[0, T] over the full trajectory number, i.e., F(z,T) = P(3t € [0,T],2; € C | mp = x) = w,
where N is the number of sample trajectories and is a tunable parameter that affects the accuracy of
the estimated risk probability. Specifically, larger N gives more accurate estimation.

In all experiments, we use PINN with 3 hidden layers and 32 neurons per layer. The activation
function is chosen as hyperbolic tangent function (tanh). We use Adam optimizer (Kingma and
Ba, 2014) for training with initial learning rate set as 0.001. The PINN parameters @ is initialized
via Glorot uniform initialization. The weights in the loss function (6) are set to be w, = wq = 1.
We train the PINN for 60000 epochs in all experiments. The simulation is constructed based on the
DeepXDE framework (Lu et al., 2021). Experiment details, simulation results on other systems,
and applications to stochastic safe control can be found in the extended version of this paper (Wang
and Nakahira, 2023). Codes are available at: https://github.com/jacobwang925/PIPE-L4DC.

6.1. Generalization to unseen regions

In this experiment, we test the generalization ability of PIPE to unseen regions of the state-time
space. We consider system (10) with A = 1. We train the PINN with data only on the sub-region of
the state-time space 2 x 7 = [—10, —2] x [0, 10], but test the trained PINN on the full state-time
region Q2 x 7 = [—10, 2] x [0, 10]. The training data is acquired through MC with sample trajectory
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Figure 4: Percentage error of risk probability estimation for different MC sample numbers for rare
events and normal events. PIPE, MC and denoised MC with uniform kernel filtering are compared.
Both error and sample number are in log scale.

number N = 1000, and is down-sampled to dx = 0.4 and dT" = 0.5. For comparison, we use
thin plate spline (TPS) fitting on the training data to infer the risk probability on the whole state
space. We also examined other fitting methods such as cubic spline and polynomial fitting, but TPS
performs the best over all fitting strategies. Fig. 3 (I) visualizes the training data samples and shows
the results. The spline fitting does not include any physical model constraint, thus fails to generalize
to unseen regions in the state space. On the contrary, PIPE can infer the risk probability value very
accurately on the whole state space due to its combination of data and the physics model.

6.2. Efficient estimation of risk probability

In this experiment, we show that PIPE will give more efficient estimations of risk probability in
terms of accuracy and sample number compared to MC and its variants. We consider system (10)
with A = 1. The training data is sampled on the state-time space 2 x 7 = [—10, 2] x [0, 10] with
dx = 0.2 and dT" = 0.1. We compare the risk probability estimation error of PIPE and MC, on two
regions in the state-time space:

1. Normal event region: 2 x 7 = [—6, —2] X [4, 6], where the average probability is 0.412.
2. Rare event region: © x 7 = [—2,0] x [8, 10], where the average probability is 0.985.

For fairer comparison, we use a uniform filter of kernel size 3 on the MC data to smooth out the
noise, as the main cause of inaccuracy of MC estimation is sampling noise. Fig. 4 shows the
percentage errors of risk probability inference under different MC sample numbers N. As the
sample number goes up, prediction errors for all three approaches decrease. The denoised MC has
lower error compared to standard MC as a result of denoising, and their errors tend to converge
since the sampling noise contributes less to the error as the sample number increases. On both rare
events and normal events, PIPE yields more accurate estimation than MC and denoised MC across
all sample numbers. This indicates that PIPE has better sample efficiency than MC and its variants,
as it requires less sample data to achieve the same prediction accuracy. This desired feature of
PIPE is due to the fact that it incorporates model knowledge into the MC data to further enhance its
accuracy by taking the physics-informed neighboring relationships of the data into consideration.

6.3. Adaptation on changing system parameters

In this experiment, we show that PIPE will allow generalization to uncertain parameters of the
system. We consider system (10) with varying A € [0, 2]. We use MC data with sample number
N = 10000 for a fixed set of A\gain = [0.1,0.5,0.8, 1] for training, and test PIPE after training on
Aest = [0.3,0.7,1.2,1.5, 2]. We only present A5t = 1.5 due to space limitation, but similar results
on different A\ can be found at the project webpage. Fig. 5 shows the results. We can see that PIPE
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(a) Ground Truth (A =1.5) (b) Prediction (A=1.5) (c) Errora=1.5)

Figure 5: Risk probability prediction of PIPE on unseen system parameters. The average absolute
error of the prediction is 0.70 x 1072,

is able to predict risk probability for systems with unseen and even out of distribution parameters
during training. In the prediction error plot, the only region that has larger prediction error is at
T = 0 and x € OC on the boundary of the safe set. This is because the risk probability at this point
is not well defined (it can be either O or 1), and this point will not be considered in a control scenario
as we are always interested in long-term safety where T" > 0. This adaptation feature of the PIPE
framework indicates its potential use on stochastic safe control with uncertain system parameters,
and it also opens the door for physics-informed learning on a family of PDEs. In general, PDEs
with different parameters can have qualitatively different behaviors, so is hard to generalize. The
control theory model allows us to have a sense when the PDEs are qualitatively similar with different
parameters, and thus allows generalization within the qualitatively similar cases.

6.4. Estimating the gradient of risk probability

In this experiment, we show that PIPE is able to generate accurate gradient predictions of risk
probabilities. We consider system (10) with A = 1. Similar to the generalization task, we train the
PINN with MC data of N = 1000 on the sub-region 2 x 7 = [—10, —2] x [0, 10] and test the trained
PINN on the full state-time region Q x 7 = [—10,2] x [0,10]. We then take the finite difference
of the risk probability with regard to the state = to calculate its gradient, for ground truth F', MC
estimation £ and PIPE prediction Fy. Fig. 3 (II) shows the results. It can be seen that PIPE gives
much more accurate estimation of the risk probability gradient than MC, and this is due to the fact
that PIPE incorporates physics model information inside the training process. It is also interesting
that PIPE does not use any governing laws of the risk probability gradient during training, and by
considering the risk probability PDE alone, it can provide very accurate estimation of the gradient.
The results indicates that PIPE can enable the usage a lot of first- and higher-order stochastic safe
control methods online, by providing accurate and fast estimation of the risk probability gradients.

7. Conclusion

In this paper, we proposed a generalizable physics-informed learning framework, PIPE, to estimate
the risk probability in stochastic safe control systems. The PIPE framework combines data from
Monte Carlo and the underlying governing PDE of the risk probability, to accurately learn the risk
probability as well as its gradient. PIPE has better sample efficiencies compared to MC, and is able
to generalize to unseen regions in the state space beyond training. The resulting PIPE framework
is also robust to uncertain parameters in the system dynamics, and can infer risk probability values
of a class of systems with training data only from a fixed number of systems. The proposed PIPE
framework provides key foundations for first- and higher-order methods for stochastic safe control,
and opens the door for robust physics-informed learning for generic PDEs. Future work includes
applications to high-dimensional and real-world systems.

10
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